SO-YOLOv5: Small object recognition algorithm for sea cucumber in complex seabed environment

Underwater object recognition is a prerequisite for the realization of automated seafood harvesting. To solve the problems of low recognition accuracy and poor generalization ability of existing underwater small object, this paper takes sea cucumber as research objects to research the small object r...

Full description

Saved in:
Bibliographic Details
Published in:Fisheries research Vol. 264; p. 106710
Main Authors: Xuan, Kui, Deng, Limiao, Xiao, Ying, Wang, Peidong, Li, Juan
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2023
Subjects:
ISSN:0165-7836, 1872-6763
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Underwater object recognition is a prerequisite for the realization of automated seafood harvesting. To solve the problems of low recognition accuracy and poor generalization ability of existing underwater small object, this paper takes sea cucumber as research objects to research the small object recognition approach in complex underwater environment. In this paper, a sea cucumber dataset is established to solve the problem of lacking sea cucumber dataset in the real seabed environment. A deep learning model SO-YOLOv5 is proposed based on YOLOv5 for underwater small object recognition, which improves the recognition ability of the algorithm for different sizes of objects in complex environment. The proposed model embeds a large-scale feature extraction layer in structure to increase the detection ability of small objects by referring to the idea of the Bi-directional Feature Pyramid Network. SO-YOLOv5 fuses the features between deep and shallow layers and balances the feature information of different scales, and integrates the Coordinate Attention mechanism to enhance the sensitivity of the algorithm to the direction and position information. The experimental results illustrate that the mAP of the proposed approach achieves 95.47% for sea cucumber recognition in the complex seabed environment, which is 3.42%, 6.79%, and 5.46% higher than the traditional Faster R-CNN, SSD, and YOLOv5 algorithms, respectively. This research not only provides an effective approach for sea cucumber recognition in complex environment but also has certain reference significance for the recognition of small objects in other complex environments. In addition, the proposed approach has practical application value to improve intelligence level in aquaculture. •A sea cucumbers dataset was established.•Feature extraction capability was enhanced through fusing large-size features to improve small object detection ability.•The deep and shallow layers of features are bi-directionally fused to balance the different scales of features.•The Coordinate Attention mechanism is embedded to enhance the algorithm’s sensitivity to the direction and location.
AbstractList Underwater object recognition is a prerequisite for the realization of automated seafood harvesting. To solve the problems of low recognition accuracy and poor generalization ability of existing underwater small object, this paper takes sea cucumber as research objects to research the small object recognition approach in complex underwater environment. In this paper, a sea cucumber dataset is established to solve the problem of lacking sea cucumber dataset in the real seabed environment. A deep learning model SO-YOLOv5 is proposed based on YOLOv5 for underwater small object recognition, which improves the recognition ability of the algorithm for different sizes of objects in complex environment. The proposed model embeds a large-scale feature extraction layer in structure to increase the detection ability of small objects by referring to the idea of the Bi-directional Feature Pyramid Network. SO-YOLOv5 fuses the features between deep and shallow layers and balances the feature information of different scales, and integrates the Coordinate Attention mechanism to enhance the sensitivity of the algorithm to the direction and position information. The experimental results illustrate that the mAP of the proposed approach achieves 95.47% for sea cucumber recognition in the complex seabed environment, which is 3.42%, 6.79%, and 5.46% higher than the traditional Faster R-CNN, SSD, and YOLOv5 algorithms, respectively. This research not only provides an effective approach for sea cucumber recognition in complex environment but also has certain reference significance for the recognition of small objects in other complex environments. In addition, the proposed approach has practical application value to improve intelligence level in aquaculture. •A sea cucumbers dataset was established.•Feature extraction capability was enhanced through fusing large-size features to improve small object detection ability.•The deep and shallow layers of features are bi-directionally fused to balance the different scales of features.•The Coordinate Attention mechanism is embedded to enhance the algorithm’s sensitivity to the direction and location.
Underwater object recognition is a prerequisite for the realization of automated seafood harvesting. To solve the problems of low recognition accuracy and poor generalization ability of existing underwater small object, this paper takes sea cucumber as research objects to research the small object recognition approach in complex underwater environment. In this paper, a sea cucumber dataset is established to solve the problem of lacking sea cucumber dataset in the real seabed environment. A deep learning model SO-YOLOv5 is proposed based on YOLOv5 for underwater small object recognition, which improves the recognition ability of the algorithm for different sizes of objects in complex environment. The proposed model embeds a large-scale feature extraction layer in structure to increase the detection ability of small objects by referring to the idea of the Bi-directional Feature Pyramid Network. SO-YOLOv5 fuses the features between deep and shallow layers and balances the feature information of different scales, and integrates the Coordinate Attention mechanism to enhance the sensitivity of the algorithm to the direction and position information. The experimental results illustrate that the mAP of the proposed approach achieves 95.47% for sea cucumber recognition in the complex seabed environment, which is 3.42%, 6.79%, and 5.46% higher than the traditional Faster R-CNN, SSD, and YOLOv5 algorithms, respectively. This research not only provides an effective approach for sea cucumber recognition in complex environment but also has certain reference significance for the recognition of small objects in other complex environments. In addition, the proposed approach has practical application value to improve intelligence level in aquaculture.
ArticleNumber 106710
Author Deng, Limiao
Wang, Peidong
Li, Juan
Xiao, Ying
Xuan, Kui
Author_xml – sequence: 1
  givenname: Kui
  surname: Xuan
  fullname: Xuan, Kui
  organization: College of Mechanical and Electrical Engineering Qingdao Agricultural University, Qingdao 266109, China
– sequence: 2
  givenname: Limiao
  surname: Deng
  fullname: Deng, Limiao
  organization: College of Science and Information Qingdao Agricultural University, Qingdao 266109, China
– sequence: 3
  givenname: Ying
  surname: Xiao
  fullname: Xiao, Ying
  organization: School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
– sequence: 4
  givenname: Peidong
  surname: Wang
  fullname: Wang, Peidong
  organization: Qingdao Product Quality Testing Research Institute, Qingdao 266101, China
– sequence: 5
  givenname: Juan
  surname: Li
  fullname: Li, Juan
  email: lijuan291@sina.com
  organization: College of Mechanical and Electrical Engineering Qingdao Agricultural University, Qingdao 266109, China
BookMark eNqFkE9rGzEQxUVIIXaajxDQsZd1pdVKWjeHUEz-gcGHtIdCQWhnR4nMruRKsmm_fdc4p1xymuHx3hvmNyfnIQYk5JqzBWdcfd0unM-vCfOiZrWYNKU5OyMz3uq6UlqJczKbfLLSrVAXZJ7zljGmteIz8vt5U_3arDcH-Y0-j3YYaOy2CIUmhPgSfPExUDu8xOTL60hdTDSjpbCH_dhhoj5QiONuwL9HvcOeYjj4FMOIoXwmn5wdMl69zUvy8_7ux-qxWm8enlbf1xWIpi6VWi6FQivAoWMt1tB10rVaYtc43cu270XTA3ZOixakxWnjqgchtGJL2YC4JF9OvbsU_-wxFzP6DDgMNmDcZ1O30x0uZSMn683JCinmnNAZ8MUevyzJ-sFwZo5Mzda8MTVHpubEdErLd-ld8qNN_z7M3Z5yOFE4eEwmg8cA2PuJczF99B80_AdWvZfy
CitedBy_id crossref_primary_10_3390_jmse12071110
crossref_primary_10_1007_s10586_024_04963_w
crossref_primary_10_1016_j_ecoinf_2024_102663
crossref_primary_10_1016_j_wateco_2025_100008
crossref_primary_10_1007_s10499_024_01426_2
crossref_primary_10_3389_fmars_2024_1301024
crossref_primary_10_1016_j_aquaeng_2025_102529
crossref_primary_10_3390_ani14202999
crossref_primary_10_1016_j_aquaculture_2024_741433
crossref_primary_10_1093_icesjms_fsaf038
crossref_primary_10_1002_jsfa_13462
crossref_primary_10_1016_j_eswa_2025_126440
crossref_primary_10_1016_j_measurement_2025_117321
crossref_primary_10_1109_TIM_2025_3557122
crossref_primary_10_1016_j_compag_2024_108610
crossref_primary_10_1016_j_measurement_2025_118381
crossref_primary_10_1016_j_ocecoaman_2023_106770
Cites_doi 10.9728/dcs.2020.21.11.2011
10.1093/icesjms/fsab227
10.1016/j.compag.2021.106585
10.3390/s21010136
10.1109/TCYB.2019.2925015
10.1016/j.aquaeng.2022.102273
10.1016/j.compag.2018.08.018
10.1109/CVPR46437.2021.01350
10.1111/raq.12464
10.1109/CVPR42600.2020.01079
10.3390/s21103374
10.1016/j.compag.2022.106780
10.1109/ICSITech.2017.8257135
10.1007/s10499-021-00773-8
10.5755/j01.itc.50.1.25094
10.1016/j.compag.2019.01.012
10.1109/ICSES52305.2021.9633834
10.1007/s13042-021-01285-w
10.1016/j.mri.2020.08.013
10.21203/rs.2.24728/v1
10.1016/j.jff.2018.08.009
10.1016/j.engappai.2021.104190
10.1186/s43074-022-00066-0
10.1016/j.neucom.2022.01.099
10.1364/OE.25.022490
10.1111/2041-210X.13246
10.1109/ACCESS.2019.2962823
10.1109/SPW54247.2022.9833890
10.1109/TIP.2021.3074738
10.1088/1742-6596/2320/1/012028
10.1007/s10462-021-10102-3
10.1109/ACCESS.2019.2946062
10.1016/j.compag.2021.106135
10.1007/s10462-019-09719-2
10.1093/icesjms/fsz223
10.1145/3415048.3416098
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.fishres.2023.106710
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6763
ExternalDocumentID 10_1016_j_fishres_2023_106710
S0165783623001030
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAJYS
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HVGLF
HZ~
IHE
J1W
KOM
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SES
SEW
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
VH1
WUQ
Y6R
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-69936ea3cfef08e2cbb5f875eb4f7d58dd34dcebf738c5aeebf16dc33760954c3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000984480700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-7836
IngestDate Fri Oct 03 00:16:34 EDT 2025
Sat Nov 29 07:24:34 EST 2025
Tue Nov 18 19:39:37 EST 2025
Fri Feb 23 02:33:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Sea cucumber
Aquatic animal
Artificial Intelligence (AI)
YOLOv5
Object recognition
Coordinate Attention (CA)
Bidirectional Feature Pyramid Network (BiFPN)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-69936ea3cfef08e2cbb5f875eb4f7d58dd34dcebf738c5aeebf16dc33760954c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834215545
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834215545
crossref_citationtrail_10_1016_j_fishres_2023_106710
crossref_primary_10_1016_j_fishres_2023_106710
elsevier_sciencedirect_doi_10_1016_j_fishres_2023_106710
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Fisheries research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Darwish, Hassanien, Das (bib7) 2020; 53
Hoang Dinh, Turner, Smith, Wang, Nocillado, Palma, Suwansa-ard, Elizur, Cummins (bib16) 2019
Xu, Zhao, Li, Shang, Ding, Wang (bib59) 2022
Tian, Yang, Wang, Wang, Li, Liang (bib50) 2019; 157
Liu, Wang, Yuan, Zeng, Hone, Liu (bib32) 2021; 51
Redmon, Divvala, Girshick, Farhadi (bib41) 2016
Chen, Wu, Lin, Li, Chen, Yuan, Chen, Zou (bib6) 2022
Weihao, Shuhe, Sen, Bin (bib57) 2020; 2
Ahmad, ma, Yahya, Ahmad, Nazir, Haq, Ali (bib1) 2020
Qi, Liu, Liu, Xu, Guo, Tian, Li, Bao, Li (bib40) 2022; 194
Hau, Demetriou, Lupu (bib15) 2022
Yearbook, C.F.S. (2021): Fisheries Bureau of Ministry of Agriculture.
Shi, Zhu, Lu (bib46) 2022
Zhang, Dong, Xu (bib66) 2022; 192
Ota, Umehara, Ishimaru, Ohno, Okamoto, Suzuki, Shirai, Ishida (bib38) 2017; Vol. 10133
Du, Jiao, Chu (bib8) 2022
Li, Xu, Jiang, Xiao, Deng, Han (bib26) 2020; 8
Karthi, M., Muthulakshmi, V., Priscilla, R., Praveen, P., & Vanisri, K., 2021. Evolution of YOLO-V5 Algorithm for Object Detection: Automated Detection of Library Books and Performace validation of Dataset. 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–6.
Lei, Tang, Li (bib21) 2022
Tian, Y., Lan, L., & Sun, L. (2020). A Review of Sonar Image Segmentation for Underwater Small Targets.
Zhou, Song, Fu, Gao, Li, Cui (bib69) 2020
Althnian, AlSaeed, Al-Baity, Samha, Bin Dris, Alzakari, Abou Elwafa, Kurdi (bib3) 2021
.
Yang, Zhang, Liu, Gao, Dong, Zhou (bib60) 2021; 13
Lei, Wang, Shen, Chen, Zhang (bib22) 2021
Mahmood, Bennamoun, An, Sohel, Boussaid, Hovey, Kendrick (bib36) 2020; 77
Gao, Fang, Sun, Wu, Zhao, Li, Li, Fu, Zhang (bib10) 2022
Li, Du (bib23) 2022; 55
Wang, Zheng, Zheng, Yu (bib54) 2017; 25
Unuma (bib52) 2002
Zeng, Sun, Zhu (bib62) 2021; 100
Mekhalfi, Nicolò, Bazi, Alrahhal, Alsharif, Al Maghayreh (bib37) 2021
Zeroual, Amroune, Derdour, Bentahar (bib63) 2021
Liu, Wang, Zeng, Alsaadi, Liu (bib33) 2021; 12
Wang, Zhao, Li, Liu, Xu, Li (bib56) 2022
Guo, Liu, Zhao, Cheng, Song, Gu, Zheng, Zheng (bib12) 2020
Lee, Lee, Park, Seo, Lee (bib20) 2020; 21
Li, X., & Liu, K. (2020). Restoration and Enhancement of Underwater Under-Exposure Images with Detail-Preserving.
Zhang, Yu, Wen, Qi, Paul (bib65) 2021; 66
Liu, Jiang, Wang, Zheng, Zheng, Wang (bib30) 2022; 3
Han, Deng (bib14) 2018; 153
Shi, Li, Nie, Zhang, Wang (bib44) 2021; 50
Liu, Fan, Ouyang, Li (bib31) 2021; 21
Li, Jin, Fan, Zou, Chen, Li, Jiang, Liu (bib25) 2021; 21
Xu, Zhang, Wen (bib58) 2018; 49
Beilei, Bing, Yu, Yanan (bib4) 2013
Allken, Rosen, Handegard, Malde, Demer (bib2) 2021; 78
Li, Li, Yang, Zhang, Wang, Guo (bib27) 2022; 98
Ru, Zhang, Li, Liu, Yang (bib42) 2018
Liu, Fan, Chen (bib34) 2017
Setiawan, Wahyudin, Widianto (bib43) 2017
Ma, Xu, Jiang, Cheng, Yang, Shen, Yang, Huang, Ding, Yuan, Science (bib35) 2022
Peng, Miao, Li, Li (bib39) 2021
Zhao, Liu, Sun, Liu, Yang, Zhou (bib67) 2021; 30
Zhan, Li, Zhang (bib64) 2022; 483
Li, Quan, Song, Li, Yu, Li, Muhammad (bib24) 2021
Wang, Si, Qu, Gong, Cui (bib55) 2022; 2320
Hou, Q., Zhou, D., & Feng, J., 2021. Coordinate Attention for Efficient Mobile Network Design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13708–13717.
Fu, Mandava, Keerthivasan, Li, Johnson, Martin, Altbach, Bilgin (bib9) 2020; 73
Shi, Liu, Niu, Yang, Huang (bib45) 2020
Tan, M., Pang, R., & Le, Q.V., 2020. EfficientDet: Scalable and Efficient Object Detection. In: In Proceedings of the IEEE conference on computer vision and pattern recognition, 10778–10787.
Hu, Liu, Zhao, Liu, Yang, Sun, Chen, Li, Zhou (bib18) 2021; 185
Song, Wang, Huang, Liotta, Perra (bib47) 2020
Wang, Li, Wang, Xu, Zhang, Li (bib53) 2021; 29
Lin, He, Sun (bib29) 2019; 7
Cardenas, Camargo (bib5) 2018
Gray, Bierlich, Mantell, Friedlaender, Goldboge, Johnston (bib11) 2019; 10
Tan, M., Pang, R., & Le, Q. (2020). EfficientDet: Scalable and Efficient Object Detection.
Guo, Guo, Jiang, Li, Gu, Zheng, Zheng, Wang (bib13) 2021
Zhao, Yang, Zhou, Sun, Ge, Liu (bib68) 2021
Chen (10.1016/j.fishres.2023.106710_bib6) 2022
Liu (10.1016/j.fishres.2023.106710_bib31) 2021; 21
Wang (10.1016/j.fishres.2023.106710_bib55) 2022; 2320
Guo (10.1016/j.fishres.2023.106710_bib13) 2021
Cardenas (10.1016/j.fishres.2023.106710_bib5) 2018
Li (10.1016/j.fishres.2023.106710_bib23) 2022; 55
Hau (10.1016/j.fishres.2023.106710_bib15) 2022
10.1016/j.fishres.2023.106710_bib28
Li (10.1016/j.fishres.2023.106710_bib26) 2020; 8
Ahmad (10.1016/j.fishres.2023.106710_bib1) 2020
Liu (10.1016/j.fishres.2023.106710_bib33) 2021; 12
Qi (10.1016/j.fishres.2023.106710_bib40) 2022; 194
Zhang (10.1016/j.fishres.2023.106710_bib65) 2021; 66
Yang (10.1016/j.fishres.2023.106710_bib60) 2021; 13
Unuma (10.1016/j.fishres.2023.106710_bib52) 2002
Shi (10.1016/j.fishres.2023.106710_bib44) 2021; 50
Hu (10.1016/j.fishres.2023.106710_bib18) 2021; 185
Wang (10.1016/j.fishres.2023.106710_bib54) 2017; 25
Xu (10.1016/j.fishres.2023.106710_bib58) 2018; 49
Gao (10.1016/j.fishres.2023.106710_bib10) 2022
Peng (10.1016/j.fishres.2023.106710_bib39) 2021
Ru (10.1016/j.fishres.2023.106710_bib42) 2018
Tian (10.1016/j.fishres.2023.106710_bib50) 2019; 157
Li (10.1016/j.fishres.2023.106710_bib25) 2021; 21
Fu (10.1016/j.fishres.2023.106710_bib9) 2020; 73
Ota (10.1016/j.fishres.2023.106710_bib38) 2017; Vol. 10133
Zhou (10.1016/j.fishres.2023.106710_bib69) 2020
Guo (10.1016/j.fishres.2023.106710_bib12) 2020
Redmon (10.1016/j.fishres.2023.106710_bib41) 2016
Liu (10.1016/j.fishres.2023.106710_bib30) 2022; 3
Han (10.1016/j.fishres.2023.106710_bib14) 2018; 153
Hoang Dinh (10.1016/j.fishres.2023.106710_bib16) 2019
Song (10.1016/j.fishres.2023.106710_bib47) 2020
Shi (10.1016/j.fishres.2023.106710_bib46) 2022
Beilei (10.1016/j.fishres.2023.106710_bib4) 2013
Wang (10.1016/j.fishres.2023.106710_bib53) 2021; 29
10.1016/j.fishres.2023.106710_bib48
Zeroual (10.1016/j.fishres.2023.106710_bib63) 2021
10.1016/j.fishres.2023.106710_bib49
Lei (10.1016/j.fishres.2023.106710_bib22) 2021
Zeng (10.1016/j.fishres.2023.106710_bib62) 2021; 100
Liu (10.1016/j.fishres.2023.106710_bib34) 2017
Mahmood (10.1016/j.fishres.2023.106710_bib36) 2020; 77
Li (10.1016/j.fishres.2023.106710_bib24) 2021
Mekhalfi (10.1016/j.fishres.2023.106710_bib37) 2021
Zhang (10.1016/j.fishres.2023.106710_bib66) 2022; 192
Wang (10.1016/j.fishres.2023.106710_bib56) 2022
Gray (10.1016/j.fishres.2023.106710_bib11) 2019; 10
Weihao (10.1016/j.fishres.2023.106710_bib57) 2020; 2
10.1016/j.fishres.2023.106710_bib61
Althnian (10.1016/j.fishres.2023.106710_bib3) 2021
Lei (10.1016/j.fishres.2023.106710_bib21) 2022
Lin (10.1016/j.fishres.2023.106710_bib29) 2019; 7
Lee (10.1016/j.fishres.2023.106710_bib20) 2020; 21
Ma (10.1016/j.fishres.2023.106710_bib35) 2022
Zhao (10.1016/j.fishres.2023.106710_bib67) 2021; 30
Darwish (10.1016/j.fishres.2023.106710_bib7) 2020; 53
10.1016/j.fishres.2023.106710_bib17
Shi (10.1016/j.fishres.2023.106710_bib45) 2020
10.1016/j.fishres.2023.106710_bib19
Xu (10.1016/j.fishres.2023.106710_bib59) 2022
10.1016/j.fishres.2023.106710_bib51
Zhan (10.1016/j.fishres.2023.106710_bib64) 2022; 483
Liu (10.1016/j.fishres.2023.106710_bib32) 2021; 51
Allken (10.1016/j.fishres.2023.106710_bib2) 2021; 78
Du (10.1016/j.fishres.2023.106710_bib8) 2022
Li (10.1016/j.fishres.2023.106710_bib27) 2022; 98
Setiawan (10.1016/j.fishres.2023.106710_bib43) 2017
Zhao (10.1016/j.fishres.2023.106710_bib68) 2021
References_xml – reference: Tan, M., Pang, R., & Le, Q.V., 2020. EfficientDet: Scalable and Efficient Object Detection. In: In Proceedings of the IEEE conference on computer vision and pattern recognition, 10778–10787.
– start-page: 192
  year: 2022
  ident: bib59
  article-title: Detection and classification of tea buds based on deep learning
  publication-title: Comput. Electron. Agric.
– start-page: 29
  year: 2020
  ident: bib45
  article-title: Underwater targets detection and classification in complex scenes based on an improved YOLOv3 algorithm
  publication-title: J. Electron. Imaging
– start-page: 1
  year: 2020
  end-page: 17
  ident: bib47
  article-title: Enhancement of underwater images with statistical model of background light and optimization of transmission map
  publication-title: IEEE Trans. Broadcast
– start-page: 10
  year: 2022
  ident: bib8
  article-title: Research on safety detection of transmission line disaster prevention based on improved lightweight convolutional neural network
  publication-title: MACHINES
– volume: 185
  year: 2021
  ident: bib18
  article-title: Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network
  publication-title: Comput. Electron. Agric.
– volume: 30
  start-page: 4719
  year: 2021
  end-page: 4734
  ident: bib67
  article-title: Composited fishnet: fish detection and species recognition from low-quality underwater videos
  publication-title: IEEE Trans. Image Process.
– volume: 153
  start-page: 248
  year: 2018
  end-page: 255
  ident: bib14
  article-title: Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data
  publication-title: Comput. Electron. Agric.
– reference: Li, X., & Liu, K. (2020). Restoration and Enhancement of Underwater Under-Exposure Images with Detail-Preserving.
– volume: 55
  start-page: 4077
  year: 2022
  end-page: 4116
  ident: bib23
  article-title: Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish
  publication-title: Artif. Intell. Rev.
– volume: 8
  start-page: 18832
  year: 2020
  end-page: 18840
  ident: bib26
  article-title: Detection and analysis of behavior trajectory for sea cucumbers based on deep learning
  publication-title: IEEE Access
– start-page: 12
  year: 2022
  ident: bib6
  article-title: Plant disease recognition model based on improved YOLOv5
  publication-title: Agron. -Basel
– volume: 98
  year: 2022
  ident: bib27
  article-title: Underwater scallop recognition algorithm using improved YOLOv5
  publication-title: Aquacult. Eng.
– reference: Yearbook, C.F.S. (2021): Fisheries Bureau of Ministry of Agriculture.
– start-page: 68
  year: 2022
  ident: bib56
  article-title: Recognition and counting of typical apple pests based on deep learning
  publication-title: Ecol. Inf.
– reference: Karthi, M., Muthulakshmi, V., Priscilla, R., Praveen, P., & Vanisri, K., 2021. Evolution of YOLO-V5 Algorithm for Object Detection: Automated Detection of Library Books and Performace validation of Dataset. 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), 1–6.
– start-page: 31
  year: 2017
  ident: bib34
  article-title: Flame images for oxygen content prediction of combustion systems using DBN
  publication-title: Energy Fuels
– volume: 483
  start-page: 42
  year: 2022
  end-page: 58
  ident: bib64
  article-title: Evolutionary deep learning: a survey
  publication-title: Neurocomputing
– volume: 51
  start-page: 1085
  year: 2021
  end-page: 1093
  ident: bib32
  article-title: A novel sigmoid-function-based adaptive weighted particle swarm optimizer
  publication-title: IEEE Trans. Cybern.
– volume: 2320
  year: 2022
  ident: bib55
  article-title: Transmission line foreign body fault detection using multi-feature fusion based on modified YOLOv5
  publication-title: J. Phys. Conf. Ser.
– volume: 100
  year: 2021
  ident: bib62
  article-title: Underwater target detection based on Faster R-CNN and adversarial occlusion network
  publication-title: Eng. Appl. Artif. Intell.
– volume: 3
  start-page: 20
  year: 2022
  ident: bib30
  article-title: Continuous optical zoom microscope with extended depth of field and 3D reconstruction
  publication-title: PhotoniX
– volume: 77
  start-page: 1308
  year: 2020
  end-page: 1317
  ident: bib36
  article-title: Automatic detection of Western rock lobster using synthetic data
  publication-title: ICES J. Mar. Sci.
– volume: 49
  start-page: 73
  year: 2018
  end-page: 84
  ident: bib58
  article-title: Bioactive compounds and biological functions of sea cucumbers as potential functional foods
  publication-title: J. Funct. Foods
– volume: Vol. 10133
  year: 2017
  ident: bib38
  article-title: Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– volume: 192
  year: 2022
  ident: bib66
  article-title: Retinex-inspired color correction and detail preserved fusion for underwater image enhancement
  publication-title: Comput. Electron. Agric.
– start-page: 182
  year: 2021
  ident: bib39
  article-title: S-FPN: a shortcut feature pyramid network for sea cucumber detection in underwater images
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 2681
  year: 2021
  end-page: 2711
  ident: bib53
  article-title: Intelligent fish farm—the future of aquaculture
  publication-title: Aquac. Int.
– year: 2020
  ident: bib1
  article-title: Object detection through modified YOLO neural network
  publication-title: Sci. Program
– volume: 25
  start-page: 22490
  year: 2017
  end-page: 22498
  ident: bib54
  article-title: Feeble object detection of underwater images through LSR with delay loop
  publication-title: Opt. Express
– year: 2021
  ident: bib22
  article-title: A novel intelligent underwater image enhancement method via color correction and contrast stretching
  publication-title: Microprocess. Microsyst.
– reference: Hou, Q., Zhou, D., & Feng, J., 2021. Coordinate Attention for Efficient Mobile Network Design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13708–13717.
– volume: 157
  start-page: 417
  year: 2019
  end-page: 426
  ident: bib50
  article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model
  publication-title: Comput. Electron. Agric.
– year: 2022
  ident: bib35
  publication-title: Real. -Time Pers. Health Status Predict. Lithium-Ion.-. Batter. Using Deep Transf. Learn.
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib37
  article-title: Contrasting YOLOv5, transformer, and efficientdet detectors for crop circle detection in desert
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 22
  year: 2018
  ident: bib5
  article-title: Multi-objective evolutionary algorithm for tuning the Type-2 inference engine on classification task
  publication-title: Soft Comput.
– volume: 12
  start-page: 1939
  year: 2021
  end-page: 1948
  ident: bib33
  article-title: A PSO-based deep learning approach to classifying patients from emergency departments
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 66
  start-page: 2087
  year: 2021
  end-page: 2104
  ident: bib65
  article-title: 3D reconstruction for motion blurred images using deep learning-based intelligent systems
  publication-title: Comput., Mater. Contin.
– start-page: 8
  year: 2021
  ident: bib24
  article-title: High-throughput plant phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab to the field
  publication-title: Front. Bioeng. Biotechnol.
– volume: 10
  start-page: 1490
  year: 2019
  end-page: 1500
  ident: bib11
  article-title: Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry
  publication-title: Methods Ecol. Evol.
– start-page: 37
  year: 2018
  ident: bib42
  article-title: Development strategies for the sea cucumber industry in China
  publication-title: J. Oceanol. Limnol.
– start-page: 19
  year: 2022
  ident: bib46
  article-title: Design and control of underwater robot system for sea cucumber fishing
  publication-title: Int. J. Adv. Rob. Syst.
– volume: 2
  start-page: 43
  year: 2020
  end-page: 61
  ident: bib57
  article-title: Research progress on key technologies of aquaculture robots
  publication-title: Adv. Agric. Sci.
– start-page: 11
  year: 2021
  ident: bib3
  article-title: Impact of dataset size on classification performance: an empirical evaluation in the medical domain
  publication-title: Appl. Sci. -Basel
– start-page: 779
  year: 2016
  end-page: 788
  ident: bib41
  article-title: You only look once: unified, real-time object detection
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– start-page: 10
  year: 2022
  ident: bib21
  article-title: Underwater target detection algorithm based on improved YOLOv5
  publication-title: J. Mar. Sci. Eng.
– start-page: 10
  year: 2019
  ident: bib16
  article-title: Aquaculture breeding enhancement: maturation and spawning in sea cucumbers using a recombinant relaxin-like gonad-stimulating peptide
  publication-title: Front. Genet
– start-page: 1
  year: 2013
  end-page: 4
  ident: bib4
  article-title: Underwater image color correct in extremely poor visibility
  publication-title: 2013 OCEANS - San. Diego
– volume: 78
  start-page: 3780
  year: 2021
  end-page: 3792
  ident: bib2
  article-title: A deep learning-based method to identify and count pelagic and mesopelagic fishes from trawl camera images
  publication-title: ICES J. Mar. Sci.
– start-page: 197
  year: 2022
  ident: bib10
  article-title: A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard
  publication-title: Comput. Electron. Agric.
– volume: 73
  start-page: 152
  year: 2020
  end-page: 162
  ident: bib9
  article-title: A multi-scale residual network for accelerated radial MR parameter mapping
  publication-title: Magn. Reson. Imaging
– volume: 21
  start-page: 2011
  year: 2020
  end-page: 2019
  ident: bib20
  article-title: Development of 3D reconstruction and object recognition model using video
  publication-title: J. Digit. Contents Soc.
– volume: 13
  start-page: 66
  year: 2021
  end-page: 90
  ident: bib60
  article-title: Deep learning for smart fish farming: applications, opportunities and challenges
  publication-title: Rev. Aquacult.
– volume: 7
  start-page: 148413
  year: 2019
  end-page: 148423
  ident: bib29
  article-title: Defect enhancement generative adversarial network for enlarging data set of microcrack defect
  publication-title: IEEE Access
– volume: 21
  start-page: 3374
  year: 2021
  ident: bib31
  article-title: Real-time small drones detection based on pruned YOLOv4
  publication-title: Sensors
– start-page: 229
  year: 2022
  end-page: 235
  ident: bib15
  article-title: Using 3D shadows to detect object hiding attacks on autonomous vehicle perception
  publication-title: 2022 IEEE Secur. Priv. Workshops (SPW)
– reference: Tian, Y., Lan, L., & Sun, L. (2020). A Review of Sonar Image Segmentation for Underwater Small Targets.
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib13
  article-title: Underwater image enhancement based on intrinsic images
  publication-title: OCEANS 2021: San. Diego – Porto
– reference: Tan, M., Pang, R., & Le, Q. (2020). EfficientDet: Scalable and Efficient Object Detection.
– volume: 194
  year: 2022
  ident: bib40
  article-title: An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease
  publication-title: Comput. Electron. Agric.
– start-page: 11
  year: 2021
  ident: bib68
  article-title: Real-time detection of particleboard surface defects based on improved YOLOV5 target detection
  publication-title: Sci. Rep.
– year: 2021
  ident: bib63
  article-title: Lightweight deep learning model to secure authentication in Mobile Cloud Computing
  publication-title: J. King Saud. Univ. - Comput. Inf. Sci.
– reference: .
– volume: 50
  start-page: 13
  year: 2021
  end-page: 27
  ident: bib44
  article-title: Multi-object recognition method based on improved YOLOv2 model
  publication-title: Inf. Technol. Control
– start-page: 179
  year: 2020
  ident: bib69
  article-title: Real-time kiwifruit detection in orchard using deep learning on Android (TM) smartphones for yield estimation
  publication-title: Comput. Electron. Agric.
– start-page: 701
  year: 2020
  end-page: 717
  ident: bib12
  article-title: Spiral generative network for image extrapolation
  publication-title: Proc. Eur. Conf. Comput. Vis.
– volume: 53
  start-page: 1767
  year: 2020
  end-page: 1812
  ident: bib7
  article-title: A survey of swarm and evolutionary computing approaches for deep learning
  publication-title: Artif. Intell. Rev.
– start-page: 336
  year: 2017
  end-page: 341
  ident: bib43
  article-title: The use of scale invariant feature transform (SIFT) algorithms to identification garbage images based on product label
  publication-title: 2017 3rd Int. Conf. Sci. Inf. Technol. (ICSITech)
– volume: 21
  start-page: 136
  year: 2021
  ident: bib25
  article-title: PSANet: pyramid splitting and aggregation network for 3D object detection in point cloud
  publication-title: Sensors
– start-page: 115
  year: 2002
  end-page: 127
  ident: bib52
  article-title: Gonadal growth and its relationship to aquaculture in sea urchins. The sea urchin: from basic biology to aquaculture
  publication-title: Swets Zeit ., Lisse
– volume: 21
  start-page: 2011
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib20
  article-title: Development of 3D reconstruction and object recognition model using video
  publication-title: J. Digit. Contents Soc.
  doi: 10.9728/dcs.2020.21.11.2011
– volume: 78
  start-page: 3780
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib2
  article-title: A deep learning-based method to identify and count pelagic and mesopelagic fishes from trawl camera images
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsab227
– start-page: 1
  year: 2013
  ident: 10.1016/j.fishres.2023.106710_bib4
  article-title: Underwater image color correct in extremely poor visibility
  publication-title: 2013 OCEANS - San. Diego
– volume: 192
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib66
  article-title: Retinex-inspired color correction and detail preserved fusion for underwater image enhancement
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106585
– volume: 21
  start-page: 136
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib25
  article-title: PSANet: pyramid splitting and aggregation network for 3D object detection in point cloud
  publication-title: Sensors
  doi: 10.3390/s21010136
– start-page: 10
  year: 2019
  ident: 10.1016/j.fishres.2023.106710_bib16
  article-title: Aquaculture breeding enhancement: maturation and spawning in sea cucumbers using a recombinant relaxin-like gonad-stimulating peptide
  publication-title: Front. Genet
– start-page: 8
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib24
  article-title: High-throughput plant phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab to the field
  publication-title: Front. Bioeng. Biotechnol.
– start-page: 31
  year: 2017
  ident: 10.1016/j.fishres.2023.106710_bib34
  article-title: Flame images for oxygen content prediction of combustion systems using DBN
  publication-title: Energy Fuels
– volume: 51
  start-page: 1085
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib32
  article-title: A novel sigmoid-function-based adaptive weighted particle swarm optimizer
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2925015
– volume: 98
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib27
  article-title: Underwater scallop recognition algorithm using improved YOLOv5
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2022.102273
– start-page: 192
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib59
  article-title: Detection and classification of tea buds based on deep learning
  publication-title: Comput. Electron. Agric.
– year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib63
  article-title: Lightweight deep learning model to secure authentication in Mobile Cloud Computing
  publication-title: J. King Saud. Univ. - Comput. Inf. Sci.
– volume: 153
  start-page: 248
  year: 2018
  ident: 10.1016/j.fishres.2023.106710_bib14
  article-title: Application driven key wavelengths mining method for aflatoxin detection using hyperspectral data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.018
– year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib35
  publication-title: Real. -Time Pers. Health Status Predict. Lithium-Ion.-. Batter. Using Deep Transf. Learn.
– ident: 10.1016/j.fishres.2023.106710_bib17
  doi: 10.1109/CVPR46437.2021.01350
– start-page: 19
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib46
  article-title: Design and control of underwater robot system for sea cucumber fishing
  publication-title: Int. J. Adv. Rob. Syst.
– start-page: 22
  year: 2018
  ident: 10.1016/j.fishres.2023.106710_bib5
  article-title: Multi-objective evolutionary algorithm for tuning the Type-2 inference engine on classification task
  publication-title: Soft Comput.
– volume: 13
  start-page: 66
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib60
  article-title: Deep learning for smart fish farming: applications, opportunities and challenges
  publication-title: Rev. Aquacult.
  doi: 10.1111/raq.12464
– start-page: 1
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib37
  article-title: Contrasting YOLOv5, transformer, and efficientdet detectors for crop circle detection in desert
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 37
  year: 2018
  ident: 10.1016/j.fishres.2023.106710_bib42
  article-title: Development strategies for the sea cucumber industry in China
  publication-title: J. Oceanol. Limnol.
– start-page: 779
  year: 2016
  ident: 10.1016/j.fishres.2023.106710_bib41
  article-title: You only look once: unified, real-time object detection
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– ident: 10.1016/j.fishres.2023.106710_bib48
  doi: 10.1109/CVPR42600.2020.01079
– volume: 21
  start-page: 3374
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib31
  article-title: Real-time small drones detection based on pruned YOLOv4
  publication-title: Sensors
  doi: 10.3390/s21103374
– start-page: 29
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib45
  article-title: Underwater targets detection and classification in complex scenes based on an improved YOLOv3 algorithm
  publication-title: J. Electron. Imaging
– volume: 194
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib40
  article-title: An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106780
– start-page: 11
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib3
  article-title: Impact of dataset size on classification performance: an empirical evaluation in the medical domain
  publication-title: Appl. Sci. -Basel
– start-page: 336
  year: 2017
  ident: 10.1016/j.fishres.2023.106710_bib43
  article-title: The use of scale invariant feature transform (SIFT) algorithms to identification garbage images based on product label
  publication-title: 2017 3rd Int. Conf. Sci. Inf. Technol. (ICSITech)
  doi: 10.1109/ICSITech.2017.8257135
– volume: 29
  start-page: 2681
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib53
  article-title: Intelligent fish farm—the future of aquaculture
  publication-title: Aquac. Int.
  doi: 10.1007/s10499-021-00773-8
– start-page: 68
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib56
  article-title: Recognition and counting of typical apple pests based on deep learning
  publication-title: Ecol. Inf.
– start-page: 701
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib12
  article-title: Spiral generative network for image extrapolation
  publication-title: Proc. Eur. Conf. Comput. Vis.
– year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib22
  article-title: A novel intelligent underwater image enhancement method via color correction and contrast stretching
  publication-title: Microprocess. Microsyst.
– volume: 50
  start-page: 13
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib44
  article-title: Multi-object recognition method based on improved YOLOv2 model
  publication-title: Inf. Technol. Control
  doi: 10.5755/j01.itc.50.1.25094
– volume: 157
  start-page: 417
  year: 2019
  ident: 10.1016/j.fishres.2023.106710_bib50
  article-title: Apple detection during different growth stages in orchards using the improved YOLO-V3 model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.01.012
– ident: 10.1016/j.fishres.2023.106710_bib19
  doi: 10.1109/ICSES52305.2021.9633834
– volume: 12
  start-page: 1939
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib33
  article-title: A PSO-based deep learning approach to classifying patients from emergency departments
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-021-01285-w
– start-page: 179
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib69
  article-title: Real-time kiwifruit detection in orchard using deep learning on Android (TM) smartphones for yield estimation
  publication-title: Comput. Electron. Agric.
– volume: 73
  start-page: 152
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib9
  article-title: A multi-scale residual network for accelerated radial MR parameter mapping
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2020.08.013
– ident: 10.1016/j.fishres.2023.106710_bib28
  doi: 10.21203/rs.2.24728/v1
– year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib1
  article-title: Object detection through modified YOLO neural network
  publication-title: Sci. Program
– volume: 49
  start-page: 73
  year: 2018
  ident: 10.1016/j.fishres.2023.106710_bib58
  article-title: Bioactive compounds and biological functions of sea cucumbers as potential functional foods
  publication-title: J. Funct. Foods
  doi: 10.1016/j.jff.2018.08.009
– volume: 100
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib62
  article-title: Underwater target detection based on Faster R-CNN and adversarial occlusion network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104190
– start-page: 1
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib13
  article-title: Underwater image enhancement based on intrinsic images
  publication-title: OCEANS 2021: San. Diego – Porto
– start-page: 10
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib8
  article-title: Research on safety detection of transmission line disaster prevention based on improved lightweight convolutional neural network
  publication-title: MACHINES
– ident: 10.1016/j.fishres.2023.106710_bib49
  doi: 10.1109/CVPR42600.2020.01079
– volume: 3
  start-page: 20
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib30
  article-title: Continuous optical zoom microscope with extended depth of field and 3D reconstruction
  publication-title: PhotoniX
  doi: 10.1186/s43074-022-00066-0
– volume: 483
  start-page: 42
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib64
  article-title: Evolutionary deep learning: a survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.099
– volume: 25
  start-page: 22490
  year: 2017
  ident: 10.1016/j.fishres.2023.106710_bib54
  article-title: Feeble object detection of underwater images through LSR with delay loop
  publication-title: Opt. Express
  doi: 10.1364/OE.25.022490
– volume: 10
  start-page: 1490
  year: 2019
  ident: 10.1016/j.fishres.2023.106710_bib11
  article-title: Drones and convolutional neural networks facilitate automated and accurate cetacean species identification and photogrammetry
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.13246
– volume: 8
  start-page: 18832
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib26
  article-title: Detection and analysis of behavior trajectory for sea cucumbers based on deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2962823
– volume: Vol. 10133
  year: 2017
  ident: 10.1016/j.fishres.2023.106710_bib38
  article-title: Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography
  publication-title: Proc. SPIE Int. Soc. Opt. Eng.
– start-page: 1
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib47
  article-title: Enhancement of underwater images with statistical model of background light and optimization of transmission map
  publication-title: IEEE Trans. Broadcast
– start-page: 11
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib68
  article-title: Real-time detection of particleboard surface defects based on improved YOLOV5 target detection
  publication-title: Sci. Rep.
– start-page: 115
  year: 2002
  ident: 10.1016/j.fishres.2023.106710_bib52
  article-title: Gonadal growth and its relationship to aquaculture in sea urchins. The sea urchin: from basic biology to aquaculture
  publication-title: Swets Zeit ., Lisse
– start-page: 12
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib6
  article-title: Plant disease recognition model based on improved YOLOv5
  publication-title: Agron. -Basel
– start-page: 229
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib15
  article-title: Using 3D shadows to detect object hiding attacks on autonomous vehicle perception
  publication-title: 2022 IEEE Secur. Priv. Workshops (SPW)
  doi: 10.1109/SPW54247.2022.9833890
– ident: 10.1016/j.fishres.2023.106710_bib61
– volume: 30
  start-page: 4719
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib67
  article-title: Composited fishnet: fish detection and species recognition from low-quality underwater videos
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3074738
– volume: 2
  start-page: 43
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib57
  article-title: Research progress on key technologies of aquaculture robots
  publication-title: Adv. Agric. Sci.
– start-page: 182
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib39
  article-title: S-FPN: a shortcut feature pyramid network for sea cucumber detection in underwater images
  publication-title: Expert Syst. Appl.
– start-page: 197
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib10
  article-title: A novel apple fruit detection and counting methodology based on deep learning and trunk tracking in modern orchard
  publication-title: Comput. Electron. Agric.
– volume: 2320
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib55
  article-title: Transmission line foreign body fault detection using multi-feature fusion based on modified YOLOv5
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2320/1/012028
– volume: 55
  start-page: 4077
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib23
  article-title: Recent advances of deep learning algorithms for aquacultural machine vision systems with emphasis on fish
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10102-3
– start-page: 10
  year: 2022
  ident: 10.1016/j.fishres.2023.106710_bib21
  article-title: Underwater target detection algorithm based on improved YOLOv5
  publication-title: J. Mar. Sci. Eng.
– volume: 66
  start-page: 2087
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib65
  article-title: 3D reconstruction for motion blurred images using deep learning-based intelligent systems
  publication-title: Comput., Mater. Contin.
– volume: 7
  start-page: 148413
  year: 2019
  ident: 10.1016/j.fishres.2023.106710_bib29
  article-title: Defect enhancement generative adversarial network for enlarging data set of microcrack defect
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2946062
– volume: 185
  year: 2021
  ident: 10.1016/j.fishres.2023.106710_bib18
  article-title: Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106135
– volume: 53
  start-page: 1767
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib7
  article-title: A survey of swarm and evolutionary computing approaches for deep learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09719-2
– volume: 77
  start-page: 1308
  year: 2020
  ident: 10.1016/j.fishres.2023.106710_bib36
  article-title: Automatic detection of Western rock lobster using synthetic data
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsz223
– ident: 10.1016/j.fishres.2023.106710_bib51
  doi: 10.1145/3415048.3416098
SSID ssj0007761
Score 2.4839168
Snippet Underwater object recognition is a prerequisite for the realization of automated seafood harvesting. To solve the problems of low recognition accuracy and poor...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106710
SubjectTerms algorithms
aquaculture
Aquatic animal
Artificial Intelligence (AI)
automation
Bidirectional Feature Pyramid Network (BiFPN)
Coordinate Attention (CA)
data collection
Deep learning
Holothuroidea
Object recognition
Sea cucumber
seafoods
YOLOv5
Title SO-YOLOv5: Small object recognition algorithm for sea cucumber in complex seabed environment
URI https://dx.doi.org/10.1016/j.fishres.2023.106710
https://www.proquest.com/docview/2834215545
Volume 264
WOSCitedRecordID wos000984480700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007761
  issn: 0165-7836
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wEeJj7FGCAj8ValdHacOLxVaIgvrZM6pCIhRbFjj0xdMnXN1D-fu9jxCgMNkHiJLMuOG9-v57vzfRDykqdZiYnuIm6TIoq1FZHKQEuxsTGFzPCmT3XFJtKDAzmfZ4felH3elRNI61qu19nZfyU19AGxMXT2L8gdXgod0AaiwxPIDs8_IvxsGn2ZfppeCFT2Z6d49dwotLYMg7MQeiAvjptltfp22vkZYrykbnVXHWToPdMXZo39CiTSjWi4TWHWlU0HVXvoUwYF0_K8dXbVj20VJGXjuApGVBVNGAjt7hToT9DOtu9GHpqqbHy3t0swHrzivLHsSsCMs18mIsLAEXf8OJ4rUxYlPZ_zTJm53OZXGLyzNZyMLHwhfNsIVx5hGjzvHPtj7uwZrofLgaKFBS3GN8kWS0UmB2Rr8n5__iEc2mmauNKV_vddBnu9-uVivxNjfjrQOynl6C7Z9uoFnThY3CM3TH2f3JkcL32KFfOAfA0AeU07eFAHD7oBDxrgQQEeFIhLe3jQqqYeHtTBg27A4yH5_Hb_6M27yNfYiDSP2SpKQD5NTMG1NXYsDdNKCQs6rFGxTUshy5LHpTbKplxqURho7SWl5uhLlYlY80dkUDe1eUwonJ2lMrEWe0rHmWVyrLOiZNpwUNqLhO2QuN-yXPsE9FgHZZH3noYnud_pHHc6dzu9Q0Zh2pnLwHLdBNnTI_dipBMPcwDRdVNf9PTLgc3i3VlRm6aFQRK2C2Vv8eTfX79Lbl_-U56SwWrZmmfklr5YVefL5x6S3wHcDacK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SO-YOLOv5%3A+Small+object+recognition+algorithm+for+sea+cucumber+in+complex+seabed+environment&rft.jtitle=Fisheries+research&rft.au=Xuan%2C+Kui&rft.au=Deng%2C+Limiao&rft.au=Xiao%2C+Ying&rft.au=Wang%2C+Peidong&rft.date=2023-08-01&rft.pub=Elsevier+B.V&rft.issn=0165-7836&rft.eissn=1872-6763&rft.volume=264&rft_id=info:doi/10.1016%2Fj.fishres.2023.106710&rft.externalDocID=S0165783623001030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-7836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-7836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-7836&client=summon