Dynamic accounting model with integrated emission allocation methods for coupled energy systems with combined heat and power plants and hybrid heat pumps
•Dynamic accounting shows a deviation of 10% compared to conventional methods.•Quasi-Input-Output model enables time-dependent tracking of emission flows.•Three emission allocation methods are integrated and extended to heat pumps.•Emission distribution across supply grids can differ by up to 69%.•N...
Uložené v:
| Vydané v: | Energy conversion and management Ročník 342; s. 120132 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
15.10.2025
|
| Predmet: | |
| ISSN: | 0196-8904 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Dynamic accounting shows a deviation of 10% compared to conventional methods.•Quasi-Input-Output model enables time-dependent tracking of emission flows.•Three emission allocation methods are integrated and extended to heat pumps.•Emission distribution across supply grids can differ by up to 69%.•New Bayreuth method is introduced for specific heat pump allocation.
Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional accounting methods use only annual demand values and the average grid electricity mix, thereby neglecting dynamic energy and emission flows across the accounting boundary. Moreover, in cases of interconnected supply grids there is a time-dependent exchange of energy and emissions. In this work, a coupled energy system is considered in a dynamic perspective, which connects an electricity, heating and cooling grid through a combined heat and power unit (CHP) and a heat pump (HP) that provides heating and cooling energy at the same time. In order to map the behavior of the emission flows, a dynamic emission balance model is developed using Python. The framework is based on the carbon emission flow theory which is implemented via a Quasi-Input-Output (QIO) node system and uses measured data in an hourly resolution. The dynamic interchange between the grids is enabled by diverse CHP allocation methods that are integrated and applied to the HP. In addition, a method specific for HPs is presented as the Bayreuth method (BaM). The cumulative accounting demonstrates that the allocation methods influence the distribution between the grids, while the resolution determines the absorbed emissions from the public electricity grid. In the case study under consideration, this has the greatest impact on the cooling grid. There is a difference of up to 69% between the allocation methods and a resolution effect of up to 20%. The system’s overall balance is enhanced by around 10% due to a higher resolution in comparison with conventional methodologies. It is evident that dynamic balancing models offer a viable solution for accurately capturing the emissions of an energy system. The analysis of temporal emission flows enables seamless tracking and precise accounting results, even beyond the boundary limits. Furthermore, these models can be transferred to other existing systems and provide a framework for the optimization of energy management strategies, facilitating the temporal progression of the emission load. |
|---|---|
| AbstractList | Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional accounting methods use only annual demand values and the average grid electricity mix, thereby neglecting dynamic energy and emission flows across the accounting boundary. Moreover, in cases of interconnected supply grids there is a time-dependent exchange of energy and emissions. In this work, a coupled energy system is considered in a dynamic perspective, which connects an electricity, heating and cooling grid through a combined heat and power unit (CHP) and a heat pump (HP) that provides heating and cooling energy at the same time. In order to map the behavior of the emission flows, a dynamic emission balance model is developed using Python. The framework is based on the carbon emission flow theory which is implemented via a Quasi-Input-Output (QIO) node system and uses measured data in an hourly resolution. The dynamic interchange between the grids is enabled by diverse CHP allocation methods that are integrated and applied to the HP. In addition, a method specific for HPs is presented as the Bayreuth method (BaM). The cumulative accounting demonstrates that the allocation methods influence the distribution between the grids, while the resolution determines the absorbed emissions from the public electricity grid. In the case study under consideration, this has the greatest impact on the cooling grid. There is a difference of up to 69% between the allocation methods and a resolution effect of up to 20%. The system’s overall balance is enhanced by around 10% due to a higher resolution in comparison with conventional methodologies. It is evident that dynamic balancing models offer a viable solution for accurately capturing the emissions of an energy system. The analysis of temporal emission flows enables seamless tracking and precise accounting results, even beyond the boundary limits. Furthermore, these models can be transferred to other existing systems and provide a framework for the optimization of energy management strategies, facilitating the temporal progression of the emission load. •Dynamic accounting shows a deviation of 10% compared to conventional methods.•Quasi-Input-Output model enables time-dependent tracking of emission flows.•Three emission allocation methods are integrated and extended to heat pumps.•Emission distribution across supply grids can differ by up to 69%.•New Bayreuth method is introduced for specific heat pump allocation. Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional accounting methods use only annual demand values and the average grid electricity mix, thereby neglecting dynamic energy and emission flows across the accounting boundary. Moreover, in cases of interconnected supply grids there is a time-dependent exchange of energy and emissions. In this work, a coupled energy system is considered in a dynamic perspective, which connects an electricity, heating and cooling grid through a combined heat and power unit (CHP) and a heat pump (HP) that provides heating and cooling energy at the same time. In order to map the behavior of the emission flows, a dynamic emission balance model is developed using Python. The framework is based on the carbon emission flow theory which is implemented via a Quasi-Input-Output (QIO) node system and uses measured data in an hourly resolution. The dynamic interchange between the grids is enabled by diverse CHP allocation methods that are integrated and applied to the HP. In addition, a method specific for HPs is presented as the Bayreuth method (BaM). The cumulative accounting demonstrates that the allocation methods influence the distribution between the grids, while the resolution determines the absorbed emissions from the public electricity grid. In the case study under consideration, this has the greatest impact on the cooling grid. There is a difference of up to 69% between the allocation methods and a resolution effect of up to 20%. The system’s overall balance is enhanced by around 10% due to a higher resolution in comparison with conventional methodologies. It is evident that dynamic balancing models offer a viable solution for accurately capturing the emissions of an energy system. The analysis of temporal emission flows enables seamless tracking and precise accounting results, even beyond the boundary limits. Furthermore, these models can be transferred to other existing systems and provide a framework for the optimization of energy management strategies, facilitating the temporal progression of the emission load. |
| ArticleNumber | 120132 |
| Author | Brüggemann, Dieter Heberle, Florian Jess, Andreas Burkel, Chris Griesbach, Marco |
| Author_xml | – sequence: 1 givenname: Chris orcidid: 0009-0005-4336-815X surname: Burkel fullname: Burkel, Chris email: chris.burkel@uni-bayreuth.de organization: Chair of Engineering Thermodynamics and Transport Processes (LTTT), University of Bayreuth, Bayreuth 95440, Germany – sequence: 2 givenname: Marco orcidid: 0000-0002-3105-1164 surname: Griesbach fullname: Griesbach, Marco organization: Chair of Engineering Thermodynamics and Transport Processes (LTTT), University of Bayreuth, Bayreuth 95440, Germany – sequence: 3 givenname: Florian orcidid: 0000-0002-3997-0608 surname: Heberle fullname: Heberle, Florian organization: Chair of Engineering Thermodynamics and Transport Processes (LTTT), University of Bayreuth, Bayreuth 95440, Germany – sequence: 4 givenname: Dieter surname: Brüggemann fullname: Brüggemann, Dieter organization: Chair of Engineering Thermodynamics and Transport Processes (LTTT), University of Bayreuth, Bayreuth 95440, Germany – sequence: 5 givenname: Andreas surname: Jess fullname: Jess, Andreas organization: Chair of Chemical Engineering (CVT), University of Bayreuth, Bayreuth 95440, Germany |
| BookMark | eNqFkMtO5DAQRb0AaRqYXxh5OZtu_IidZDeI1yAhsYG15diVbrdiO2O7QfkU_pb0BNasqlR17lXVPUMnIQZA6BclG0qovNxvIJgYvA4bRpjYUEYoZydoRWgr101Lqh_oLOc9IYQLIlfo_WYK2juDtTHxEIoLW-yjhQG_ubLDLhTYJl3AYvAuZxcD1sMQjS7H1kPZRZtxHxOe5eNw5AKk7YTzlAv4vNiY6DsX5uUOdME6WDzGN0h4HHQo-f9gN3XJfQLjwY_5Ap32esjw87Oeo5e72-frv-vHp_uH66vHteEVK2sBTSUJ62vSdLqDlgtbdbJuhBC6lR0FphvKa0trYaAXIHorQHIra9YaqCp-jn4vvmOK_w6Qi5ofNTDMp0E8ZMVZTRtRSS5nVC6oSTHnBL0ak_M6TYoSdcxf7dVX_uqYv1ryn4V_FiHMj7w6SCobN5NgXQJTlI3uO4sPs7SZ3A |
| Cites_doi | 10.3390/su16156483 10.1016/j.energy.2007.10.006 10.1016/j.apenergy.2017.05.046 10.1016/j.enconman.2018.07.103 10.1016/j.enbuild.2023.113213 10.1016/j.apenergy.2011.11.040 10.1109/IFEEA57288.2022.10037975 10.1016/j.energy.2007.10.008 10.1016/j.jclepro.2006.08.025 10.1016/j.enconman.2023.117118 10.1109/TSG.2018.2830775 10.1016/j.applthermaleng.2022.118696 10.1002/ese3.1747 10.1016/j.esr.2019.100367 10.1016/j.jclepro.2015.11.052 10.3390/en16135016 10.1016/j.apenergy.2023.121980 10.1016/j.jclepro.2018.02.309 10.3390/en13030619 10.1016/j.enbuild.2024.114499 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) |
| Copyright_xml | – notice: 2025 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.enconman.2025.120132 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_enconman_2025_120132 S0196890425006569 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAFTH AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABMAC ACBEA ACDAQ ACGFO ACGFS ACIWK ACLOT ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- ~HD 29G 6TJ 8WZ 9DU A6W AAQXK AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC WUQ 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-5e84602f708babe935d4b678555a96b1e2a8137d175cef5e5fd5e63d6729ce443 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001530647000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0196-8904 |
| IngestDate | Fri Nov 14 18:41:16 EST 2025 Sat Nov 29 07:22:17 EST 2025 Sat Nov 01 17:22:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Carbon emission flow theory Dynamic emission accounting Emission allocation Heat pump Bayreuth method Quasi-Input-Output (QIO) |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-5e84602f708babe935d4b678555a96b1e2a8137d175cef5e5fd5e63d6729ce443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3105-1164 0009-0005-4336-815X 0000-0002-3997-0608 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.enconman.2025.120132 |
| PQID | 3271854636 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3271854636 crossref_primary_10_1016_j_enconman_2025_120132 elsevier_sciencedirect_doi_10_1016_j_enconman_2025_120132 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-15 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | He, Zhou, Zhang, Zhao, Xiao (b0065) 2023; 16 Electricity Maps ApS. Electricity Maps; Available from Griesbach, König-Haagen, Brüggemann (b0120) 2022; 213 World Business Council for Sustainable Development, World Resources Institute. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard; Available from Bontekoe, Schade, Erikkson, Tsarchopoulos, Lampropoulos, van Sark (b0060) 2024; 319 Bundesnetzagentur. SMARD. (in German); Available from Khan, Jack, Stephenson (b0015) 2018; 184 Röder, Beier, Meyer, Nettelstroth, Stührmann, Zondervan (b0030) 2020; 13 Álvarez Flórez, Péan, Salom (b0075) 2023; 294 Agora Energiewende. Energiewende und Dezentralität. Zu den Grundlagen einer politisierten Debatte. (in German); Available from Li J, Zou N, Wu J, Yang Q. Low carbon optimal dispatching of power system considering carbon emission flow theory. In: 2022 9th International Forum on Electrical Engineering and Automation (IFEEA). IEEE; 2022, p. 532–536. Rosen (b0095) 2008; 16 Griesbach, König-Haagen, Heberle, Brüggemann (b0125) 2023; 287 Accessed 24.02.2025. Holmberg, Tuomaala, Haikonen, Ahtila (b0105) 2012; 93 Mancarella, Chicco (b0085) 2008; 33 Li, Zhou, Wen, Zhang, Wen, Huang (b0035) 2024; 12 Qu, Wang, Liang, Shapiro, Suh, Sheldon (b0025) 2017; 200 Chicco G, Mancarella P. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: models and indicators. Energy 2008;33(3):410–7. DOI: 10.1016/j.energy.2007.10.006. Huang, Jiang, Luo, Li, Lu (b0020) 2024; 16 Yang, Huang, Zhang, Zhao (b0115) 2023; 352 Umweltbundesamt. Treibhausgas-Projektionen 2024 – Ergebnisse kompakt. (in German); Available from Cheng, Zhang, Wang, Yang, Kang, Xia (b0110) 2019; 10 Tranberg, Corradi, Lajoie, Gibon, Staffell, Andresen (b0045) 2019; 26 Stadtwerke Bayreuth. Abrechnungsbrennwerte im Netzgebiet der Stadtwerke Bayreuth. (in German); Available from Raybaut P. Spyder IDE: The Scientific Python Development Environment. Spyder Project Contributors. Roux, Schalbart, Peuportier (b0070) 2016; 113 European Network of Transmission System Operators for Electricity. ENTSO-E; Available from Noussan (b0100) 2018; 173 Buchenau, Hannen, Holzapfel, Finkbeiner, Hesselbach (b0090) 2023; 4 Meteorological data at the Ecological Botanical Gardens, University of Bayreuth, from 2023 to 2023, Micrometeorology group, Prof. Dr. Thomas, BayCEER, University of Bayreuth, 2024. Schlömer S., T. Bruckner, L. Fulton, E. Hertwich, A. McKinnon, D. Perczyk, J. Roy, R. Schaeffer, R. Sims, P. Smith, and R. Wiser, 2014: Annex III: Technology-specific cost and performance parameters. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Rosen (10.1016/j.enconman.2025.120132_b0095) 2008; 16 Huang (10.1016/j.enconman.2025.120132_b0020) 2024; 16 Yang (10.1016/j.enconman.2025.120132_b0115) 2023; 352 10.1016/j.enconman.2025.120132_b0130 10.1016/j.enconman.2025.120132_b0010 Griesbach (10.1016/j.enconman.2025.120132_b0120) 2022; 213 10.1016/j.enconman.2025.120132_b0150 Röder (10.1016/j.enconman.2025.120132_b0030) 2020; 13 10.1016/j.enconman.2025.120132_b0135 10.1016/j.enconman.2025.120132_b0055 Cheng (10.1016/j.enconman.2025.120132_b0110) 2019; 10 10.1016/j.enconman.2025.120132_b0155 Buchenau (10.1016/j.enconman.2025.120132_b0090) 2023; 4 Li (10.1016/j.enconman.2025.120132_b0035) 2024; 12 Holmberg (10.1016/j.enconman.2025.120132_b0105) 2012; 93 10.1016/j.enconman.2025.120132_b0080 Qu (10.1016/j.enconman.2025.120132_b0025) 2017; 200 Tranberg (10.1016/j.enconman.2025.120132_b0045) 2019; 26 Mancarella (10.1016/j.enconman.2025.120132_b0085) 2008; 33 Roux (10.1016/j.enconman.2025.120132_b0070) 2016; 113 10.1016/j.enconman.2025.120132_b0005 Khan (10.1016/j.enconman.2025.120132_b0015) 2018; 184 10.1016/j.enconman.2025.120132_b0040 Álvarez Flórez (10.1016/j.enconman.2025.120132_b0075) 2023; 294 10.1016/j.enconman.2025.120132_b0140 10.1016/j.enconman.2025.120132_b0145 Griesbach (10.1016/j.enconman.2025.120132_b0125) 2023; 287 10.1016/j.enconman.2025.120132_b0050 Noussan (10.1016/j.enconman.2025.120132_b0100) 2018; 173 Bontekoe (10.1016/j.enconman.2025.120132_b0060) 2024; 319 He (10.1016/j.enconman.2025.120132_b0065) 2023; 16 |
| References_xml | – volume: 26 year: 2019 ident: b0045 article-title: Real-time carbon accounting method for the European electricity markets publication-title: Energ Strat Rev – volume: 12 start-page: 2405 year: 2024 end-page: 2425 ident: b0035 article-title: Modeling and analysis method for carbon emission flow in integrated energy systems considering energy quality publication-title: Energy Sci Eng – reference: Li J, Zou N, Wu J, Yang Q. Low carbon optimal dispatching of power system considering carbon emission flow theory. In: 2022 9th International Forum on Electrical Engineering and Automation (IFEEA). IEEE; 2022, p. 532–536. – volume: 173 start-page: 516 year: 2018 end-page: 526 ident: b0100 article-title: Allocation factors in combined Heat and Power systems – Comparison of different methods in real applications publication-title: Energ Conver Manage – reference: Meteorological data at the Ecological Botanical Gardens, University of Bayreuth, from 2023 to 2023, Micrometeorology group, Prof. Dr. Thomas, BayCEER, University of Bayreuth, 2024. – reference: European Network of Transmission System Operators for Electricity. ENTSO-E; Available from: – volume: 33 start-page: 418 year: 2008 end-page: 430 ident: b0085 article-title: Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases publication-title: Energy – reference: , Accessed 24.02.2025. – volume: 294 year: 2023 ident: b0075 article-title: Hourly based methods to assess carbon footprint flexibility and primary energy use in decarbonized buildings publication-title: Energ Build – volume: 16 start-page: 5016 year: 2023 ident: b0065 article-title: Dynamic Accounting Model and Method for Carbon Emissions on the Power Grid Side publication-title: Energies – reference: Bundesnetzagentur. SMARD. (in German); Available from: – volume: 93 start-page: 614 year: 2012 end-page: 623 ident: b0105 article-title: Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill publication-title: Appl Energy – volume: 319 year: 2024 ident: b0060 article-title: On the discrepancy of using annual or hourly emission factors for power generation to estimate CO2 reduction of building retrofitting publication-title: Energ Buildings – reference: Stadtwerke Bayreuth. Abrechnungsbrennwerte im Netzgebiet der Stadtwerke Bayreuth. (in German); Available from: – volume: 287 year: 2023 ident: b0125 article-title: Multi-criteria assessment and optimization of ice-energy storage systems in combined heat and cold supply networks of a campus building publication-title: Energ Conver Manage – volume: 4 year: 2023 ident: b0090 article-title: Allocation of carbon dioxide emissions to the by-products of combined heat and power plants: a methodological guidance publication-title: Renew Sustain Energy Transition – reference: Chicco G, Mancarella P. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: models and indicators. Energy 2008;33(3):410–7. DOI: 10.1016/j.energy.2007.10.006. – volume: 200 start-page: 249 year: 2017 end-page: 259 ident: b0025 article-title: A Quasi-Input-output model to improve the estimation of emission factors for purchased electricity from interconnected grids publication-title: Appl Energy – volume: 352 year: 2023 ident: b0115 article-title: Mechanism and analytical methods for carbon emission-exergy flow distribution in heat-electricity integrated energy system publication-title: Appl Energy – volume: 213 year: 2022 ident: b0120 article-title: Numerical analysis of a combined heat pump ice energy storage system without solar benefit – Analytical validation and comparison with long term experimental data over one year publication-title: Appl Therm Eng – volume: 184 start-page: 1091 year: 2018 end-page: 1101 ident: b0015 article-title: Analysis of greenhouse gas emissions in electricity systems using time-varying carbon intensity publication-title: J Clean Prod – volume: 113 start-page: 532 year: 2016 end-page: 540 ident: b0070 article-title: Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house publication-title: J Clean Prod – reference: Umweltbundesamt. Treibhausgas-Projektionen 2024 – Ergebnisse kompakt. (in German); Available from: – volume: 16 start-page: 6483 year: 2024 ident: b0020 article-title: Dynamic calculation method for zonal carbon emissions in power systems based on the theory of production simulation and carbon emission flow theory publication-title: Sustainability – reference: Agora Energiewende. Energiewende und Dezentralität. Zu den Grundlagen einer politisierten Debatte. (in German); Available from: – reference: World Business Council for Sustainable Development, World Resources Institute. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard; Available from: – volume: 16 start-page: 171 year: 2008 end-page: 177 ident: b0095 article-title: Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods publication-title: J Clean Prod – volume: 10 start-page: 3562 year: 2019 end-page: 3574 ident: b0110 article-title: Modeling Carbon Emission Flow in Multiple Energy Systems publication-title: IEEE Trans Smart Grid – reference: Electricity Maps ApS. Electricity Maps; Available from: – volume: 13 start-page: 619 year: 2020 ident: b0030 article-title: Design of renewable and system-beneficial district heating systems using a dynamic emission factor for grid-sourced electricity publication-title: Energies – reference: Schlömer S., T. Bruckner, L. Fulton, E. Hertwich, A. McKinnon, D. Perczyk, J. Roy, R. Schaeffer, R. Sims, P. Smith, and R. Wiser, 2014: Annex III: Technology-specific cost and performance parameters. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. – reference: Raybaut P. Spyder IDE: The Scientific Python Development Environment. Spyder Project Contributors. – volume: 16 start-page: 6483 issue: 15 year: 2024 ident: 10.1016/j.enconman.2025.120132_b0020 article-title: Dynamic calculation method for zonal carbon emissions in power systems based on the theory of production simulation and carbon emission flow theory publication-title: Sustainability doi: 10.3390/su16156483 – ident: 10.1016/j.enconman.2025.120132_b0050 – ident: 10.1016/j.enconman.2025.120132_b0155 – ident: 10.1016/j.enconman.2025.120132_b0080 doi: 10.1016/j.energy.2007.10.006 – ident: 10.1016/j.enconman.2025.120132_b0130 – volume: 4 year: 2023 ident: 10.1016/j.enconman.2025.120132_b0090 article-title: Allocation of carbon dioxide emissions to the by-products of combined heat and power plants: a methodological guidance publication-title: Renew Sustain Energy Transition – volume: 200 start-page: 249 year: 2017 ident: 10.1016/j.enconman.2025.120132_b0025 article-title: A Quasi-Input-output model to improve the estimation of emission factors for purchased electricity from interconnected grids publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.05.046 – volume: 173 start-page: 516 year: 2018 ident: 10.1016/j.enconman.2025.120132_b0100 article-title: Allocation factors in combined Heat and Power systems – Comparison of different methods in real applications publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2018.07.103 – volume: 294 year: 2023 ident: 10.1016/j.enconman.2025.120132_b0075 article-title: Hourly based methods to assess carbon footprint flexibility and primary energy use in decarbonized buildings publication-title: Energ Build doi: 10.1016/j.enbuild.2023.113213 – ident: 10.1016/j.enconman.2025.120132_b0140 – volume: 93 start-page: 614 year: 2012 ident: 10.1016/j.enconman.2025.120132_b0105 article-title: Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.11.040 – ident: 10.1016/j.enconman.2025.120132_b0040 doi: 10.1109/IFEEA57288.2022.10037975 – volume: 33 start-page: 418 issue: 3 year: 2008 ident: 10.1016/j.enconman.2025.120132_b0085 article-title: Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases publication-title: Energy doi: 10.1016/j.energy.2007.10.008 – volume: 16 start-page: 171 issue: 2 year: 2008 ident: 10.1016/j.enconman.2025.120132_b0095 article-title: Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods publication-title: J Clean Prod doi: 10.1016/j.jclepro.2006.08.025 – ident: 10.1016/j.enconman.2025.120132_b0010 – volume: 287 year: 2023 ident: 10.1016/j.enconman.2025.120132_b0125 article-title: Multi-criteria assessment and optimization of ice-energy storage systems in combined heat and cold supply networks of a campus building publication-title: Energ Conver Manage doi: 10.1016/j.enconman.2023.117118 – volume: 10 start-page: 3562 issue: 4 year: 2019 ident: 10.1016/j.enconman.2025.120132_b0110 article-title: Modeling Carbon Emission Flow in Multiple Energy Systems publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2830775 – volume: 213 year: 2022 ident: 10.1016/j.enconman.2025.120132_b0120 article-title: Numerical analysis of a combined heat pump ice energy storage system without solar benefit – Analytical validation and comparison with long term experimental data over one year publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2022.118696 – volume: 12 start-page: 2405 issue: 6 year: 2024 ident: 10.1016/j.enconman.2025.120132_b0035 article-title: Modeling and analysis method for carbon emission flow in integrated energy systems considering energy quality publication-title: Energy Sci Eng doi: 10.1002/ese3.1747 – volume: 26 year: 2019 ident: 10.1016/j.enconman.2025.120132_b0045 article-title: Real-time carbon accounting method for the European electricity markets publication-title: Energ Strat Rev doi: 10.1016/j.esr.2019.100367 – ident: 10.1016/j.enconman.2025.120132_b0005 – ident: 10.1016/j.enconman.2025.120132_b0135 – ident: 10.1016/j.enconman.2025.120132_b0150 – volume: 113 start-page: 532 year: 2016 ident: 10.1016/j.enconman.2025.120132_b0070 article-title: Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house publication-title: J Clean Prod doi: 10.1016/j.jclepro.2015.11.052 – ident: 10.1016/j.enconman.2025.120132_b0145 – volume: 16 start-page: 5016 issue: 13 year: 2023 ident: 10.1016/j.enconman.2025.120132_b0065 article-title: Dynamic Accounting Model and Method for Carbon Emissions on the Power Grid Side publication-title: Energies doi: 10.3390/en16135016 – volume: 352 year: 2023 ident: 10.1016/j.enconman.2025.120132_b0115 article-title: Mechanism and analytical methods for carbon emission-exergy flow distribution in heat-electricity integrated energy system publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121980 – volume: 184 start-page: 1091 year: 2018 ident: 10.1016/j.enconman.2025.120132_b0015 article-title: Analysis of greenhouse gas emissions in electricity systems using time-varying carbon intensity publication-title: J Clean Prod doi: 10.1016/j.jclepro.2018.02.309 – ident: 10.1016/j.enconman.2025.120132_b0055 – volume: 13 start-page: 619 issue: 3 year: 2020 ident: 10.1016/j.enconman.2025.120132_b0030 article-title: Design of renewable and system-beneficial district heating systems using a dynamic emission factor for grid-sourced electricity publication-title: Energies doi: 10.3390/en13030619 – volume: 319 year: 2024 ident: 10.1016/j.enconman.2025.120132_b0060 article-title: On the discrepancy of using annual or hourly emission factors for power generation to estimate CO2 reduction of building retrofitting publication-title: Energ Buildings doi: 10.1016/j.enbuild.2024.114499 |
| SSID | ssj0003506 |
| Score | 2.4777226 |
| Snippet | •Dynamic accounting shows a deviation of 10% compared to conventional methods.•Quasi-Input-Output model enables time-dependent tracking of emission... Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 120132 |
| SubjectTerms | administrative management Bayreuth method carbon Carbon emission flow theory case studies Dynamic emission accounting electricity Emission allocation energy conversion heat Heat pump heat pumps hybrids Python Quasi-Input-Output (QIO) |
| Title | Dynamic accounting model with integrated emission allocation methods for coupled energy systems with combined heat and power plants and hybrid heat pumps |
| URI | https://dx.doi.org/10.1016/j.enconman.2025.120132 https://www.proquest.com/docview/3271854636 |
| Volume | 342 |
| WOSCitedRecordID | wos001530647000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0196-8904 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003506 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM8ID7FGCAj8ValtHGcxI_rPgRITEgMqW9RPmy20aVV0k7bT-GH8P-419dOBgMBQrxElZvYVe5pfOycew9jL3MpDTAFEaRGjAOYb02QYi3CIokqKSKT63JszSaSw8N0NlPvB4OvPhfmfJ7UdXpxoZb_NdTQBsHG1Nm_CHfXKTTAZwg6HCHscPyjwO-Rx_ww730grN0Nbbl25SGqITq9tVaNPMcZzQKBDKVtjYYhXL6c43mUHkg1n1svVj-DJTV8ic9yKjaAdmtoSo26Gmw4vsRkMDphCaBpv3sJQH1azXvTekn02TUtznTdfCYdga2C0KuFYIFf5GRj9Q4CuOj3dAvdkET6AMWFPfinVhQw3f0EIzhn6L2TTp3sNj5CWzCVUj9pN85n5PTyJ7tBquIgVWRp7J_wggp4XZstaOPidIQlQ2sYeoTDjCYhvn_q58dOtfgBO8e-gTYCc4vVDbYZJlLBfLC582Z_9rajAEJaU9fux1xJTf_5aL9iRT_wA0t6ju6yO261wncIZffYQNf32e0rNSwfsC8Ob7zHG7d44wgU3uONe7zxHm_c4Y0D3rjDGye8cYc36sbjjSOcOGCFW7xxwpttILzRCRZvD9nHg_2j3deB8_sISojQKpAayPA4NMk4LfJCKyGrqAAyJaXMVVxMdJinE5FUwHhLbaSWppI6FlUMC8RSR5F4xDbqRa0fM56WY4W1GI2c6KiMtSpMXOYmUnGkTKjVFnvl73e2pLIumdc7nmY-QhlGKKMIbTHlw5I5ckqkMwM0_fbaFz6OGdxqfCWX13qxbjMRAjdER4r4yT_0v81u9X-Qp2xj1az1M3azPF-dtM1zB85vIdPNwg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+accounting+model+with+integrated+emission+allocation+methods+for+coupled+energy+systems+with+combined+heat+and+power+plants+and+hybrid+heat+pumps&rft.jtitle=Energy+conversion+and+management&rft.au=Burkel%2C+Chris&rft.au=Griesbach%2C+Marco&rft.au=Heberle%2C+Florian&rft.au=Br%C3%BCggemann%2C+Dieter&rft.date=2025-10-15&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.volume=342&rft_id=info:doi/10.1016%2Fj.enconman.2025.120132&rft.externalDocID=S0196890425006569 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |