Adsorptive removal of Cr (VI) from wastewater using magnetite–diatomite nanocomposite
Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite, thermochemically modified diatomite (TMD), and magnetic–diatomite nanocomposite (MDN) were investigated using Fourier-transform infrared spectrosc...
Uloženo v:
| Vydáno v: | Aqua (London, England) Ročník 72; číslo 12; s. 2239 - 2261 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IWA Publishing
01.12.2023
|
| Témata: | |
| ISSN: | 2709-8028, 2709-8036 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite, thermochemically modified diatomite (TMD), and magnetic–diatomite nanocomposite (MDN) were investigated using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, Brunauer–Emmett–Teller, and complete silicate chemical analysis. The MDN shows 98.89% adsorption removal at optimized conditions using the response surface methodology of Box–Behnken Design. The kinetic data for Cr(VI) sorption on MDN were well described by pseudo-second order, which indicates the Cr(VI) adsorption was mainly due to chemisorption. The isotherm data show that the Langmuir and Freundlich models better described Cr(VI) ion sorption data. The thermodynamic parameters ΔG°, ΔH°, and ΔS° were estimated, and the results indicate Cr(VI) sorption on MDN was a spontaneous (ΔG° < 0) and exothermic process (ΔH° < 0). The proper Fe3O4 loading into TMD improves the gram susceptibility (Xg) of MDN for magnet separation. The regeneration of nanocomposite material revealed over 80% Cr(VI) removal efficiency after five consecutive adsorption–desorption cycles. The produced MDN was tested for the removal of Cr(VI) from real tannery wastewater. The obtained results suggest the possibility of using this nanocomposite as an effective, efficient adsorbent to remove Cr(VI) laden wastewater. |
|---|---|
| AbstractList | Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite, thermochemically modified diatomite (TMD), and magnetic–diatomite nanocomposite (MDN) were investigated using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, Brunauer–Emmett–Teller, and complete silicate chemical analysis. The MDN shows 98.89% adsorption removal at optimized conditions using the response surface methodology of Box–Behnken Design. The kinetic data for Cr(VI) sorption on MDN were well described by pseudo-second order, which indicates the Cr(VI) adsorption was mainly due to chemisorption. The isotherm data show that the Langmuir and Freundlich models better described Cr(VI) ion sorption data. The thermodynamic parameters ΔG°, ΔH°, and ΔS° were estimated, and the results indicate Cr(VI) sorption on MDN was a spontaneous (ΔG° < 0) and exothermic process (ΔH° < 0). The proper Fe3O4 loading into TMD improves the gram susceptibility (Xg) of MDN for magnet separation. The regeneration of nanocomposite material revealed over 80% Cr(VI) removal efficiency after five consecutive adsorption–desorption cycles. The produced MDN was tested for the removal of Cr(VI) from real tannery wastewater. The obtained results suggest the possibility of using this nanocomposite as an effective, efficient adsorbent to remove Cr(VI) laden wastewater. Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite, thermochemically modified diatomite (TMD), and magnetic–diatomite nanocomposite (MDN) were investigated using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, Brunauer–Emmett–Teller, and complete silicate chemical analysis. The MDN shows 98.89% adsorption removal at optimized conditions using the response surface methodology of Box–Behnken Design. The kinetic data for Cr(VI) sorption on MDN were well described by pseudo-second order, which indicates the Cr(VI) adsorption was mainly due to chemisorption. The isotherm data show that the Langmuir and Freundlich models better described Cr(VI) ion sorption data. The thermodynamic parameters ΔG°, ΔH°, and ΔS° were estimated, and the results indicate Cr(VI) sorption on MDN was a spontaneous (ΔG° < 0) and exothermic process (ΔH° < 0). The proper Fe3O4 loading into TMD improves the gram susceptibility (Xg) of MDN for magnet separation. The regeneration of nanocomposite material revealed over 80% Cr(VI) removal efficiency after five consecutive adsorption–desorption cycles. The produced MDN was tested for the removal of Cr(VI) from real tannery wastewater. The obtained results suggest the possibility of using this nanocomposite as an effective, efficient adsorbent to remove Cr(VI) laden wastewater. HIGHLIGHTS Easy magnetic recyclable adsorbent.; Efficient Cr(VI) removal adsorbent from Cr(VI) laden tannery effluent.; Easy synthesis and low-cost material.; Highly stable with magnetic reusable potential.; Composite with high electron density and porous material.; |
| Author | Chebude, Yonas Alemayehu, Esayas Lemessa, Gemechu |
| Author_xml | – sequence: 1 givenname: Gemechu orcidid: 0000-0002-0785-9737 surname: Lemessa fullname: Lemessa, Gemechu – sequence: 2 givenname: Yonas orcidid: 0000-0003-4680-1375 surname: Chebude fullname: Chebude, Yonas – sequence: 3 givenname: Esayas orcidid: 0000-0001-8843-1136 surname: Alemayehu fullname: Alemayehu, Esayas |
| BookMark | eNptkLlOxDAQhi0EErBQ0ruEIouPxHZKtOJYCYmGo7QmzmRltIkX24DoeAfekCchy1UgqvlnNPNp9O2SzSEMSMgBZ1PBlTqGh0eYCibklEuxQXaEZnVhmFSbv1mYbbKfkm9YxbQwtWY75O6kTSGusn9CGrEPT7CkoaOzSA9v50e0i6Gnz5AyPkPGSB-THxa0h8WA2Wd8f31rPeTQj5kOMAQX-lVIY7dHtjpYJtz_rhNyc3Z6PbsoLq_O57OTy8LJUuRClZqLVrOqdc5pLHnpNEOQqlNC1gorUyEXHfCGt0wZpiVIo0xnaserFrWckPkXtw1wb1fR9xBfbABvPwchLizE7N0S7chtGllJKWpeGinB1cgazQR2puXCjCz5xXIxpBSxs85nyD4MOYJfWs7sWrVdq7Zr1XZUPV4Vf65-vvh__wNj9YQV |
| CitedBy_id | crossref_primary_10_1016_j_pce_2024_103790 crossref_primary_10_1016_j_rechem_2025_102486 crossref_primary_10_1007_s11837_025_07273_7 crossref_primary_10_1016_j_sciaf_2024_e02213 crossref_primary_10_1016_j_rechem_2025_102205 crossref_primary_10_47352_jmans_2774_3047_289 crossref_primary_10_3390_pr13040997 crossref_primary_10_1016_j_ijbiomac_2025_146868 crossref_primary_10_1007_s13399_024_05976_6 crossref_primary_10_1007_s41742_024_00570_0 crossref_primary_10_1038_s41598_025_11938_3 crossref_primary_10_1002_tqem_70015 crossref_primary_10_1007_s11270_025_08207_4 |
| Cites_doi | 10.1016/j.btre.2017.03.001 10.1007/s11356-019-06423-0 10.37247/pac.1.2020.18 10.3390/w13202803 10.1080/19443994.2013.855678 10.5004/dwt.2019.24572 10.15407/hftp08.01.065 10.1155/2022/8625489 10.1007/s10450-012-9468-1 10.1007/s10751-013-0858-x 10.1515/epoly-2016-0043 10.1177/0263617417719552 10.3390/w14213373 10.1016/j.cej.2009.09.013 10.1155/2022/4441718 10.1016/j.jcis.2018.09.024 10.4314/mejs.v4i2.80120 10.2174/1874456700903010012 10.1260/0263-6174.31.2-3.275 10.1016/j.wse.2015.01.009 10.1007/s42452-021-04334-9 10.1016/j.arabjc.2023.104966 10.4067/S0717-97072020000204790 10.1179/096797802225003361 10.1016/j.powtec.2018.01.090 10.1016/j.seppur.2020.116792 10.3390/nano10020339 10.1016/j.partic.2017.11.005 10.1007/978-3-030-66135-9_9 10.1016/j.jcis.2005.10.058 10.1021/ie200271d 10.1002/9781119407805.ch5 10.1021/acs.iecr.9b01941 10.3923/ajmskr.2010.121.136 10.1016/j.jtice.2016.12.013 10.1016/j.jclepro.2021.128219 10.5277/ppmp120208 10.1177/0263617416686976 10.1016/j.desal.2012.02.021 10.1016/j.arabjc.2021.103064 10.3389/fchem.2021.814431 10.1016/j.envres.2019.108898 10.1016/j.jgeb.2017.01.006 10.1080/13102818.2015.1039059 10.1016/j.mspro.2012.06.046 10.1016/j.clay.2016.02.008 10.2166/wst.2019.275 10.46488/NEPT.2021.v20i04.014 10.1007/s13201-023-01880-y 10.1155/2014/869120 10.1186/s13244-021-01125-z 10.1021/acs.iecr.9b05574 10.3389/fchem.2022.907302 10.1080/02726351.2016.1163300 10.3389/fphar.2021.643972 10.1016/j.heliyon.2022.e09645 10.1021/ja01269a066 10.1016/j.jcis.2020.08.119 10.1016/j.clay.2023.107101 10.3390/polym12071491 10.3390/w9090651 10.1016/j.cej.2011.11.028 10.1007/s42250-019-00080-z 10.1016/j.jcis.2021.08.097 10.1016/j.jksus.2022.101869 10.1016/j.colsurfa.2009.02.016 10.1016/j.apsusc.2014.08.184 10.2478/s11532-013-0360-y 10.1088/1742-6596/1763/1/012042 10.1080/01496395.2014.910223 10.52571/ptq.v17.n34.2020.217_p34_pgs_200_212.pdf 10.1016/j.micromeso.2012.11.030 10.1016/j.biortech.2020.123068 10.3103/S1068375518020084 10.1016/j.micromeso.2012.09.036 10.1515/epoly-2015-0218 10.1016/j.jallcom.2014.04.064 10.1039/C8RA04290J 10.14483/22487638.17088 10.3303/CET2294242 10.1080/21655979.2021.1978616 10.1021/acsomega.9b04295 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.2166/aqua.2023.132 |
| DatabaseName | CrossRef DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2709-8036 |
| EndPage | 2261 |
| ExternalDocumentID | oai_doaj_org_article_0eabb35332914833ac9e0b702ef8d128 10_2166_aqua_2023_132 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION FRP GROUPED_DOAJ |
| ID | FETCH-LOGICAL-c342t-64712d705dccc7e414c70ea36f62396e585e12fa1b1d068073a3868f89c15de73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100755200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2709-8028 |
| IngestDate | Fri Oct 03 12:41:57 EDT 2025 Tue Nov 18 22:24:34 EST 2025 Sat Nov 29 01:46:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-64712d705dccc7e414c70ea36f62396e585e12fa1b1d068073a3868f89c15de73 |
| ORCID | 0000-0003-4680-1375 0000-0001-8843-1136 0000-0002-0785-9737 |
| OpenAccessLink | https://doaj.org/article/0eabb35332914833ac9e0b702ef8d128 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0eabb35332914833ac9e0b702ef8d128 crossref_citationtrail_10_2166_aqua_2023_132 crossref_primary_10_2166_aqua_2023_132 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Aqua (London, England) |
| PublicationYear | 2023 |
| Publisher | IWA Publishing |
| Publisher_xml | – name: IWA Publishing |
| References | key-10.2166/aqua.2023.132-33 key-10.2166/aqua.2023.132-77 key-10.2166/aqua.2023.132-32 key-10.2166/aqua.2023.132-76 key-10.2166/aqua.2023.132-35 key-10.2166/aqua.2023.132-79 key-10.2166/aqua.2023.132-34 key-10.2166/aqua.2023.132-78 key-10.2166/aqua.2023.132-37 key-10.2166/aqua.2023.132-36 Belibağli (key-10.2166/aqua.2023.132-15) 2020; 38 key-10.2166/aqua.2023.132-39 key-10.2166/aqua.2023.132-38 Le (key-10.2166/aqua.2023.132-48) 2020; 10 key-10.2166/aqua.2023.132-71 key-10.2166/aqua.2023.132-70 key-10.2166/aqua.2023.132-73 key-10.2166/aqua.2023.132-72 key-10.2166/aqua.2023.132-31 key-10.2166/aqua.2023.132-75 key-10.2166/aqua.2023.132-30 Ramakrishnaiah (key-10.2166/aqua.2023.132-62) 2012; 2 key-10.2166/aqua.2023.132-74 Abbasi-Garravand (key-10.2166/aqua.2023.132-1) 2013; 4 key-10.2166/aqua.2023.132-44 key-10.2166/aqua.2023.132-88 key-10.2166/aqua.2023.132-87 key-10.2166/aqua.2023.132-46 key-10.2166/aqua.2023.132-45 Minas (key-10.2166/aqua.2023.132-55) 2017; 3 key-10.2166/aqua.2023.132-47 key-10.2166/aqua.2023.132-49 Khaldi (key-10.2166/aqua.2023.132-43) 2018; 54 Memedi (key-10.2166/aqua.2023.132-54) 2021 key-10.2166/aqua.2023.132-80 key-10.2166/aqua.2023.132-82 key-10.2166/aqua.2023.132-81 key-10.2166/aqua.2023.132-40 key-10.2166/aqua.2023.132-84 key-10.2166/aqua.2023.132-83 key-10.2166/aqua.2023.132-42 key-10.2166/aqua.2023.132-86 key-10.2166/aqua.2023.132-85 Jayasree (key-10.2166/aqua.2023.132-41) 2021; 43 key-10.2166/aqua.2023.132-11 key-10.2166/aqua.2023.132-13 key-10.2166/aqua.2023.132-57 key-10.2166/aqua.2023.132-12 key-10.2166/aqua.2023.132-56 key-10.2166/aqua.2023.132-59 key-10.2166/aqua.2023.132-14 key-10.2166/aqua.2023.132-58 key-10.2166/aqua.2023.132-17 key-10.2166/aqua.2023.132-16 key-10.2166/aqua.2023.132-51 key-10.2166/aqua.2023.132-50 key-10.2166/aqua.2023.132-53 key-10.2166/aqua.2023.132-52 key-10.2166/aqua.2023.132-19 Asghar (key-10.2166/aqua.2023.132-10) 2014 key-10.2166/aqua.2023.132-18 key-10.2166/aqua.2023.132-22 key-10.2166/aqua.2023.132-66 key-10.2166/aqua.2023.132-21 key-10.2166/aqua.2023.132-65 key-10.2166/aqua.2023.132-24 key-10.2166/aqua.2023.132-68 key-10.2166/aqua.2023.132-23 key-10.2166/aqua.2023.132-67 key-10.2166/aqua.2023.132-26 key-10.2166/aqua.2023.132-25 key-10.2166/aqua.2023.132-69 key-10.2166/aqua.2023.132-28 key-10.2166/aqua.2023.132-27 key-10.2166/aqua.2023.132-5 key-10.2166/aqua.2023.132-6 key-10.2166/aqua.2023.132-7 key-10.2166/aqua.2023.132-60 key-10.2166/aqua.2023.132-8 key-10.2166/aqua.2023.132-61 key-10.2166/aqua.2023.132-3 key-10.2166/aqua.2023.132-20 key-10.2166/aqua.2023.132-64 key-10.2166/aqua.2023.132-4 key-10.2166/aqua.2023.132-63 key-10.2166/aqua.2023.132-9 key-10.2166/aqua.2023.132-29 Acharya (key-10.2166/aqua.2023.132-2) 2017 |
| References_xml | – ident: key-10.2166/aqua.2023.132-21 doi: 10.1016/j.btre.2017.03.001 – ident: key-10.2166/aqua.2023.132-27 doi: 10.1007/s11356-019-06423-0 – ident: key-10.2166/aqua.2023.132-63 doi: 10.37247/pac.1.2020.18 – ident: key-10.2166/aqua.2023.132-6 doi: 10.3390/w13202803 – ident: key-10.2166/aqua.2023.132-64 doi: 10.1080/19443994.2013.855678 – ident: key-10.2166/aqua.2023.132-75 doi: 10.5004/dwt.2019.24572 – ident: key-10.2166/aqua.2023.132-84 doi: 10.15407/hftp08.01.065 – ident: key-10.2166/aqua.2023.132-9 doi: 10.1155/2022/8625489 – ident: key-10.2166/aqua.2023.132-35 doi: 10.1007/s10450-012-9468-1 – ident: key-10.2166/aqua.2023.132-20 doi: 10.1007/s10751-013-0858-x – ident: key-10.2166/aqua.2023.132-22 doi: 10.1515/epoly-2016-0043 – ident: key-10.2166/aqua.2023.132-38 doi: 10.1177/0263617417719552 – ident: key-10.2166/aqua.2023.132-72 doi: 10.3390/w14213373 – ident: key-10.2166/aqua.2023.132-30 doi: 10.1016/j.cej.2009.09.013 – ident: key-10.2166/aqua.2023.132-3 doi: 10.1155/2022/4441718 – ident: key-10.2166/aqua.2023.132-56 doi: 10.1016/j.jcis.2018.09.024 – ident: key-10.2166/aqua.2023.132-47 doi: 10.4314/mejs.v4i2.80120 – ident: key-10.2166/aqua.2023.132-57 doi: 10.2174/1874456700903010012 – ident: key-10.2166/aqua.2023.132-29 doi: 10.1260/0263-6174.31.2-3.275 – ident: key-10.2166/aqua.2023.132-39 doi: 10.1016/j.wse.2015.01.009 – ident: key-10.2166/aqua.2023.132-70 doi: 10.1007/s42452-021-04334-9 – ident: key-10.2166/aqua.2023.132-87 doi: 10.1016/j.arabjc.2023.104966 – ident: key-10.2166/aqua.2023.132-7 doi: 10.4067/S0717-97072020000204790 – ident: key-10.2166/aqua.2023.132-36 doi: 10.1179/096797802225003361 – ident: key-10.2166/aqua.2023.132-80 doi: 10.1016/j.powtec.2018.01.090 – ident: key-10.2166/aqua.2023.132-50 doi: 10.1016/j.seppur.2020.116792 – volume: 10 start-page: 339 issue: 2 year: 2020 ident: key-10.2166/aqua.2023.132-48 article-title: Synthesis of diatomite-based mesoporous wool-ball-like microspheres and their application for toluene total oxidation reaction publication-title: Nanomaterials doi: 10.3390/nano10020339 – ident: key-10.2166/aqua.2023.132-25 doi: 10.1016/j.partic.2017.11.005 – start-page: 263 volume-title: Contaminant Levels and Ecological Effects: Understanding and Predicting with Chemometric Methods year: 2021 ident: key-10.2166/aqua.2023.132-54 article-title: Removal of chromium(VI) from aqueous solution by clayey diatomite: Kinetic and equilibrium study doi: 10.1007/978-3-030-66135-9_9 – ident: key-10.2166/aqua.2023.132-71 doi: 10.1016/j.jcis.2005.10.058 – ident: key-10.2166/aqua.2023.132-52 doi: 10.1021/ie200271d – volume: 43 start-page: 144 year: 2021 ident: key-10.2166/aqua.2023.132-41 article-title: Predictability by Box-Behnken model for removal of chromium (Vi) using Eclipta prostrata (Bhringraj) plant powder as an adsorbent publication-title: Songklanakarin Journal of Science and Technology – start-page: 129 volume-title: Advanced Materials for Waste Water Treatment year: 2017 ident: key-10.2166/aqua.2023.132-2 article-title: Remediation of Cr (VI) using clay minerals, biomasses and industrial wastes as adsorbents doi: 10.1002/9781119407805.ch5 – ident: key-10.2166/aqua.2023.132-88 doi: 10.1021/acs.iecr.9b01941 – ident: key-10.2166/aqua.2023.132-32 doi: 10.3923/ajmskr.2010.121.136 – ident: key-10.2166/aqua.2023.132-67 doi: 10.1016/j.jtice.2016.12.013 – ident: key-10.2166/aqua.2023.132-86 doi: 10.1016/j.jclepro.2021.128219 – ident: key-10.2166/aqua.2023.132-40 doi: 10.5277/ppmp120208 – ident: key-10.2166/aqua.2023.132-37 doi: 10.1177/0263617416686976 – ident: key-10.2166/aqua.2023.132-23 doi: 10.1016/j.desal.2012.02.021 – ident: key-10.2166/aqua.2023.132-24 doi: 10.1016/j.arabjc.2021.103064 – ident: key-10.2166/aqua.2023.132-4 doi: 10.3389/fchem.2021.814431 – ident: key-10.2166/aqua.2023.132-42 doi: 10.1016/j.envres.2019.108898 – ident: key-10.2166/aqua.2023.132-59 doi: 10.1016/j.jgeb.2017.01.006 – volume: 3 start-page: 291 year: 2017 ident: key-10.2166/aqua.2023.132-55 article-title: Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia publication-title: Chemistry International – ident: key-10.2166/aqua.2023.132-19 doi: 10.1080/13102818.2015.1039059 – ident: key-10.2166/aqua.2023.132-69 doi: 10.1016/j.mspro.2012.06.046 – ident: key-10.2166/aqua.2023.132-74 doi: 10.1016/j.clay.2016.02.008 – ident: key-10.2166/aqua.2023.132-85 doi: 10.2166/wst.2019.275 – ident: key-10.2166/aqua.2023.132-33 doi: 10.46488/NEPT.2021.v20i04.014 – ident: key-10.2166/aqua.2023.132-28 doi: 10.1007/s13201-023-01880-y – year: 2014 ident: key-10.2166/aqua.2023.132-10 article-title: A comparison of central composite design and Taguchi method for optimizing Fenton process publication-title: The Scientific World Journal doi: 10.1155/2014/869120 – ident: key-10.2166/aqua.2023.132-31 doi: 10.1186/s13244-021-01125-z – ident: key-10.2166/aqua.2023.132-53 doi: 10.1021/ie200271d – ident: key-10.2166/aqua.2023.132-66 doi: 10.1021/acs.iecr.9b05574 – ident: key-10.2166/aqua.2023.132-5 doi: 10.3389/fchem.2022.907302 – ident: key-10.2166/aqua.2023.132-68 doi: 10.1080/02726351.2016.1163300 – volume: 2 start-page: 599 year: 2012 ident: key-10.2166/aqua.2023.132-62 article-title: Hexavalent chromium removal from industrial wastewater by chemical precipitation method publication-title: International Journal of Engineering Research and Applications – ident: key-10.2166/aqua.2023.132-13 doi: 10.3389/fphar.2021.643972 – ident: key-10.2166/aqua.2023.132-18 doi: 10.1016/j.heliyon.2022.e09645 – ident: key-10.2166/aqua.2023.132-8 doi: 10.1021/ja01269a066 – ident: key-10.2166/aqua.2023.132-78 doi: 10.1016/j.jcis.2020.08.119 – ident: key-10.2166/aqua.2023.132-44 doi: 10.1016/j.clay.2023.107101 – ident: key-10.2166/aqua.2023.132-79 doi: 10.3390/polym12071491 – ident: key-10.2166/aqua.2023.132-81 doi: 10.3390/w9090651 – ident: key-10.2166/aqua.2023.132-26 doi: 10.1016/j.cej.2011.11.028 – ident: key-10.2166/aqua.2023.132-76 doi: 10.1007/s42250-019-00080-z – ident: key-10.2166/aqua.2023.132-51 doi: 10.1016/j.jcis.2021.08.097 – ident: key-10.2166/aqua.2023.132-60 doi: 10.1016/j.jksus.2022.101869 – ident: key-10.2166/aqua.2023.132-65 doi: 10.1016/j.colsurfa.2009.02.016 – volume: 4 start-page: 2997 year: 2013 ident: key-10.2166/aqua.2023.132-1 article-title: Removal of trivalent chromium from water by micellar enhanced ultrafiltration technique publication-title: Proceedings, Annual Conference Canadian Society for Civil Engineering – ident: key-10.2166/aqua.2023.132-49 doi: 10.1016/j.apsusc.2014.08.184 – ident: key-10.2166/aqua.2023.132-61 doi: 10.2478/s11532-013-0360-y – ident: key-10.2166/aqua.2023.132-11 doi: 10.1088/1742-6596/1763/1/012042 – ident: key-10.2166/aqua.2023.132-16 doi: 10.1080/01496395.2014.910223 – ident: key-10.2166/aqua.2023.132-12 doi: 10.52571/ptq.v17.n34.2020.217_p34_pgs_200_212.pdf – ident: key-10.2166/aqua.2023.132-82 doi: 10.1016/j.micromeso.2012.11.030 – volume: 38 start-page: 1217 year: 2020 ident: key-10.2166/aqua.2023.132-15 article-title: Chromium (Cr (VI)) removal from water with bentonite-magnetite nanocomposite using response surface methodology (RSM) publication-title: Sigma Journal of Engineering and Natural Sciences – ident: key-10.2166/aqua.2023.132-45 doi: 10.1016/j.biortech.2020.123068 – volume: 54 start-page: 194 issue: 2 year: 2018 ident: key-10.2166/aqua.2023.132-43 article-title: Removal of quinmerac by diatomite and modified diatomite from aqueous solution publication-title: Surface Engineering and Applied Electrochemistry doi: 10.3103/S1068375518020084 – ident: key-10.2166/aqua.2023.132-46 doi: 10.1016/j.micromeso.2012.09.036 – ident: key-10.2166/aqua.2023.132-77 doi: 10.1515/epoly-2015-0218 – ident: key-10.2166/aqua.2023.132-83 doi: 10.1016/j.jallcom.2014.04.064 – ident: key-10.2166/aqua.2023.132-58 doi: 10.1039/C8RA04290J – ident: key-10.2166/aqua.2023.132-73 doi: 10.14483/22487638.17088 – ident: key-10.2166/aqua.2023.132-17 doi: 10.3303/CET2294242 – ident: key-10.2166/aqua.2023.132-34 doi: 10.1080/21655979.2021.1978616 – ident: key-10.2166/aqua.2023.132-14 doi: 10.1021/acsomega.9b04295 |
| SSID | ssib050728970 ssj0002513546 ssib050049682 |
| Score | 2.3365352 |
| Snippet | Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite,... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 2239 |
| SubjectTerms | adsorption hexavalent chromium magnetite–diatomite nanocomposite optimization |
| Title | Adsorptive removal of Cr (VI) from wastewater using magnetite–diatomite nanocomposite |
| URI | https://doaj.org/article/0eabb35332914833ac9e0b702ef8d128 |
| Volume | 72 |
| WOSCitedRecordID | wos001100755200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2709-8036 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0002513546 issn: 2709-8028 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2709-8036 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050728970 issn: 2709-8028 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSuVAEG1EXOhi8IlveiHigBmT7qQfS70oulBcOOoudHcqMqCJ5l51J_6Df-iXWHUTr3cWMpvZhBCK0BwO9UiqTjG2ZYTD0hhklFnwUWqVi4wKMd4VAhzGE8jK4bIJfXZmrq_t-diqL-oJa-WBW-D2YnDeS0xKhMXMXUoXLMRexwJKU6BzJe8baztWTCGTMkp81ZdqCyY9WFh0zCQfjVFdtlM8QscW3bQwrQCnSJTacw-PJEkk5K9Eir8C1piu_zAAHc2yH13myPfbE8-xCajm2cyYnuACu9ov-nVzTx6MN3BXI4t4XfJew3cuT35yGiXhz65P38sQTk497zf8zt1UNGoG769vtLajpoknXrmqpnZz6umCRfb76PCidxx1mxOiIFMxiBSGHFHoOCtCCBrSJA0agZSqxGzHKsAaARJRusQnBS3f0NJJo0xpbEiyArRcYpNVXcEy44b-DKZlaksLKajYBxewhnJaFT4x3q-w3U948tDJitN2i9scywtCMyc0c0IzRzRX2PbI_L7V0_jO8ICwHhmRDPbwAZIj78iR_4scq__jJWtsmg7V9rCss8lB8wgbbCo8Df70m80h7_B6-nL4AQRu2dM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorptive+removal+of+Cr+%28VI%29+from+wastewater+using+magnetite%E2%80%93diatomite+nanocomposite&rft.jtitle=Aqua+%28London%2C+England%29&rft.au=Lemessa%2C+Gemechu&rft.au=Chebude%2C+Yonas&rft.au=Alemayehu%2C+Esayas&rft.date=2023-12-01&rft.issn=2709-8028&rft.eissn=2709-8036&rft.volume=72&rft.issue=12&rft.spage=2239&rft.epage=2261&rft_id=info:doi/10.2166%2Faqua.2023.132&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_aqua_2023_132 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2709-8028&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2709-8028&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2709-8028&client=summon |