Adsorptive removal of Cr (VI) from wastewater using magnetite–diatomite nanocomposite

Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite, thermochemically modified diatomite (TMD), and magnetic–diatomite nanocomposite (MDN) were investigated using Fourier-transform infrared spectrosc...

Full description

Saved in:
Bibliographic Details
Published in:Aqua (London, England) Vol. 72; no. 12; pp. 2239 - 2261
Main Authors: Lemessa, Gemechu, Chebude, Yonas, Alemayehu, Esayas
Format: Journal Article
Language:English
Published: IWA Publishing 01.12.2023
Subjects:
ISSN:2709-8028, 2709-8036
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite, thermochemically modified diatomite (TMD), and magnetic–diatomite nanocomposite (MDN) were investigated using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, Brunauer–Emmett–Teller, and complete silicate chemical analysis. The MDN shows 98.89% adsorption removal at optimized conditions using the response surface methodology of Box–Behnken Design. The kinetic data for Cr(VI) sorption on MDN were well described by pseudo-second order, which indicates the Cr(VI) adsorption was mainly due to chemisorption. The isotherm data show that the Langmuir and Freundlich models better described Cr(VI) ion sorption data. The thermodynamic parameters ΔG°, ΔH°, and ΔS° were estimated, and the results indicate Cr(VI) sorption on MDN was a spontaneous (ΔG° < 0) and exothermic process (ΔH° < 0). The proper Fe3O4 loading into TMD improves the gram susceptibility (Xg) of MDN for magnet separation. The regeneration of nanocomposite material revealed over 80% Cr(VI) removal efficiency after five consecutive adsorption–desorption cycles. The produced MDN was tested for the removal of Cr(VI) from real tannery wastewater. The obtained results suggest the possibility of using this nanocomposite as an effective, efficient adsorbent to remove Cr(VI) laden wastewater.
AbstractList Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite, thermochemically modified diatomite (TMD), and magnetic–diatomite nanocomposite (MDN) were investigated using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, Brunauer–Emmett–Teller, and complete silicate chemical analysis. The MDN shows 98.89% adsorption removal at optimized conditions using the response surface methodology of Box–Behnken Design. The kinetic data for Cr(VI) sorption on MDN were well described by pseudo-second order, which indicates the Cr(VI) adsorption was mainly due to chemisorption. The isotherm data show that the Langmuir and Freundlich models better described Cr(VI) ion sorption data. The thermodynamic parameters ΔG°, ΔH°, and ΔS° were estimated, and the results indicate Cr(VI) sorption on MDN was a spontaneous (ΔG° < 0) and exothermic process (ΔH° < 0). The proper Fe3O4 loading into TMD improves the gram susceptibility (Xg) of MDN for magnet separation. The regeneration of nanocomposite material revealed over 80% Cr(VI) removal efficiency after five consecutive adsorption–desorption cycles. The produced MDN was tested for the removal of Cr(VI) from real tannery wastewater. The obtained results suggest the possibility of using this nanocomposite as an effective, efficient adsorbent to remove Cr(VI) laden wastewater.
Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite, thermochemically modified diatomite (TMD), and magnetic–diatomite nanocomposite (MDN) were investigated using Fourier-transform infrared spectroscopy, X-ray diffraction analysis, Brunauer–Emmett–Teller, and complete silicate chemical analysis. The MDN shows 98.89% adsorption removal at optimized conditions using the response surface methodology of Box–Behnken Design. The kinetic data for Cr(VI) sorption on MDN were well described by pseudo-second order, which indicates the Cr(VI) adsorption was mainly due to chemisorption. The isotherm data show that the Langmuir and Freundlich models better described Cr(VI) ion sorption data. The thermodynamic parameters ΔG°, ΔH°, and ΔS° were estimated, and the results indicate Cr(VI) sorption on MDN was a spontaneous (ΔG° < 0) and exothermic process (ΔH° < 0). The proper Fe3O4 loading into TMD improves the gram susceptibility (Xg) of MDN for magnet separation. The regeneration of nanocomposite material revealed over 80% Cr(VI) removal efficiency after five consecutive adsorption–desorption cycles. The produced MDN was tested for the removal of Cr(VI) from real tannery wastewater. The obtained results suggest the possibility of using this nanocomposite as an effective, efficient adsorbent to remove Cr(VI) laden wastewater. HIGHLIGHTS Easy magnetic recyclable adsorbent.; Efficient Cr(VI) removal adsorbent from Cr(VI) laden tannery effluent.; Easy synthesis and low-cost material.; Highly stable with magnetic reusable potential.; Composite with high electron density and porous material.;
Author Chebude, Yonas
Alemayehu, Esayas
Lemessa, Gemechu
Author_xml – sequence: 1
  givenname: Gemechu
  orcidid: 0000-0002-0785-9737
  surname: Lemessa
  fullname: Lemessa, Gemechu
– sequence: 2
  givenname: Yonas
  orcidid: 0000-0003-4680-1375
  surname: Chebude
  fullname: Chebude, Yonas
– sequence: 3
  givenname: Esayas
  orcidid: 0000-0001-8843-1136
  surname: Alemayehu
  fullname: Alemayehu, Esayas
BookMark eNptkLlOxDAQhi0EErBQ0ruEIouPxHZKtOJYCYmGo7QmzmRltIkX24DoeAfekCchy1UgqvlnNPNp9O2SzSEMSMgBZ1PBlTqGh0eYCibklEuxQXaEZnVhmFSbv1mYbbKfkm9YxbQwtWY75O6kTSGusn9CGrEPT7CkoaOzSA9v50e0i6Gnz5AyPkPGSB-THxa0h8WA2Wd8f31rPeTQj5kOMAQX-lVIY7dHtjpYJtz_rhNyc3Z6PbsoLq_O57OTy8LJUuRClZqLVrOqdc5pLHnpNEOQqlNC1gorUyEXHfCGt0wZpiVIo0xnaserFrWckPkXtw1wb1fR9xBfbABvPwchLizE7N0S7chtGllJKWpeGinB1cgazQR2puXCjCz5xXIxpBSxs85nyD4MOYJfWs7sWrVdq7Zr1XZUPV4Vf65-vvh__wNj9YQV
CitedBy_id crossref_primary_10_1016_j_pce_2024_103790
crossref_primary_10_1016_j_rechem_2025_102486
crossref_primary_10_1007_s11837_025_07273_7
crossref_primary_10_1016_j_sciaf_2024_e02213
crossref_primary_10_1016_j_rechem_2025_102205
crossref_primary_10_47352_jmans_2774_3047_289
crossref_primary_10_3390_pr13040997
crossref_primary_10_1016_j_ijbiomac_2025_146868
crossref_primary_10_1007_s13399_024_05976_6
crossref_primary_10_1007_s41742_024_00570_0
crossref_primary_10_1038_s41598_025_11938_3
crossref_primary_10_1002_tqem_70015
crossref_primary_10_1007_s11270_025_08207_4
Cites_doi 10.1016/j.btre.2017.03.001
10.1007/s11356-019-06423-0
10.37247/pac.1.2020.18
10.3390/w13202803
10.1080/19443994.2013.855678
10.5004/dwt.2019.24572
10.15407/hftp08.01.065
10.1155/2022/8625489
10.1007/s10450-012-9468-1
10.1007/s10751-013-0858-x
10.1515/epoly-2016-0043
10.1177/0263617417719552
10.3390/w14213373
10.1016/j.cej.2009.09.013
10.1155/2022/4441718
10.1016/j.jcis.2018.09.024
10.4314/mejs.v4i2.80120
10.2174/1874456700903010012
10.1260/0263-6174.31.2-3.275
10.1016/j.wse.2015.01.009
10.1007/s42452-021-04334-9
10.1016/j.arabjc.2023.104966
10.4067/S0717-97072020000204790
10.1179/096797802225003361
10.1016/j.powtec.2018.01.090
10.1016/j.seppur.2020.116792
10.3390/nano10020339
10.1016/j.partic.2017.11.005
10.1007/978-3-030-66135-9_9
10.1016/j.jcis.2005.10.058
10.1021/ie200271d
10.1002/9781119407805.ch5
10.1021/acs.iecr.9b01941
10.3923/ajmskr.2010.121.136
10.1016/j.jtice.2016.12.013
10.1016/j.jclepro.2021.128219
10.5277/ppmp120208
10.1177/0263617416686976
10.1016/j.desal.2012.02.021
10.1016/j.arabjc.2021.103064
10.3389/fchem.2021.814431
10.1016/j.envres.2019.108898
10.1016/j.jgeb.2017.01.006
10.1080/13102818.2015.1039059
10.1016/j.mspro.2012.06.046
10.1016/j.clay.2016.02.008
10.2166/wst.2019.275
10.46488/NEPT.2021.v20i04.014
10.1007/s13201-023-01880-y
10.1155/2014/869120
10.1186/s13244-021-01125-z
10.1021/acs.iecr.9b05574
10.3389/fchem.2022.907302
10.1080/02726351.2016.1163300
10.3389/fphar.2021.643972
10.1016/j.heliyon.2022.e09645
10.1021/ja01269a066
10.1016/j.jcis.2020.08.119
10.1016/j.clay.2023.107101
10.3390/polym12071491
10.3390/w9090651
10.1016/j.cej.2011.11.028
10.1007/s42250-019-00080-z
10.1016/j.jcis.2021.08.097
10.1016/j.jksus.2022.101869
10.1016/j.colsurfa.2009.02.016
10.1016/j.apsusc.2014.08.184
10.2478/s11532-013-0360-y
10.1088/1742-6596/1763/1/012042
10.1080/01496395.2014.910223
10.52571/ptq.v17.n34.2020.217_p34_pgs_200_212.pdf
10.1016/j.micromeso.2012.11.030
10.1016/j.biortech.2020.123068
10.3103/S1068375518020084
10.1016/j.micromeso.2012.09.036
10.1515/epoly-2015-0218
10.1016/j.jallcom.2014.04.064
10.1039/C8RA04290J
10.14483/22487638.17088
10.3303/CET2294242
10.1080/21655979.2021.1978616
10.1021/acsomega.9b04295
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.2166/aqua.2023.132
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2709-8036
EndPage 2261
ExternalDocumentID oai_doaj_org_article_0eabb35332914833ac9e0b702ef8d128
10_2166_aqua_2023_132
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
FRP
GROUPED_DOAJ
ID FETCH-LOGICAL-c342t-64712d705dccc7e414c70ea36f62396e585e12fa1b1d068073a3868f89c15de73
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001100755200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2709-8028
IngestDate Fri Oct 03 12:41:57 EDT 2025
Tue Nov 18 22:24:34 EST 2025
Sat Nov 29 01:46:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-64712d705dccc7e414c70ea36f62396e585e12fa1b1d068073a3868f89c15de73
ORCID 0000-0003-4680-1375
0000-0001-8843-1136
0000-0002-0785-9737
OpenAccessLink https://doaj.org/article/0eabb35332914833ac9e0b702ef8d128
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_0eabb35332914833ac9e0b702ef8d128
crossref_citationtrail_10_2166_aqua_2023_132
crossref_primary_10_2166_aqua_2023_132
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Aqua (London, England)
PublicationYear 2023
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References key-10.2166/aqua.2023.132-33
key-10.2166/aqua.2023.132-77
key-10.2166/aqua.2023.132-32
key-10.2166/aqua.2023.132-76
key-10.2166/aqua.2023.132-35
key-10.2166/aqua.2023.132-79
key-10.2166/aqua.2023.132-34
key-10.2166/aqua.2023.132-78
key-10.2166/aqua.2023.132-37
key-10.2166/aqua.2023.132-36
Belibağli (key-10.2166/aqua.2023.132-15) 2020; 38
key-10.2166/aqua.2023.132-39
key-10.2166/aqua.2023.132-38
Le (key-10.2166/aqua.2023.132-48) 2020; 10
key-10.2166/aqua.2023.132-71
key-10.2166/aqua.2023.132-70
key-10.2166/aqua.2023.132-73
key-10.2166/aqua.2023.132-72
key-10.2166/aqua.2023.132-31
key-10.2166/aqua.2023.132-75
key-10.2166/aqua.2023.132-30
Ramakrishnaiah (key-10.2166/aqua.2023.132-62) 2012; 2
key-10.2166/aqua.2023.132-74
Abbasi-Garravand (key-10.2166/aqua.2023.132-1) 2013; 4
key-10.2166/aqua.2023.132-44
key-10.2166/aqua.2023.132-88
key-10.2166/aqua.2023.132-87
key-10.2166/aqua.2023.132-46
key-10.2166/aqua.2023.132-45
Minas (key-10.2166/aqua.2023.132-55) 2017; 3
key-10.2166/aqua.2023.132-47
key-10.2166/aqua.2023.132-49
Khaldi (key-10.2166/aqua.2023.132-43) 2018; 54
Memedi (key-10.2166/aqua.2023.132-54) 2021
key-10.2166/aqua.2023.132-80
key-10.2166/aqua.2023.132-82
key-10.2166/aqua.2023.132-81
key-10.2166/aqua.2023.132-40
key-10.2166/aqua.2023.132-84
key-10.2166/aqua.2023.132-83
key-10.2166/aqua.2023.132-42
key-10.2166/aqua.2023.132-86
key-10.2166/aqua.2023.132-85
Jayasree (key-10.2166/aqua.2023.132-41) 2021; 43
key-10.2166/aqua.2023.132-11
key-10.2166/aqua.2023.132-13
key-10.2166/aqua.2023.132-57
key-10.2166/aqua.2023.132-12
key-10.2166/aqua.2023.132-56
key-10.2166/aqua.2023.132-59
key-10.2166/aqua.2023.132-14
key-10.2166/aqua.2023.132-58
key-10.2166/aqua.2023.132-17
key-10.2166/aqua.2023.132-16
key-10.2166/aqua.2023.132-51
key-10.2166/aqua.2023.132-50
key-10.2166/aqua.2023.132-53
key-10.2166/aqua.2023.132-52
key-10.2166/aqua.2023.132-19
Asghar (key-10.2166/aqua.2023.132-10) 2014
key-10.2166/aqua.2023.132-18
key-10.2166/aqua.2023.132-22
key-10.2166/aqua.2023.132-66
key-10.2166/aqua.2023.132-21
key-10.2166/aqua.2023.132-65
key-10.2166/aqua.2023.132-24
key-10.2166/aqua.2023.132-68
key-10.2166/aqua.2023.132-23
key-10.2166/aqua.2023.132-67
key-10.2166/aqua.2023.132-26
key-10.2166/aqua.2023.132-25
key-10.2166/aqua.2023.132-69
key-10.2166/aqua.2023.132-28
key-10.2166/aqua.2023.132-27
key-10.2166/aqua.2023.132-5
key-10.2166/aqua.2023.132-6
key-10.2166/aqua.2023.132-7
key-10.2166/aqua.2023.132-60
key-10.2166/aqua.2023.132-8
key-10.2166/aqua.2023.132-61
key-10.2166/aqua.2023.132-3
key-10.2166/aqua.2023.132-20
key-10.2166/aqua.2023.132-64
key-10.2166/aqua.2023.132-4
key-10.2166/aqua.2023.132-63
key-10.2166/aqua.2023.132-9
key-10.2166/aqua.2023.132-29
Acharya (key-10.2166/aqua.2023.132-2) 2017
References_xml – ident: key-10.2166/aqua.2023.132-21
  doi: 10.1016/j.btre.2017.03.001
– ident: key-10.2166/aqua.2023.132-27
  doi: 10.1007/s11356-019-06423-0
– ident: key-10.2166/aqua.2023.132-63
  doi: 10.37247/pac.1.2020.18
– ident: key-10.2166/aqua.2023.132-6
  doi: 10.3390/w13202803
– ident: key-10.2166/aqua.2023.132-64
  doi: 10.1080/19443994.2013.855678
– ident: key-10.2166/aqua.2023.132-75
  doi: 10.5004/dwt.2019.24572
– ident: key-10.2166/aqua.2023.132-84
  doi: 10.15407/hftp08.01.065
– ident: key-10.2166/aqua.2023.132-9
  doi: 10.1155/2022/8625489
– ident: key-10.2166/aqua.2023.132-35
  doi: 10.1007/s10450-012-9468-1
– ident: key-10.2166/aqua.2023.132-20
  doi: 10.1007/s10751-013-0858-x
– ident: key-10.2166/aqua.2023.132-22
  doi: 10.1515/epoly-2016-0043
– ident: key-10.2166/aqua.2023.132-38
  doi: 10.1177/0263617417719552
– ident: key-10.2166/aqua.2023.132-72
  doi: 10.3390/w14213373
– ident: key-10.2166/aqua.2023.132-30
  doi: 10.1016/j.cej.2009.09.013
– ident: key-10.2166/aqua.2023.132-3
  doi: 10.1155/2022/4441718
– ident: key-10.2166/aqua.2023.132-56
  doi: 10.1016/j.jcis.2018.09.024
– ident: key-10.2166/aqua.2023.132-47
  doi: 10.4314/mejs.v4i2.80120
– ident: key-10.2166/aqua.2023.132-57
  doi: 10.2174/1874456700903010012
– ident: key-10.2166/aqua.2023.132-29
  doi: 10.1260/0263-6174.31.2-3.275
– ident: key-10.2166/aqua.2023.132-39
  doi: 10.1016/j.wse.2015.01.009
– ident: key-10.2166/aqua.2023.132-70
  doi: 10.1007/s42452-021-04334-9
– ident: key-10.2166/aqua.2023.132-87
  doi: 10.1016/j.arabjc.2023.104966
– ident: key-10.2166/aqua.2023.132-7
  doi: 10.4067/S0717-97072020000204790
– ident: key-10.2166/aqua.2023.132-36
  doi: 10.1179/096797802225003361
– ident: key-10.2166/aqua.2023.132-80
  doi: 10.1016/j.powtec.2018.01.090
– ident: key-10.2166/aqua.2023.132-50
  doi: 10.1016/j.seppur.2020.116792
– volume: 10
  start-page: 339
  issue: 2
  year: 2020
  ident: key-10.2166/aqua.2023.132-48
  article-title: Synthesis of diatomite-based mesoporous wool-ball-like microspheres and their application for toluene total oxidation reaction
  publication-title: Nanomaterials
  doi: 10.3390/nano10020339
– ident: key-10.2166/aqua.2023.132-25
  doi: 10.1016/j.partic.2017.11.005
– start-page: 263
  volume-title: Contaminant Levels and Ecological Effects: Understanding and Predicting with Chemometric Methods
  year: 2021
  ident: key-10.2166/aqua.2023.132-54
  article-title: Removal of chromium(VI) from aqueous solution by clayey diatomite: Kinetic and equilibrium study
  doi: 10.1007/978-3-030-66135-9_9
– ident: key-10.2166/aqua.2023.132-71
  doi: 10.1016/j.jcis.2005.10.058
– ident: key-10.2166/aqua.2023.132-52
  doi: 10.1021/ie200271d
– volume: 43
  start-page: 144
  year: 2021
  ident: key-10.2166/aqua.2023.132-41
  article-title: Predictability by Box-Behnken model for removal of chromium (Vi) using Eclipta prostrata (Bhringraj) plant powder as an adsorbent
  publication-title: Songklanakarin Journal of Science and Technology
– start-page: 129
  volume-title: Advanced Materials for Waste Water Treatment
  year: 2017
  ident: key-10.2166/aqua.2023.132-2
  article-title: Remediation of Cr (VI) using clay minerals, biomasses and industrial wastes as adsorbents
  doi: 10.1002/9781119407805.ch5
– ident: key-10.2166/aqua.2023.132-88
  doi: 10.1021/acs.iecr.9b01941
– ident: key-10.2166/aqua.2023.132-32
  doi: 10.3923/ajmskr.2010.121.136
– ident: key-10.2166/aqua.2023.132-67
  doi: 10.1016/j.jtice.2016.12.013
– ident: key-10.2166/aqua.2023.132-86
  doi: 10.1016/j.jclepro.2021.128219
– ident: key-10.2166/aqua.2023.132-40
  doi: 10.5277/ppmp120208
– ident: key-10.2166/aqua.2023.132-37
  doi: 10.1177/0263617416686976
– ident: key-10.2166/aqua.2023.132-23
  doi: 10.1016/j.desal.2012.02.021
– ident: key-10.2166/aqua.2023.132-24
  doi: 10.1016/j.arabjc.2021.103064
– ident: key-10.2166/aqua.2023.132-4
  doi: 10.3389/fchem.2021.814431
– ident: key-10.2166/aqua.2023.132-42
  doi: 10.1016/j.envres.2019.108898
– ident: key-10.2166/aqua.2023.132-59
  doi: 10.1016/j.jgeb.2017.01.006
– volume: 3
  start-page: 291
  year: 2017
  ident: key-10.2166/aqua.2023.132-55
  article-title: Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia
  publication-title: Chemistry International
– ident: key-10.2166/aqua.2023.132-19
  doi: 10.1080/13102818.2015.1039059
– ident: key-10.2166/aqua.2023.132-69
  doi: 10.1016/j.mspro.2012.06.046
– ident: key-10.2166/aqua.2023.132-74
  doi: 10.1016/j.clay.2016.02.008
– ident: key-10.2166/aqua.2023.132-85
  doi: 10.2166/wst.2019.275
– ident: key-10.2166/aqua.2023.132-33
  doi: 10.46488/NEPT.2021.v20i04.014
– ident: key-10.2166/aqua.2023.132-28
  doi: 10.1007/s13201-023-01880-y
– year: 2014
  ident: key-10.2166/aqua.2023.132-10
  article-title: A comparison of central composite design and Taguchi method for optimizing Fenton process
  publication-title: The Scientific World Journal
  doi: 10.1155/2014/869120
– ident: key-10.2166/aqua.2023.132-31
  doi: 10.1186/s13244-021-01125-z
– ident: key-10.2166/aqua.2023.132-53
  doi: 10.1021/ie200271d
– ident: key-10.2166/aqua.2023.132-66
  doi: 10.1021/acs.iecr.9b05574
– ident: key-10.2166/aqua.2023.132-5
  doi: 10.3389/fchem.2022.907302
– ident: key-10.2166/aqua.2023.132-68
  doi: 10.1080/02726351.2016.1163300
– volume: 2
  start-page: 599
  year: 2012
  ident: key-10.2166/aqua.2023.132-62
  article-title: Hexavalent chromium removal from industrial wastewater by chemical precipitation method
  publication-title: International Journal of Engineering Research and Applications
– ident: key-10.2166/aqua.2023.132-13
  doi: 10.3389/fphar.2021.643972
– ident: key-10.2166/aqua.2023.132-18
  doi: 10.1016/j.heliyon.2022.e09645
– ident: key-10.2166/aqua.2023.132-8
  doi: 10.1021/ja01269a066
– ident: key-10.2166/aqua.2023.132-78
  doi: 10.1016/j.jcis.2020.08.119
– ident: key-10.2166/aqua.2023.132-44
  doi: 10.1016/j.clay.2023.107101
– ident: key-10.2166/aqua.2023.132-79
  doi: 10.3390/polym12071491
– ident: key-10.2166/aqua.2023.132-81
  doi: 10.3390/w9090651
– ident: key-10.2166/aqua.2023.132-26
  doi: 10.1016/j.cej.2011.11.028
– ident: key-10.2166/aqua.2023.132-76
  doi: 10.1007/s42250-019-00080-z
– ident: key-10.2166/aqua.2023.132-51
  doi: 10.1016/j.jcis.2021.08.097
– ident: key-10.2166/aqua.2023.132-60
  doi: 10.1016/j.jksus.2022.101869
– ident: key-10.2166/aqua.2023.132-65
  doi: 10.1016/j.colsurfa.2009.02.016
– volume: 4
  start-page: 2997
  year: 2013
  ident: key-10.2166/aqua.2023.132-1
  article-title: Removal of trivalent chromium from water by micellar enhanced ultrafiltration technique
  publication-title: Proceedings, Annual Conference Canadian Society for Civil Engineering
– ident: key-10.2166/aqua.2023.132-49
  doi: 10.1016/j.apsusc.2014.08.184
– ident: key-10.2166/aqua.2023.132-61
  doi: 10.2478/s11532-013-0360-y
– ident: key-10.2166/aqua.2023.132-11
  doi: 10.1088/1742-6596/1763/1/012042
– ident: key-10.2166/aqua.2023.132-16
  doi: 10.1080/01496395.2014.910223
– ident: key-10.2166/aqua.2023.132-12
  doi: 10.52571/ptq.v17.n34.2020.217_p34_pgs_200_212.pdf
– ident: key-10.2166/aqua.2023.132-82
  doi: 10.1016/j.micromeso.2012.11.030
– volume: 38
  start-page: 1217
  year: 2020
  ident: key-10.2166/aqua.2023.132-15
  article-title: Chromium (Cr (VI)) removal from water with bentonite-magnetite nanocomposite using response surface methodology (RSM)
  publication-title: Sigma Journal of Engineering and Natural Sciences
– ident: key-10.2166/aqua.2023.132-45
  doi: 10.1016/j.biortech.2020.123068
– volume: 54
  start-page: 194
  issue: 2
  year: 2018
  ident: key-10.2166/aqua.2023.132-43
  article-title: Removal of quinmerac by diatomite and modified diatomite from aqueous solution
  publication-title: Surface Engineering and Applied Electrochemistry
  doi: 10.3103/S1068375518020084
– ident: key-10.2166/aqua.2023.132-46
  doi: 10.1016/j.micromeso.2012.09.036
– ident: key-10.2166/aqua.2023.132-77
  doi: 10.1515/epoly-2015-0218
– ident: key-10.2166/aqua.2023.132-83
  doi: 10.1016/j.jallcom.2014.04.064
– ident: key-10.2166/aqua.2023.132-58
  doi: 10.1039/C8RA04290J
– ident: key-10.2166/aqua.2023.132-73
  doi: 10.14483/22487638.17088
– ident: key-10.2166/aqua.2023.132-17
  doi: 10.3303/CET2294242
– ident: key-10.2166/aqua.2023.132-34
  doi: 10.1080/21655979.2021.1978616
– ident: key-10.2166/aqua.2023.132-14
  doi: 10.1021/acsomega.9b04295
SSID ssib050728970
ssj0002513546
ssib050049682
Score 2.3365352
Snippet Magnetite-diatomite nanocomposite was synthesized through co-precipitation methods as an effective Cr(VI) removal adsorbent. The properties of diatomite,...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 2239
SubjectTerms adsorption
hexavalent chromium
magnetite–diatomite
nanocomposite
optimization
Title Adsorptive removal of Cr (VI) from wastewater using magnetite–diatomite nanocomposite
URI https://doaj.org/article/0eabb35332914833ac9e0b702ef8d128
Volume 72
WOSCitedRecordID wos001100755200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2709-8036
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0002513546
  issn: 2709-8028
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2709-8036
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib050728970
  issn: 2709-8028
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsUwEA0iLnQhPvFNFiIKVtMkTZqliqKg4sLXrqRJKoK31d6r7sR_8A_9Emduq14X4sZNFyWUcDjMnCkzZwhZ1VokVgoRaWN9JJOER1bJInKpKaTJrWR538T1WJ-eptfX5mxg1Rf2hDX2wA1w2yzYPBcgSrgB5S6EdSawXDMeitRDcMXoy7QZKKaASQkKX_Xt2gKiBwqLlpkYoyGri2aKh2tmIEzztDHg5LFS2_bhES2JuNiKBf-RsAZ8_fsJ6GCCjLfKke40N54kQ6GcImMDfoLT5GrHd6v6HiMYrUOnAhbRqqB7NV2_PNqgOEpCn20X_5cBnBR73m9ox96UOGoW3l_fcG1HhRNPtLRlhe3m2NMVZsjFwf753mHUbk6InJC8FylIOdxrlnjnnA4ylk4DkEIVoHaMClAjhJgXNs5jj8s3tLAiVWmRGhcnPmgxS4bLqgxzhAaZeyW0twa3lbEkDYbJwkqADdSS0vNk8xOezLW24rjd4i6D8gLRzBDNDNHMAM15svZ1_L7x0_jt4C5i_XUIbbD7L4AcWUuO7C9yLPzHRxbJKF6q6WFZIsO9-jEskxH31Lvt1it93sHz5GX_A3bT2LY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorptive+removal+of+Cr+%28VI%29+from+wastewater+using+magnetite%E2%80%93diatomite+nanocomposite&rft.jtitle=Aqua+%28London%2C+England%29&rft.au=Gemechu+Lemessa&rft.au=Yonas+Chebude&rft.au=Esayas+Alemayehu&rft.date=2023-12-01&rft.pub=IWA+Publishing&rft.issn=2709-8028&rft.eissn=2709-8036&rft.volume=72&rft.issue=12&rft.spage=2239&rft.epage=2261&rft_id=info:doi/10.2166%2Faqua.2023.132&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0eabb35332914833ac9e0b702ef8d128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2709-8028&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2709-8028&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2709-8028&client=summon