Dynamic optimization of wastewater treatment process based on novel multi-objective ant lion optimization and deep learning algorithm

In this paper, a novel dynamic optimization control based on multi-objective ant lion optimization (DMOALO) and deep learning algorithm is proposed, which could optimize energy consumption (EC) and effluent quality (EQ) simultaneously in the wastewater treatment processes. In order to overcome the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production Jg. 345; S. 131140
Hauptverfasser: Niu, Guoqiang, Li, Xiaoyong, Wan, Xin, He, Xinzhong, Zhao, Yinzhong, Yi, Xiaohui, Chen, Chen, Xujun, Liang, Ying, Guangguo, Huang, Mingzhi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.04.2022
Schlagworte:
ISSN:0959-6526, 1879-1786
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a novel dynamic optimization control based on multi-objective ant lion optimization (DMOALO) and deep learning algorithm is proposed, which could optimize energy consumption (EC) and effluent quality (EQ) simultaneously in the wastewater treatment processes. In order to overcome the difficulty that there is no clear function relationship between the dynamic parameters and the performance indicators, a novel deep belief network (DBN) model for predicting EC and EQ as objective function is proposed. Then, this objective function with constraints is solved by DMOALO method, and the optimal solution would be selected by the intelligent decision system. Finally, Proportional Integral (PI) controllers would be used to track and control these optimal dynamic parameters. DBN-DMOALO-PI optimization control strategy is evaluated in benchmark simulation model 1(BSM1), the simulation results demonstrated this novel optimization control strategy could reduce the EC significantly while meeting the standards of effluent quality parameters. EC is decreased by 3.31% compared with PI optimization control strategy. Therefore, this novel method may reduce the cost of wastewater treatment process effectively, and realize the carbon neutrality in wastewater treatment process. [Display omitted] •A novel dynamic optimization control based on multi-objective ant lion optimization (DMOALO) and deep learning is proposed.•A deep learning model for predicting energy consumption (EC) and effluent quality (EQ) as objective function is proposed.•DMOALO algorithm was proposed to solve objective function overcame the dynamic characteristic difficulties of process data.•The optimization control can optimize EC and EQ simultaneously in the wastewater treatment processes.
AbstractList In this paper, a novel dynamic optimization control based on multi-objective ant lion optimization (DMOALO) and deep learning algorithm is proposed, which could optimize energy consumption (EC) and effluent quality (EQ) simultaneously in the wastewater treatment processes. In order to overcome the difficulty that there is no clear function relationship between the dynamic parameters and the performance indicators, a novel deep belief network (DBN) model for predicting EC and EQ as objective function is proposed. Then, this objective function with constraints is solved by DMOALO method, and the optimal solution would be selected by the intelligent decision system. Finally, Proportional Integral (PI) controllers would be used to track and control these optimal dynamic parameters. DBN-DMOALO-PI optimization control strategy is evaluated in benchmark simulation model 1(BSM1), the simulation results demonstrated this novel optimization control strategy could reduce the EC significantly while meeting the standards of effluent quality parameters. EC is decreased by 3.31% compared with PI optimization control strategy. Therefore, this novel method may reduce the cost of wastewater treatment process effectively, and realize the carbon neutrality in wastewater treatment process. [Display omitted] •A novel dynamic optimization control based on multi-objective ant lion optimization (DMOALO) and deep learning is proposed.•A deep learning model for predicting energy consumption (EC) and effluent quality (EQ) as objective function is proposed.•DMOALO algorithm was proposed to solve objective function overcame the dynamic characteristic difficulties of process data.•The optimization control can optimize EC and EQ simultaneously in the wastewater treatment processes.
In this paper, a novel dynamic optimization control based on multi-objective ant lion optimization (DMOALO) and deep learning algorithm is proposed, which could optimize energy consumption (EC) and effluent quality (EQ) simultaneously in the wastewater treatment processes. In order to overcome the difficulty that there is no clear function relationship between the dynamic parameters and the performance indicators, a novel deep belief network (DBN) model for predicting EC and EQ as objective function is proposed. Then, this objective function with constraints is solved by DMOALO method, and the optimal solution would be selected by the intelligent decision system. Finally, Proportional Integral (PI) controllers would be used to track and control these optimal dynamic parameters. DBN-DMOALO-PI optimization control strategy is evaluated in benchmark simulation model 1(BSM1), the simulation results demonstrated this novel optimization control strategy could reduce the EC significantly while meeting the standards of effluent quality parameters. EC is decreased by 3.31% compared with PI optimization control strategy. Therefore, this novel method may reduce the cost of wastewater treatment process effectively, and realize the carbon neutrality in wastewater treatment process.
ArticleNumber 131140
Author Zhao, Yinzhong
Chen, Chen
Ying, Guangguo
Huang, Mingzhi
Niu, Guoqiang
Wan, Xin
Li, Xiaoyong
Xujun, Liang
He, Xinzhong
Yi, Xiaohui
Author_xml – sequence: 1
  givenname: Guoqiang
  surname: Niu
  fullname: Niu, Guoqiang
  organization: SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
– sequence: 2
  givenname: Xiaoyong
  orcidid: 0000-0001-7371-7924
  surname: Li
  fullname: Li, Xiaoyong
  organization: SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
– sequence: 3
  givenname: Xin
  orcidid: 0000-0003-3616-1503
  surname: Wan
  fullname: Wan, Xin
  organization: SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
– sequence: 4
  givenname: Xinzhong
  surname: He
  fullname: He, Xinzhong
  organization: Fujian Environmental Protection Design Institute Co. Ltd, Fuzhou, 350000, China
– sequence: 5
  givenname: Yinzhong
  surname: Zhao
  fullname: Zhao, Yinzhong
  email: 276795653@qq.com
  organization: Fujian Environmental Protection Design Institute Co. Ltd, Fuzhou, 350000, China
– sequence: 6
  givenname: Xiaohui
  surname: Yi
  fullname: Yi, Xiaohui
  organization: SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
– sequence: 7
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
– sequence: 8
  givenname: Liang
  surname: Xujun
  fullname: Xujun, Liang
  organization: School of Resources and Environmental Sciences, Quanzhou Normal University, Quanzhou, 362000, China
– sequence: 9
  givenname: Guangguo
  surname: Ying
  fullname: Ying, Guangguo
  organization: SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
– sequence: 10
  givenname: Mingzhi
  orcidid: 0000-0002-2592-3544
  surname: Huang
  fullname: Huang, Mingzhi
  email: mingzhi.huang@m.scnu.edu.cn
  organization: SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
BookMark eNqFkDFP3DAYhq2KSj2u_QmVPLLkajuxk6hDhYACElKXdra-2F-oI8e-2r5DsPO_GzgGxMLk5X2eT36OyVGIAQn5ytmGM66-TZvJeNymuBFMiA2vOW_YB7LiXdtXvO3UEVmxXvaVkkJ9Isc5T4zxlrXNijye3weYnaFxW9zsHqC4GGgc6R3kgndQMNGSEMqModDlhsGc6QAZLV2GIe7R03nni6viMKEpbo8Ulql_9ryWQrDUIm6pR0jBhVsK_jYmV_7On8nHEXzGLy_vmvz5efH77Kq6-XV5fXZ6U5m6EaVSwKwZWDfU0AslpTCthRF53yvktuXSdhwNx75mdS2GBqxscGh6piTwUap6TU4O3uUj_3aYi55dNug9BIy7rIVSnDVNt-BrIg9Tk2LOCUe9TW6GdK8500_Z9aRfsuun7PqQfeG-v-GMK88BSgLn36V_HGhcKuwdJp2Nw2DQurTE1Ta6dwz_Af1Ip4I
CitedBy_id crossref_primary_10_1007_s10462_024_10786_3
crossref_primary_10_1016_j_eswa_2023_121030
crossref_primary_10_1109_TII_2022_3189427
crossref_primary_10_1007_s11227_023_05413_x
crossref_primary_10_1016_j_jwpe_2024_106435
crossref_primary_10_1016_j_gsd_2024_101092
crossref_primary_10_1016_j_jwpe_2024_105384
crossref_primary_10_1016_j_conengprac_2023_105650
crossref_primary_10_1016_j_jenvman_2024_122148
crossref_primary_10_1016_j_jenvman_2023_118566
crossref_primary_10_1109_TCYB_2024_3404624
crossref_primary_10_1177_13272314251333265
crossref_primary_10_1186_s42162_025_00490_z
crossref_primary_10_1016_j_scitotenv_2024_169903
crossref_primary_10_1109_TII_2024_3364835
crossref_primary_10_1109_TCYB_2024_3381084
crossref_primary_10_2166_ws_2025_016
crossref_primary_10_1016_j_jenvman_2025_127008
crossref_primary_10_1016_j_biortech_2024_131362
crossref_primary_10_1007_s11356_024_31963_5
crossref_primary_10_1007_s11277_023_10426_z
crossref_primary_10_1109_TII_2025_3552706
crossref_primary_10_1155_2022_1338392
crossref_primary_10_1016_j_jwpe_2025_108703
crossref_primary_10_1038_s41598_024_57231_7
crossref_primary_10_1016_j_jclepro_2024_144415
crossref_primary_10_1016_j_procs_2022_12_012
crossref_primary_10_1109_TII_2025_3563554
crossref_primary_10_3390_w16233512
crossref_primary_10_1016_j_jksuci_2024_101919
crossref_primary_10_1016_j_jwpe_2023_104102
crossref_primary_10_1007_s13042_025_02723_9
crossref_primary_10_1016_j_jwpe_2025_108224
crossref_primary_10_1007_s00289_024_05250_9
crossref_primary_10_1016_j_psep_2025_107487
crossref_primary_10_1016_j_envres_2022_112942
crossref_primary_10_1109_TASE_2023_3240497
crossref_primary_10_3390_membranes13030316
crossref_primary_10_1016_j_jwpe_2024_105902
crossref_primary_10_1016_j_jenvman_2024_121430
crossref_primary_10_1016_j_dwt_2024_100736
crossref_primary_10_1016_j_eswa_2025_126673
crossref_primary_10_1007_s00500_023_09550_6
Cites_doi 10.1007/s00521-016-2642-8
10.2166/wst.2013.087
10.1007/s10489-018-1319-7
10.1016/S1570-7946(08)80078-8
10.3390/w12113220
10.2166/wst.2007.592
10.1109/4235.585893
10.29137/umagd.771671
10.1109/ICSMC.2001.971998
10.1007/s10489-016-0825-8
10.1016/j.jhazmat.2021.127029
10.1016/B978-0-444-59436-5.00035-0
10.1016/j.jprocont.2013.12.010
10.1109/4235.996017
10.1016/j.ifacol.2019.08.175
10.1016/j.jclepro.2021.126343
10.1016/j.compchemeng.2015.07.003
10.2166/wst.2015.489
10.1109/ACCESS.2020.3002928
10.1002/spe.2915
10.1080/0952813X.2019.1647565
10.1007/978-3-540-31880-4_36
10.30534/ijatcse/2020/146922020
10.1016/j.jclepro.2020.121787
10.1016/j.enconman.2019.112418
10.1504/IJBIC.2019.10022705
10.1109/TPWRS.2019.2943972
10.3390/w13131781
10.5573/IEIESPC.2020.9.4.298
10.3233/IDA-192742
10.2166/wst.2015.630
10.1016/j.watres.2020.115975
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2022.131140
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2022_131140
S0959652622007727
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-6a0dcb08b3a926552c7dafe1996e1d715d81ec1e930332b4ad54eb49065a1f563
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000789492800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Sun Nov 09 14:32:42 EST 2025
Sat Nov 29 07:08:07 EST 2025
Tue Nov 18 21:08:18 EST 2025
Fri Feb 23 02:38:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wastewater activated sludge treatment processes
Carbon neutrality
Deep belief network
Dynamic multi-objective ant lion optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-6a0dcb08b3a926552c7dafe1996e1d715d81ec1e930332b4ad54eb49065a1f563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7371-7924
0000-0002-2592-3544
0000-0003-3616-1503
PQID 2661044803
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2661044803
crossref_primary_10_1016_j_jclepro_2022_131140
crossref_citationtrail_10_1016_j_jclepro_2022_131140
elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_131140
PublicationCentury 2000
PublicationDate 2022-04-15
PublicationDateYYYYMMDD 2022-04-15
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cui, Wang (bib6) 2016; 37
Li, Yi, Liu, Liu, Chen, Niu, Yan, Chen, Huang, Ying (bib19) 2021; 294
Robi, Filipi (bib30) 2005; 3410
Kong, Li, Zheng, Wang (bib16) 2019; 35
Zhou, Qiao (bib42) 2017; 68
Wan, Li, Wang, Yi, Zhao, He, Wu, Huang (bib43) 2022; 2022
Chatzisymeon (bib4) 2021; 13
Sokkhey, Okazaki (bib33) 2020; 9
Mirjalili, Jangir, Saremi (bib23) 2017; 46
Piela (bib25) 2014
Zhang, Wang, Cui, Liu, Guo (bib38) 2020; 2020
Wolpert, Macready (bib36) 1997; 1
Zhang, Li, Li, Li, Niu, Chen, Ying, Huang (bib44) 2022; 423
He, Yu, Li, Xiang (bib14) 2020; 205
Plakas, Georgiadis, Karabelas (bib26) 2016; 73
Alex, Benedetti, Copp, Gernaey, Steyer (bib1) 2008; 25
Coello, Ing, Lechuga (bib7) 2002; 2
Hinton (bib13) 2010; 9
Zhou, Qiao (bib39) 2019; 49
Arslankaya, Toprak (bib2) 2021; 13
Deb, Pratap, Agarwal, Meyarivan (bib9) 2002; 6
Shen, Zheng, Zhang (bib31) 2020; 8
Qiao, Zhang (bib27) 2016; 29
Francisco, Skogestad, Vega (bib10) 2015; 82
Ippolito, Morana, Sanseverino, Vuinovich (bib15) 2001; 5
Zhang, Li, Wen, Zhang, Elumalai, Zheng, Chen, Yang, Huang, Ying (bib37) 2020; 182
Liegar (bib21) 2020; 9
Zhang, Chen, Wang, Xu, Cai (bib40) 2019; 14
Niu, Yi, Chen, Li, Ying (bib24) 2020; 265
Han, Qian, Qiao (bib12) 2014; 24
Liu, Li, Cao, Liu, Wang, Zuo (bib18) 2019; 52
Béraud, Steyer, Lemoine, Latrille, Manic, Printemps-Vacquier (bib3) 2007; 56
Huang, Tian, Liu, Zhang, Cai, Ruan, Zhang, Kong, Ying (bib45) 2018
Li, Yang, Li, Qiao (bib20) 2019; 70
Chen, Hao, Wang, Wang, Zheng (bib5) 2019; 23
Da I, Chen, Lu (bib8) 2016; 73
Lahdhiri, Lesage, Hannachi, Heran (bib17) 2020; 12
Mahanta, Rout, V, D, Biswal (bib22) 2020; 32
Qiao, Bo, Chai, Han (bib28) 2013; 67
Wu, Li, Srivastava, Tasi, Lin (bib35) 2020; 51
Rojas, Flores-Alsina, Jeppsson, Vilanova (bib29) 2012
Wan (10.1016/j.jclepro.2022.131140_bib43) 2022; 2022
Zhou (10.1016/j.jclepro.2022.131140_bib39) 2019; 49
Li (10.1016/j.jclepro.2022.131140_bib20) 2019; 70
Zhou (10.1016/j.jclepro.2022.131140_bib42) 2017; 68
Shen (10.1016/j.jclepro.2022.131140_bib31) 2020; 8
Mahanta (10.1016/j.jclepro.2022.131140_bib22) 2020; 32
Mirjalili (10.1016/j.jclepro.2022.131140_bib23) 2017; 46
Zhang (10.1016/j.jclepro.2022.131140_bib40) 2019; 14
Liu (10.1016/j.jclepro.2022.131140_bib18) 2019; 52
Cui (10.1016/j.jclepro.2022.131140_bib6) 2016; 37
Plakas (10.1016/j.jclepro.2022.131140_bib26) 2016; 73
Zhang (10.1016/j.jclepro.2022.131140_bib38) 2020; 2020
Béraud (10.1016/j.jclepro.2022.131140_bib3) 2007; 56
Liegar (10.1016/j.jclepro.2022.131140_bib21) 2020; 9
Chatzisymeon (10.1016/j.jclepro.2022.131140_bib4) 2021; 13
Da I (10.1016/j.jclepro.2022.131140_bib8) 2016; 73
Francisco (10.1016/j.jclepro.2022.131140_bib10) 2015; 82
Qiao (10.1016/j.jclepro.2022.131140_bib27) 2016; 29
Wu (10.1016/j.jclepro.2022.131140_bib35) 2020; 51
Lahdhiri (10.1016/j.jclepro.2022.131140_bib17) 2020; 12
Piela (10.1016/j.jclepro.2022.131140_bib25) 2014
Wolpert (10.1016/j.jclepro.2022.131140_bib36) 1997; 1
Sokkhey (10.1016/j.jclepro.2022.131140_bib33) 2020; 9
Chen (10.1016/j.jclepro.2022.131140_bib5) 2019; 23
Li (10.1016/j.jclepro.2022.131140_bib19) 2021; 294
Deb (10.1016/j.jclepro.2022.131140_bib9) 2002; 6
Ippolito (10.1016/j.jclepro.2022.131140_bib15) 2001; 5
Rojas (10.1016/j.jclepro.2022.131140_bib29) 2012
Robi (10.1016/j.jclepro.2022.131140_bib30) 2005; 3410
Arslankaya (10.1016/j.jclepro.2022.131140_bib2) 2021; 13
Han (10.1016/j.jclepro.2022.131140_bib12) 2014; 24
Kong (10.1016/j.jclepro.2022.131140_bib16) 2019; 35
Qiao (10.1016/j.jclepro.2022.131140_bib28) 2013; 67
Zhang (10.1016/j.jclepro.2022.131140_bib44) 2022; 423
He (10.1016/j.jclepro.2022.131140_bib14) 2020; 205
Coello (10.1016/j.jclepro.2022.131140_bib7) 2002; 2
Huang (10.1016/j.jclepro.2022.131140_bib45) 2018
Hinton (10.1016/j.jclepro.2022.131140_bib13) 2010; 9
Alex (10.1016/j.jclepro.2022.131140_bib1) 2008; 25
Niu (10.1016/j.jclepro.2022.131140_bib24) 2020; 265
Zhang (10.1016/j.jclepro.2022.131140_bib37) 2020; 182
References_xml – volume: 51
  start-page: 628
  year: 2020
  end-page: 644
  ident: bib35
  article-title: A graph‐based convolutional neural network stock price prediction with leading indicators
  publication-title: Software Pract. Ex.
– volume: 29
  start-page: 1261
  year: 2016
  end-page: 1271
  ident: bib27
  article-title: Dynamic multi-objective optimization control for wastewater treatment process
  publication-title: Neural Comput. Appl.
– year: 2012
  ident: bib29
  article-title: Application of Multivariate Virtual Reference Feedback Tuning for Wastewater Treatment Plant Control
– volume: 2
  start-page: 1051
  year: 2002
  end-page: 1056
  ident: bib7
  article-title: Mopso: a proposal for multiple objective particle swarm
  publication-title: IEEE Congresson Evolutionary Computation
– volume: 8
  start-page: 111731
  year: 2020
  end-page: 111741
  ident: bib31
  article-title: A hybrid forecasting model for the velocity of hybrid robotic fish based on back-propagation neural network with genetic algorithm optimization
  publication-title: IEEE Access
– start-page: e127
  year: 2014
  end-page: e129
  ident: bib25
  article-title: Penalty function method
  publication-title: Ideas of Quantum Chemistry
– volume: 49
  start-page: 1098
  year: 2019
  end-page: 1126
  ident: bib39
  article-title: Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D
  publication-title: Appl. Intell.
– volume: 32
  start-page: 309
  year: 2020
  end-page: 338
  ident: bib22
  article-title: An improved multi-objective antlion optimization algorithm for the optimal design of the robotic gripper
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 182
  start-page: 115975
  year: 2020
  ident: bib37
  article-title: Heterogeneous electro-Fenton using three-dimension NZVI-BC electrodes for degradation of neonicotinoid wastewater
  publication-title: Water Res.
– volume: 9
  start-page: 926
  year: 2010
  end-page: 947
  ident: bib13
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Momentum
– volume: 68
  start-page: 3511
  year: 2017
  end-page: 3521
  ident: bib42
  article-title: Optimal control of wastewater treatment process using hybrid multi-objective barebones particle swarm optimization algorithm
  publication-title: CIE J.
– volume: 56
  start-page: 109
  year: 2007
  end-page: 116
  ident: bib3
  article-title: Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms
  publication-title: Water Sci. Technol.
– volume: 73
  start-page: 223
  year: 2016
  end-page: 235
  ident: bib8
  article-title: The application of multi-objective optimization method for activated sludge process: a review
  publication-title: Water Sci. Technol.
– volume: 14
  start-page: 62
  year: 2019
  ident: bib40
  article-title: Analyses of inverted generational distance for many-objective optimization algorithms
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 82
  start-page: 259
  year: 2015
  end-page: 272
  ident: bib10
  article-title: Model predictive control for the self-optimized operation in wastewater treatment plants: analysis of dynamic issues
  publication-title: Comput. Chem. Eng.
– volume: 3410
  start-page: 520
  year: 2005
  end-page: 533
  ident: bib30
  article-title: Demo: differential evolution for multiobjective optimization
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 46
  start-page: 79
  year: 2017
  end-page: 95
  ident: bib23
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
– volume: 9
  start-page: 298
  year: 2020
  end-page: 311
  ident: bib33
  article-title: Development and optimization of deep belief networks applied for academic performance prediction with larger datasets
  publication-title: IEIE Transactions on Smart Processing Computing
– volume: 423
  year: 2022
  ident: bib44
  article-title: Accurate prediction and further dissection of neonicotinoid elimination in the water treatment by CTS@AgBC using multihead attention-based convolutional neural network combined with the time-dependent Cox regression model
  publication-title: J. Hazard Mater.
– volume: 265
  start-page: 121787
  year: 2020
  ident: bib24
  article-title: A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment
  publication-title: J. Clean. Prod.
– volume: 9
  start-page: 1861
  year: 2020
  end-page: 1865
  ident: bib21
  article-title: Artificial neural network architecture optimization for heart disease classification using genetic algorithm
  publication-title: Int. J. Adv. Trends Comput. Sci. Eng.
– volume: 5
  start-page: 3123
  year: 2001
  end-page: 3128
  ident: bib15
  article-title: NSGA-based multiobjective optimisation for modular strategical planning of electric distribution systems
  publication-title: IEEE Int. Conf. Syst. Man Cybern.
– volume: 52
  start-page: 176
  year: 2019
  end-page: 181
  ident: bib18
  article-title: Transient rotor angle stability prediction based on deep belief network and long short-term memory network
  publication-title: IFAC-PapersOnLine
– volume: 70
  start-page: 1868
  year: 2019
  end-page: 1878
  ident: bib20
  article-title: Optimal control of wastewater treatment process using NSGAII algorithm based on multi-objective uniform distribution
  publication-title: CIE J.
– volume: 13
  start-page: 178
  year: 2021
  end-page: 192
  ident: bib2
  article-title: Using machine learning and deep learning algorithms for stock price prediction
  publication-title: Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi
– start-page: 1
  year: 2018
  end-page: 11
  ident: bib45
  article-title: A hybrid fuzzy wavelet neural network model with self-adapted fuzzy c -means clustering and genetic algorithm for water quality prediction in rivers
  publication-title: Complexity
– volume: 13
  start-page: 1781
  year: 2021
  ident: bib4
  article-title: Application of biological and chemical processes to wastewater treatment
  publication-title: Water
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib9
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib36
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 441
  year: 2008
  end-page: 446
  ident: bib1
  article-title: Model predictive control of the waste water treatment plant based on the benchmark simulation model No.1-BSM1
  publication-title: Computer Aided Chemical Engineering
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib38
  article-title: Fast nondominated sorting genetic algorithm II with lévy distribution for network topology optimization
  publication-title: Math. Probl Eng.
– volume: 23
  start-page: 53
  year: 2019
  end-page: 65
  ident: bib5
  article-title: Futures price prediction modeling and decision-making based on DBN deep learning
  publication-title: Intell. Data Anal.
– volume: 205
  start-page: 112418
  year: 2020
  ident: bib14
  article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning
  publication-title: Energy Convers. Manag.
– volume: 73
  start-page: 1532
  year: 2016
  end-page: 1540
  ident: bib26
  article-title: Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis
  publication-title: Water Sci. Technol.
– volume: 2022
  year: 2022
  ident: bib43
  article-title: Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system
  publication-title: Environ. Res.
– volume: 35
  start-page: 1531
  year: 2019
  end-page: 1538
  ident: bib16
  article-title: Improved deep belief network for short-term load forecasting considering demand-side management
  publication-title: IEEE Trans. Power Syst.
– volume: 67
  start-page: 2314
  year: 2013
  end-page: 2320
  ident: bib28
  article-title: Adaptive optimal control for a wastewater treatment plant based on a data-driven method
  publication-title: Water Sci. Technol.
– volume: 294
  start-page: 126343
  year: 2021
  ident: bib19
  article-title: Application of novel hybrid deep leaning model for cleaner production in a paper industrial wastewater treatment system
  publication-title: J. Clean. Prod.
– volume: 24
  start-page: 47
  year: 2014
  end-page: 59
  ident: bib12
  article-title: Nonlinear multiobjective model-predictive control scheme for wastewater treatment process
  publication-title: J. Process Control
– volume: 37
  start-page: 44
  year: 2016
  end-page: 50
  ident: bib6
  article-title: Model and application based on ALO-ENN algorithm in flood disaster evaluation
  publication-title: Pearl River
– volume: 12
  start-page: 3220
  year: 2020
  ident: bib17
  article-title: Steady-state methodology for activated sludge model 1 (asm1) state variable calculation in mbr
  publication-title: Water
– volume: 29
  start-page: 1261
  issue: 11
  year: 2016
  ident: 10.1016/j.jclepro.2022.131140_bib27
  article-title: Dynamic multi-objective optimization control for wastewater treatment process
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2642-8
– volume: 67
  start-page: 2314
  issue: 10
  year: 2013
  ident: 10.1016/j.jclepro.2022.131140_bib28
  article-title: Adaptive optimal control for a wastewater treatment plant based on a data-driven method
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.087
– volume: 49
  start-page: 1098
  issue: 3
  year: 2019
  ident: 10.1016/j.jclepro.2022.131140_bib39
  article-title: Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1319-7
– volume: 25
  start-page: 441
  year: 2008
  ident: 10.1016/j.jclepro.2022.131140_bib1
  article-title: Model predictive control of the waste water treatment plant based on the benchmark simulation model No.1-BSM1
  publication-title: Computer Aided Chemical Engineering
  doi: 10.1016/S1570-7946(08)80078-8
– volume: 12
  start-page: 3220
  issue: 11
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib17
  article-title: Steady-state methodology for activated sludge model 1 (asm1) state variable calculation in mbr
  publication-title: Water
  doi: 10.3390/w12113220
– volume: 2022
  year: 2022
  ident: 10.1016/j.jclepro.2022.131140_bib43
  article-title: Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system
  publication-title: Environ. Res.
– volume: 56
  start-page: 109
  issue: 9
  year: 2007
  ident: 10.1016/j.jclepro.2022.131140_bib3
  article-title: Towards a global multi objective optimization of wastewater treatment plant based on modeling and genetic algorithms
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2007.592
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.jclepro.2022.131140_bib36
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 37
  start-page: 44
  issue: 5
  year: 2016
  ident: 10.1016/j.jclepro.2022.131140_bib6
  article-title: Model and application based on ALO-ENN algorithm in flood disaster evaluation
  publication-title: Pearl River
– volume: 13
  start-page: 178
  issue: 1
  year: 2021
  ident: 10.1016/j.jclepro.2022.131140_bib2
  article-title: Using machine learning and deep learning algorithms for stock price prediction
  publication-title: Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi
  doi: 10.29137/umagd.771671
– volume: 5
  start-page: 3123
  year: 2001
  ident: 10.1016/j.jclepro.2022.131140_bib15
  article-title: NSGA-based multiobjective optimisation for modular strategical planning of electric distribution systems
  publication-title: IEEE Int. Conf. Syst. Man Cybern.
  doi: 10.1109/ICSMC.2001.971998
– volume: 46
  start-page: 79
  issue: 1
  year: 2017
  ident: 10.1016/j.jclepro.2022.131140_bib23
  article-title: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0825-8
– volume: 423
  year: 2022
  ident: 10.1016/j.jclepro.2022.131140_bib44
  article-title: Accurate prediction and further dissection of neonicotinoid elimination in the water treatment by CTS@AgBC using multihead attention-based convolutional neural network combined with the time-dependent Cox regression model
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2021.127029
– start-page: e127
  year: 2014
  ident: 10.1016/j.jclepro.2022.131140_bib25
  article-title: Penalty function method
  publication-title: Ideas of Quantum Chemistry
  doi: 10.1016/B978-0-444-59436-5.00035-0
– volume: 2
  start-page: 1051
  year: 2002
  ident: 10.1016/j.jclepro.2022.131140_bib7
  article-title: Mopso: a proposal for multiple objective particle swarm
  publication-title: IEEE Congresson Evolutionary Computation
– volume: 68
  start-page: 3511
  issue: 9
  year: 2017
  ident: 10.1016/j.jclepro.2022.131140_bib42
  article-title: Optimal control of wastewater treatment process using hybrid multi-objective barebones particle swarm optimization algorithm
  publication-title: CIE J.
– volume: 24
  start-page: 47
  issue: 3
  year: 2014
  ident: 10.1016/j.jclepro.2022.131140_bib12
  article-title: Nonlinear multiobjective model-predictive control scheme for wastewater treatment process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.12.010
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.jclepro.2022.131140_bib9
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 52
  start-page: 176
  issue: 4
  year: 2019
  ident: 10.1016/j.jclepro.2022.131140_bib18
  article-title: Transient rotor angle stability prediction based on deep belief network and long short-term memory network
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.08.175
– volume: 294
  start-page: 126343
  year: 2021
  ident: 10.1016/j.jclepro.2022.131140_bib19
  article-title: Application of novel hybrid deep leaning model for cleaner production in a paper industrial wastewater treatment system
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126343
– year: 2012
  ident: 10.1016/j.jclepro.2022.131140_bib29
– volume: 82
  start-page: 259
  year: 2015
  ident: 10.1016/j.jclepro.2022.131140_bib10
  article-title: Model predictive control for the self-optimized operation in wastewater treatment plants: analysis of dynamic issues
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2015.07.003
– volume: 73
  start-page: 223
  issue: 2
  year: 2016
  ident: 10.1016/j.jclepro.2022.131140_bib8
  article-title: The application of multi-objective optimization method for activated sludge process: a review
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2015.489
– volume: 70
  start-page: 1868
  issue: 5
  year: 2019
  ident: 10.1016/j.jclepro.2022.131140_bib20
  article-title: Optimal control of wastewater treatment process using NSGAII algorithm based on multi-objective uniform distribution
  publication-title: CIE J.
– volume: 8
  start-page: 111731
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib31
  article-title: A hybrid forecasting model for the velocity of hybrid robotic fish based on back-propagation neural network with genetic algorithm optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002928
– volume: 51
  start-page: 628
  issue: 3
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib35
  article-title: A graph‐based convolutional neural network stock price prediction with leading indicators
  publication-title: Software Pract. Ex.
  doi: 10.1002/spe.2915
– volume: 9
  start-page: 926
  issue: 1
  year: 2010
  ident: 10.1016/j.jclepro.2022.131140_bib13
  article-title: A practical guide to training restricted Boltzmann machines
  publication-title: Momentum
– volume: 32
  start-page: 309
  issue: 2
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib22
  article-title: An improved multi-objective antlion optimization algorithm for the optimal design of the robotic gripper
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2019.1647565
– volume: 3410
  start-page: 520
  year: 2005
  ident: 10.1016/j.jclepro.2022.131140_bib30
  article-title: Demo: differential evolution for multiobjective optimization
  publication-title: Evolutionary Multi-Criterion Optimization
  doi: 10.1007/978-3-540-31880-4_36
– volume: 9
  start-page: 1861
  issue: 2
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib21
  article-title: Artificial neural network architecture optimization for heart disease classification using genetic algorithm
  publication-title: Int. J. Adv. Trends Comput. Sci. Eng.
  doi: 10.30534/ijatcse/2020/146922020
– volume: 265
  start-page: 121787
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib24
  article-title: A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121787
– volume: 205
  start-page: 112418
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib14
  article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112418
– volume: 14
  start-page: 62
  issue: 1
  year: 2019
  ident: 10.1016/j.jclepro.2022.131140_bib40
  article-title: Analyses of inverted generational distance for many-objective optimization algorithms
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2019.10022705
– volume: 35
  start-page: 1531
  issue: 2
  year: 2019
  ident: 10.1016/j.jclepro.2022.131140_bib16
  article-title: Improved deep belief network for short-term load forecasting considering demand-side management
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2943972
– volume: 13
  start-page: 1781
  issue: 13
  year: 2021
  ident: 10.1016/j.jclepro.2022.131140_bib4
  article-title: Application of biological and chemical processes to wastewater treatment
  publication-title: Water
  doi: 10.3390/w13131781
– volume: 9
  start-page: 298
  issue: 4
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib33
  article-title: Development and optimization of deep belief networks applied for academic performance prediction with larger datasets
  publication-title: IEIE Transactions on Smart Processing Computing
  doi: 10.5573/IEIESPC.2020.9.4.298
– volume: 2020
  start-page: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib38
  article-title: Fast nondominated sorting genetic algorithm II with lévy distribution for network topology optimization
  publication-title: Math. Probl Eng.
– volume: 23
  start-page: 53
  year: 2019
  ident: 10.1016/j.jclepro.2022.131140_bib5
  article-title: Futures price prediction modeling and decision-making based on DBN deep learning
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-192742
– volume: 73
  start-page: 1532
  issue: 7
  year: 2016
  ident: 10.1016/j.jclepro.2022.131140_bib26
  article-title: Sustainability assessment of tertiary wastewater treatment technologies: a multi-criteria analysis
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2015.630
– start-page: 1
  year: 2018
  ident: 10.1016/j.jclepro.2022.131140_bib45
  article-title: A hybrid fuzzy wavelet neural network model with self-adapted fuzzy c -means clustering and genetic algorithm for water quality prediction in rivers
  publication-title: Complexity
– volume: 182
  start-page: 115975
  year: 2020
  ident: 10.1016/j.jclepro.2022.131140_bib37
  article-title: Heterogeneous electro-Fenton using three-dimension NZVI-BC electrodes for degradation of neonicotinoid wastewater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115975
SSID ssj0017074
Score 2.5608208
Snippet In this paper, a novel dynamic optimization control based on multi-objective ant lion optimization (DMOALO) and deep learning algorithm is proposed, which...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131140
SubjectTerms algorithms
carbon
Carbon neutrality
Deep belief network
Dynamic multi-objective ant lion optimization
energy
Myrmeleontidae
simulation models
Wastewater activated sludge treatment processes
wastewater treatment
Title Dynamic optimization of wastewater treatment process based on novel multi-objective ant lion optimization and deep learning algorithm
URI https://dx.doi.org/10.1016/j.jclepro.2022.131140
https://www.proquest.com/docview/2661044803
Volume 345
WOSCitedRecordID wos000789492800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXjIStyhLHnbiHCsoKgitOBSRW-QkzjarNA77onDnp_A_GcfOg4VSeuASrSx71sl8GU_GM58ResELkhawsNtEBNwmmZvbDGyiHTihoFlRpEHRUua_D2czFsfRh8nkR1cLs63Cumbn51HzX1UNbaBsVTp7BXX3QqEBfoPS4Qpqh-s_Kf61PmPekmAMzkyVpXIJv_CVCpQpUsQhu7zRdQKWWsxytXFQy62odJqhLdOFNocWPH6rauWMhaqYey5E0x09Mbd4NZfLcn16doHPC1PlNUyg0TyzoxyAWblpQ_Qb-RkAO-_zhNpkg7jk8qscWj_pqG1c9sOPhWn4dtr1M6EM-ApWnIl0JyYZUF1C35lnn9CRgVXsQJrf6Tfbr8MQi-kC7gVuY6r-YTr0_5Vre2cN7DMTu6S3RWLEJEpMosVcQ_teSCOw__uHb4_id_12Vehouu9u_kOp2Ms_zuciJ2jHHWh9nJPb6JZRFD7UoLqDJqK-i26OKCvvoe8GXniMBCwLPMAL9_DCBl64hReGji288A68MMALV62csVCAF1bwwh28cA-v--jjm6OTV8e2OcrDznzire2AO3mWOiz1eeQFlHpZmPNCqBR44eahS3PmiswVEXhUvpcSnlMiUhKBg8zdggb-A7RXy1o8RJgz4QQsD0MQQQrC0kiFEAR8dzAuuO8fINI92yQzPPfquJUq-atuD9C0H9ZoopfLBrBOcYnxVrUXmgAgLxv6vFN0AtZcbdHByyc3q0S5yw4hzPEfXXU-j9GN4Z16gvbWy414iq5n23W5Wj4ziP0JpC_NQA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+optimization+of+wastewater+treatment+process+based+on+novel+multi-objective+ant+lion+optimization+and+deep+learning+algorithm&rft.jtitle=Journal+of+cleaner+production&rft.au=Niu%2C+Guoqiang&rft.au=Li%2C+Xiaoyong&rft.au=Wan%2C+Xin&rft.au=He%2C+Xinzhong&rft.date=2022-04-15&rft.issn=0959-6526&rft.volume=345&rft.spage=131140&rft_id=info:doi/10.1016%2Fj.jclepro.2022.131140&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2022_131140
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon