Dynamic accounting model with integrated emission allocation methods for coupled energy systems with combined heat and power plants and hybrid heat pumps

•Dynamic accounting shows a deviation of 10% compared to conventional methods.•Quasi-Input-Output model enables time-dependent tracking of emission flows.•Three emission allocation methods are integrated and extended to heat pumps.•Emission distribution across supply grids can differ by up to 69%.•N...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energy conversion and management Ročník 342; s. 120132
Hlavní autori: Burkel, Chris, Griesbach, Marco, Heberle, Florian, Brüggemann, Dieter, Jess, Andreas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.10.2025
Predmet:
ISSN:0196-8904
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Dynamic accounting shows a deviation of 10% compared to conventional methods.•Quasi-Input-Output model enables time-dependent tracking of emission flows.•Three emission allocation methods are integrated and extended to heat pumps.•Emission distribution across supply grids can differ by up to 69%.•New Bayreuth method is introduced for specific heat pump allocation. Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional accounting methods use only annual demand values and the average grid electricity mix, thereby neglecting dynamic energy and emission flows across the accounting boundary. Moreover, in cases of interconnected supply grids there is a time-dependent exchange of energy and emissions. In this work, a coupled energy system is considered in a dynamic perspective, which connects an electricity, heating and cooling grid through a combined heat and power unit (CHP) and a heat pump (HP) that provides heating and cooling energy at the same time. In order to map the behavior of the emission flows, a dynamic emission balance model is developed using Python. The framework is based on the carbon emission flow theory which is implemented via a Quasi-Input-Output (QIO) node system and uses measured data in an hourly resolution. The dynamic interchange between the grids is enabled by diverse CHP allocation methods that are integrated and applied to the HP. In addition, a method specific for HPs is presented as the Bayreuth method (BaM). The cumulative accounting demonstrates that the allocation methods influence the distribution between the grids, while the resolution determines the absorbed emissions from the public electricity grid. In the case study under consideration, this has the greatest impact on the cooling grid. There is a difference of up to 69% between the allocation methods and a resolution effect of up to 20%. The system’s overall balance is enhanced by around 10% due to a higher resolution in comparison with conventional methodologies. It is evident that dynamic balancing models offer a viable solution for accurately capturing the emissions of an energy system. The analysis of temporal emission flows enables seamless tracking and precise accounting results, even beyond the boundary limits. Furthermore, these models can be transferred to other existing systems and provide a framework for the optimization of energy management strategies, facilitating the temporal progression of the emission load.
AbstractList Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional accounting methods use only annual demand values and the average grid electricity mix, thereby neglecting dynamic energy and emission flows across the accounting boundary. Moreover, in cases of interconnected supply grids there is a time-dependent exchange of energy and emissions. In this work, a coupled energy system is considered in a dynamic perspective, which connects an electricity, heating and cooling grid through a combined heat and power unit (CHP) and a heat pump (HP) that provides heating and cooling energy at the same time. In order to map the behavior of the emission flows, a dynamic emission balance model is developed using Python. The framework is based on the carbon emission flow theory which is implemented via a Quasi-Input-Output (QIO) node system and uses measured data in an hourly resolution. The dynamic interchange between the grids is enabled by diverse CHP allocation methods that are integrated and applied to the HP. In addition, a method specific for HPs is presented as the Bayreuth method (BaM). The cumulative accounting demonstrates that the allocation methods influence the distribution between the grids, while the resolution determines the absorbed emissions from the public electricity grid. In the case study under consideration, this has the greatest impact on the cooling grid. There is a difference of up to 69% between the allocation methods and a resolution effect of up to 20%. The system’s overall balance is enhanced by around 10% due to a higher resolution in comparison with conventional methodologies. It is evident that dynamic balancing models offer a viable solution for accurately capturing the emissions of an energy system. The analysis of temporal emission flows enables seamless tracking and precise accounting results, even beyond the boundary limits. Furthermore, these models can be transferred to other existing systems and provide a framework for the optimization of energy management strategies, facilitating the temporal progression of the emission load.
•Dynamic accounting shows a deviation of 10% compared to conventional methods.•Quasi-Input-Output model enables time-dependent tracking of emission flows.•Three emission allocation methods are integrated and extended to heat pumps.•Emission distribution across supply grids can differ by up to 69%.•New Bayreuth method is introduced for specific heat pump allocation. Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional accounting methods use only annual demand values and the average grid electricity mix, thereby neglecting dynamic energy and emission flows across the accounting boundary. Moreover, in cases of interconnected supply grids there is a time-dependent exchange of energy and emissions. In this work, a coupled energy system is considered in a dynamic perspective, which connects an electricity, heating and cooling grid through a combined heat and power unit (CHP) and a heat pump (HP) that provides heating and cooling energy at the same time. In order to map the behavior of the emission flows, a dynamic emission balance model is developed using Python. The framework is based on the carbon emission flow theory which is implemented via a Quasi-Input-Output (QIO) node system and uses measured data in an hourly resolution. The dynamic interchange between the grids is enabled by diverse CHP allocation methods that are integrated and applied to the HP. In addition, a method specific for HPs is presented as the Bayreuth method (BaM). The cumulative accounting demonstrates that the allocation methods influence the distribution between the grids, while the resolution determines the absorbed emissions from the public electricity grid. In the case study under consideration, this has the greatest impact on the cooling grid. There is a difference of up to 69% between the allocation methods and a resolution effect of up to 20%. The system’s overall balance is enhanced by around 10% due to a higher resolution in comparison with conventional methodologies. It is evident that dynamic balancing models offer a viable solution for accurately capturing the emissions of an energy system. The analysis of temporal emission flows enables seamless tracking and precise accounting results, even beyond the boundary limits. Furthermore, these models can be transferred to other existing systems and provide a framework for the optimization of energy management strategies, facilitating the temporal progression of the emission load.
ArticleNumber 120132
Author Brüggemann, Dieter
Heberle, Florian
Jess, Andreas
Burkel, Chris
Griesbach, Marco
Author_xml – sequence: 1
  givenname: Chris
  orcidid: 0009-0005-4336-815X
  surname: Burkel
  fullname: Burkel, Chris
  email: chris.burkel@uni-bayreuth.de
  organization: Chair of Engineering Thermodynamics and Transport Processes (LTTT), University of Bayreuth, Bayreuth 95440, Germany
– sequence: 2
  givenname: Marco
  orcidid: 0000-0002-3105-1164
  surname: Griesbach
  fullname: Griesbach, Marco
  organization: Chair of Engineering Thermodynamics and Transport Processes (LTTT), University of Bayreuth, Bayreuth 95440, Germany
– sequence: 3
  givenname: Florian
  orcidid: 0000-0002-3997-0608
  surname: Heberle
  fullname: Heberle, Florian
  organization: Chair of Engineering Thermodynamics and Transport Processes (LTTT), University of Bayreuth, Bayreuth 95440, Germany
– sequence: 4
  givenname: Dieter
  surname: Brüggemann
  fullname: Brüggemann, Dieter
  organization: Chair of Engineering Thermodynamics and Transport Processes (LTTT), University of Bayreuth, Bayreuth 95440, Germany
– sequence: 5
  givenname: Andreas
  surname: Jess
  fullname: Jess, Andreas
  organization: Chair of Chemical Engineering (CVT), University of Bayreuth, Bayreuth 95440, Germany
BookMark eNqFkMtO5DAQRb0AaRqYXxh5OZtu_IidZDeI1yAhsYG15diVbrdiO2O7QfkU_pb0BNasqlR17lXVPUMnIQZA6BclG0qovNxvIJgYvA4bRpjYUEYoZydoRWgr101Lqh_oLOc9IYQLIlfo_WYK2juDtTHxEIoLW-yjhQG_ubLDLhTYJl3AYvAuZxcD1sMQjS7H1kPZRZtxHxOe5eNw5AKk7YTzlAv4vNiY6DsX5uUOdME6WDzGN0h4HHQo-f9gN3XJfQLjwY_5Ap32esjw87Oeo5e72-frv-vHp_uH66vHteEVK2sBTSUJ62vSdLqDlgtbdbJuhBC6lR0FphvKa0trYaAXIHorQHIra9YaqCp-jn4vvmOK_w6Qi5ofNTDMp0E8ZMVZTRtRSS5nVC6oSTHnBL0ak_M6TYoSdcxf7dVX_uqYv1ryn4V_FiHMj7w6SCobN5NgXQJTlI3uO4sPs7SZ3A
Cites_doi 10.3390/su16156483
10.1016/j.energy.2007.10.006
10.1016/j.apenergy.2017.05.046
10.1016/j.enconman.2018.07.103
10.1016/j.enbuild.2023.113213
10.1016/j.apenergy.2011.11.040
10.1109/IFEEA57288.2022.10037975
10.1016/j.energy.2007.10.008
10.1016/j.jclepro.2006.08.025
10.1016/j.enconman.2023.117118
10.1109/TSG.2018.2830775
10.1016/j.applthermaleng.2022.118696
10.1002/ese3.1747
10.1016/j.esr.2019.100367
10.1016/j.jclepro.2015.11.052
10.3390/en16135016
10.1016/j.apenergy.2023.121980
10.1016/j.jclepro.2018.02.309
10.3390/en13030619
10.1016/j.enbuild.2024.114499
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.enconman.2025.120132
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_enconman_2025_120132
S0196890425006569
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACLOT
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
~HD
29G
6TJ
8WZ
9DU
A6W
AAQXK
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
WUQ
7S9
L.6
ID FETCH-LOGICAL-c342t-5e84602f708babe935d4b678555a96b1e2a8137d175cef5e5fd5e63d6729ce443
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001530647000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0196-8904
IngestDate Fri Nov 14 18:41:16 EST 2025
Sat Nov 29 07:22:17 EST 2025
Sat Nov 01 17:22:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Carbon emission flow theory
Dynamic emission accounting
Emission allocation
Heat pump
Bayreuth method
Quasi-Input-Output (QIO)
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-5e84602f708babe935d4b678555a96b1e2a8137d175cef5e5fd5e63d6729ce443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3105-1164
0009-0005-4336-815X
0000-0002-3997-0608
OpenAccessLink https://dx.doi.org/10.1016/j.enconman.2025.120132
PQID 3271854636
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3271854636
crossref_primary_10_1016_j_enconman_2025_120132
elsevier_sciencedirect_doi_10_1016_j_enconman_2025_120132
PublicationCentury 2000
PublicationDate 2025-10-15
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy conversion and management
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References He, Zhou, Zhang, Zhao, Xiao (b0065) 2023; 16
Electricity Maps ApS. Electricity Maps; Available from
Griesbach, König-Haagen, Brüggemann (b0120) 2022; 213
World Business Council for Sustainable Development, World Resources Institute. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard; Available from
Bontekoe, Schade, Erikkson, Tsarchopoulos, Lampropoulos, van Sark (b0060) 2024; 319
Bundesnetzagentur. SMARD. (in German); Available from
Khan, Jack, Stephenson (b0015) 2018; 184
Röder, Beier, Meyer, Nettelstroth, Stührmann, Zondervan (b0030) 2020; 13
Álvarez Flórez, Péan, Salom (b0075) 2023; 294
Agora Energiewende. Energiewende und Dezentralität. Zu den Grundlagen einer politisierten Debatte. (in German); Available from
Li J, Zou N, Wu J, Yang Q. Low carbon optimal dispatching of power system considering carbon emission flow theory. In: 2022 9th International Forum on Electrical Engineering and Automation (IFEEA). IEEE; 2022, p. 532–536.
Rosen (b0095) 2008; 16
Griesbach, König-Haagen, Heberle, Brüggemann (b0125) 2023; 287
Accessed 24.02.2025.
Holmberg, Tuomaala, Haikonen, Ahtila (b0105) 2012; 93
Mancarella, Chicco (b0085) 2008; 33
Li, Zhou, Wen, Zhang, Wen, Huang (b0035) 2024; 12
Qu, Wang, Liang, Shapiro, Suh, Sheldon (b0025) 2017; 200
Chicco G, Mancarella P. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: models and indicators. Energy 2008;33(3):410–7. DOI: 10.1016/j.energy.2007.10.006.
Huang, Jiang, Luo, Li, Lu (b0020) 2024; 16
Yang, Huang, Zhang, Zhao (b0115) 2023; 352
Umweltbundesamt. Treibhausgas-Projektionen 2024 – Ergebnisse kompakt. (in German); Available from
Cheng, Zhang, Wang, Yang, Kang, Xia (b0110) 2019; 10
Tranberg, Corradi, Lajoie, Gibon, Staffell, Andresen (b0045) 2019; 26
Stadtwerke Bayreuth. Abrechnungsbrennwerte im Netzgebiet der Stadtwerke Bayreuth. (in German); Available from
Raybaut P. Spyder IDE: The Scientific Python Development Environment. Spyder Project Contributors.
Roux, Schalbart, Peuportier (b0070) 2016; 113
European Network of Transmission System Operators for Electricity. ENTSO-E; Available from
Noussan (b0100) 2018; 173
Buchenau, Hannen, Holzapfel, Finkbeiner, Hesselbach (b0090) 2023; 4
Meteorological data at the Ecological Botanical Gardens, University of Bayreuth, from 2023 to 2023, Micrometeorology group, Prof. Dr. Thomas, BayCEER, University of Bayreuth, 2024.
Schlömer S., T. Bruckner, L. Fulton, E. Hertwich, A. McKinnon, D. Perczyk, J. Roy, R. Schaeffer, R. Sims, P. Smith, and R. Wiser, 2014: Annex III: Technology-specific cost and performance parameters. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Rosen (10.1016/j.enconman.2025.120132_b0095) 2008; 16
Huang (10.1016/j.enconman.2025.120132_b0020) 2024; 16
Yang (10.1016/j.enconman.2025.120132_b0115) 2023; 352
10.1016/j.enconman.2025.120132_b0130
10.1016/j.enconman.2025.120132_b0010
Griesbach (10.1016/j.enconman.2025.120132_b0120) 2022; 213
10.1016/j.enconman.2025.120132_b0150
Röder (10.1016/j.enconman.2025.120132_b0030) 2020; 13
10.1016/j.enconman.2025.120132_b0135
10.1016/j.enconman.2025.120132_b0055
Cheng (10.1016/j.enconman.2025.120132_b0110) 2019; 10
10.1016/j.enconman.2025.120132_b0155
Buchenau (10.1016/j.enconman.2025.120132_b0090) 2023; 4
Li (10.1016/j.enconman.2025.120132_b0035) 2024; 12
Holmberg (10.1016/j.enconman.2025.120132_b0105) 2012; 93
10.1016/j.enconman.2025.120132_b0080
Qu (10.1016/j.enconman.2025.120132_b0025) 2017; 200
Tranberg (10.1016/j.enconman.2025.120132_b0045) 2019; 26
Mancarella (10.1016/j.enconman.2025.120132_b0085) 2008; 33
Roux (10.1016/j.enconman.2025.120132_b0070) 2016; 113
10.1016/j.enconman.2025.120132_b0005
Khan (10.1016/j.enconman.2025.120132_b0015) 2018; 184
10.1016/j.enconman.2025.120132_b0040
Álvarez Flórez (10.1016/j.enconman.2025.120132_b0075) 2023; 294
10.1016/j.enconman.2025.120132_b0140
10.1016/j.enconman.2025.120132_b0145
Griesbach (10.1016/j.enconman.2025.120132_b0125) 2023; 287
10.1016/j.enconman.2025.120132_b0050
Noussan (10.1016/j.enconman.2025.120132_b0100) 2018; 173
Bontekoe (10.1016/j.enconman.2025.120132_b0060) 2024; 319
He (10.1016/j.enconman.2025.120132_b0065) 2023; 16
References_xml – volume: 26
  year: 2019
  ident: b0045
  article-title: Real-time carbon accounting method for the European electricity markets
  publication-title: Energ Strat Rev
– volume: 12
  start-page: 2405
  year: 2024
  end-page: 2425
  ident: b0035
  article-title: Modeling and analysis method for carbon emission flow in integrated energy systems considering energy quality
  publication-title: Energy Sci Eng
– reference: Li J, Zou N, Wu J, Yang Q. Low carbon optimal dispatching of power system considering carbon emission flow theory. In: 2022 9th International Forum on Electrical Engineering and Automation (IFEEA). IEEE; 2022, p. 532–536.
– volume: 173
  start-page: 516
  year: 2018
  end-page: 526
  ident: b0100
  article-title: Allocation factors in combined Heat and Power systems – Comparison of different methods in real applications
  publication-title: Energ Conver Manage
– reference: Meteorological data at the Ecological Botanical Gardens, University of Bayreuth, from 2023 to 2023, Micrometeorology group, Prof. Dr. Thomas, BayCEER, University of Bayreuth, 2024.
– reference: European Network of Transmission System Operators for Electricity. ENTSO-E; Available from:
– volume: 33
  start-page: 418
  year: 2008
  end-page: 430
  ident: b0085
  article-title: Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases
  publication-title: Energy
– reference: , Accessed 24.02.2025.
– volume: 294
  year: 2023
  ident: b0075
  article-title: Hourly based methods to assess carbon footprint flexibility and primary energy use in decarbonized buildings
  publication-title: Energ Build
– volume: 16
  start-page: 5016
  year: 2023
  ident: b0065
  article-title: Dynamic Accounting Model and Method for Carbon Emissions on the Power Grid Side
  publication-title: Energies
– reference: Bundesnetzagentur. SMARD. (in German); Available from:
– volume: 93
  start-page: 614
  year: 2012
  end-page: 623
  ident: b0105
  article-title: Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill
  publication-title: Appl Energy
– volume: 319
  year: 2024
  ident: b0060
  article-title: On the discrepancy of using annual or hourly emission factors for power generation to estimate CO2 reduction of building retrofitting
  publication-title: Energ Buildings
– reference: Stadtwerke Bayreuth. Abrechnungsbrennwerte im Netzgebiet der Stadtwerke Bayreuth. (in German); Available from:
– volume: 287
  year: 2023
  ident: b0125
  article-title: Multi-criteria assessment and optimization of ice-energy storage systems in combined heat and cold supply networks of a campus building
  publication-title: Energ Conver Manage
– volume: 4
  year: 2023
  ident: b0090
  article-title: Allocation of carbon dioxide emissions to the by-products of combined heat and power plants: a methodological guidance
  publication-title: Renew Sustain Energy Transition
– reference: Chicco G, Mancarella P. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: models and indicators. Energy 2008;33(3):410–7. DOI: 10.1016/j.energy.2007.10.006.
– volume: 200
  start-page: 249
  year: 2017
  end-page: 259
  ident: b0025
  article-title: A Quasi-Input-output model to improve the estimation of emission factors for purchased electricity from interconnected grids
  publication-title: Appl Energy
– volume: 352
  year: 2023
  ident: b0115
  article-title: Mechanism and analytical methods for carbon emission-exergy flow distribution in heat-electricity integrated energy system
  publication-title: Appl Energy
– volume: 213
  year: 2022
  ident: b0120
  article-title: Numerical analysis of a combined heat pump ice energy storage system without solar benefit – Analytical validation and comparison with long term experimental data over one year
  publication-title: Appl Therm Eng
– volume: 184
  start-page: 1091
  year: 2018
  end-page: 1101
  ident: b0015
  article-title: Analysis of greenhouse gas emissions in electricity systems using time-varying carbon intensity
  publication-title: J Clean Prod
– volume: 113
  start-page: 532
  year: 2016
  end-page: 540
  ident: b0070
  article-title: Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house
  publication-title: J Clean Prod
– reference: Umweltbundesamt. Treibhausgas-Projektionen 2024 – Ergebnisse kompakt. (in German); Available from:
– volume: 16
  start-page: 6483
  year: 2024
  ident: b0020
  article-title: Dynamic calculation method for zonal carbon emissions in power systems based on the theory of production simulation and carbon emission flow theory
  publication-title: Sustainability
– reference: Agora Energiewende. Energiewende und Dezentralität. Zu den Grundlagen einer politisierten Debatte. (in German); Available from:
– reference: World Business Council for Sustainable Development, World Resources Institute. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard; Available from:
– volume: 16
  start-page: 171
  year: 2008
  end-page: 177
  ident: b0095
  article-title: Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods
  publication-title: J Clean Prod
– volume: 10
  start-page: 3562
  year: 2019
  end-page: 3574
  ident: b0110
  article-title: Modeling Carbon Emission Flow in Multiple Energy Systems
  publication-title: IEEE Trans Smart Grid
– reference: Electricity Maps ApS. Electricity Maps; Available from:
– volume: 13
  start-page: 619
  year: 2020
  ident: b0030
  article-title: Design of renewable and system-beneficial district heating systems using a dynamic emission factor for grid-sourced electricity
  publication-title: Energies
– reference: Schlömer S., T. Bruckner, L. Fulton, E. Hertwich, A. McKinnon, D. Perczyk, J. Roy, R. Schaeffer, R. Sims, P. Smith, and R. Wiser, 2014: Annex III: Technology-specific cost and performance parameters. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
– reference: Raybaut P. Spyder IDE: The Scientific Python Development Environment. Spyder Project Contributors.
– volume: 16
  start-page: 6483
  issue: 15
  year: 2024
  ident: 10.1016/j.enconman.2025.120132_b0020
  article-title: Dynamic calculation method for zonal carbon emissions in power systems based on the theory of production simulation and carbon emission flow theory
  publication-title: Sustainability
  doi: 10.3390/su16156483
– ident: 10.1016/j.enconman.2025.120132_b0050
– ident: 10.1016/j.enconman.2025.120132_b0155
– ident: 10.1016/j.enconman.2025.120132_b0080
  doi: 10.1016/j.energy.2007.10.006
– ident: 10.1016/j.enconman.2025.120132_b0130
– volume: 4
  year: 2023
  ident: 10.1016/j.enconman.2025.120132_b0090
  article-title: Allocation of carbon dioxide emissions to the by-products of combined heat and power plants: a methodological guidance
  publication-title: Renew Sustain Energy Transition
– volume: 200
  start-page: 249
  year: 2017
  ident: 10.1016/j.enconman.2025.120132_b0025
  article-title: A Quasi-Input-output model to improve the estimation of emission factors for purchased electricity from interconnected grids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.046
– volume: 173
  start-page: 516
  year: 2018
  ident: 10.1016/j.enconman.2025.120132_b0100
  article-title: Allocation factors in combined Heat and Power systems – Comparison of different methods in real applications
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2018.07.103
– volume: 294
  year: 2023
  ident: 10.1016/j.enconman.2025.120132_b0075
  article-title: Hourly based methods to assess carbon footprint flexibility and primary energy use in decarbonized buildings
  publication-title: Energ Build
  doi: 10.1016/j.enbuild.2023.113213
– ident: 10.1016/j.enconman.2025.120132_b0140
– volume: 93
  start-page: 614
  year: 2012
  ident: 10.1016/j.enconman.2025.120132_b0105
  article-title: Allocation of fuel costs and CO2-emissions to heat and power in an industrial CHP plant: Case integrated pulp and paper mill
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.11.040
– ident: 10.1016/j.enconman.2025.120132_b0040
  doi: 10.1109/IFEEA57288.2022.10037975
– volume: 33
  start-page: 418
  issue: 3
  year: 2008
  ident: 10.1016/j.enconman.2025.120132_b0085
  article-title: Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: Analysis techniques and application cases
  publication-title: Energy
  doi: 10.1016/j.energy.2007.10.008
– volume: 16
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.enconman.2025.120132_b0095
  article-title: Allocating carbon dioxide emissions from cogeneration systems: descriptions of selected output-based methods
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2006.08.025
– ident: 10.1016/j.enconman.2025.120132_b0010
– volume: 287
  year: 2023
  ident: 10.1016/j.enconman.2025.120132_b0125
  article-title: Multi-criteria assessment and optimization of ice-energy storage systems in combined heat and cold supply networks of a campus building
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2023.117118
– volume: 10
  start-page: 3562
  issue: 4
  year: 2019
  ident: 10.1016/j.enconman.2025.120132_b0110
  article-title: Modeling Carbon Emission Flow in Multiple Energy Systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2830775
– volume: 213
  year: 2022
  ident: 10.1016/j.enconman.2025.120132_b0120
  article-title: Numerical analysis of a combined heat pump ice energy storage system without solar benefit – Analytical validation and comparison with long term experimental data over one year
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2022.118696
– volume: 12
  start-page: 2405
  issue: 6
  year: 2024
  ident: 10.1016/j.enconman.2025.120132_b0035
  article-title: Modeling and analysis method for carbon emission flow in integrated energy systems considering energy quality
  publication-title: Energy Sci Eng
  doi: 10.1002/ese3.1747
– volume: 26
  year: 2019
  ident: 10.1016/j.enconman.2025.120132_b0045
  article-title: Real-time carbon accounting method for the European electricity markets
  publication-title: Energ Strat Rev
  doi: 10.1016/j.esr.2019.100367
– ident: 10.1016/j.enconman.2025.120132_b0005
– ident: 10.1016/j.enconman.2025.120132_b0135
– ident: 10.1016/j.enconman.2025.120132_b0150
– volume: 113
  start-page: 532
  year: 2016
  ident: 10.1016/j.enconman.2025.120132_b0070
  article-title: Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2015.11.052
– ident: 10.1016/j.enconman.2025.120132_b0145
– volume: 16
  start-page: 5016
  issue: 13
  year: 2023
  ident: 10.1016/j.enconman.2025.120132_b0065
  article-title: Dynamic Accounting Model and Method for Carbon Emissions on the Power Grid Side
  publication-title: Energies
  doi: 10.3390/en16135016
– volume: 352
  year: 2023
  ident: 10.1016/j.enconman.2025.120132_b0115
  article-title: Mechanism and analytical methods for carbon emission-exergy flow distribution in heat-electricity integrated energy system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2023.121980
– volume: 184
  start-page: 1091
  year: 2018
  ident: 10.1016/j.enconman.2025.120132_b0015
  article-title: Analysis of greenhouse gas emissions in electricity systems using time-varying carbon intensity
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2018.02.309
– ident: 10.1016/j.enconman.2025.120132_b0055
– volume: 13
  start-page: 619
  issue: 3
  year: 2020
  ident: 10.1016/j.enconman.2025.120132_b0030
  article-title: Design of renewable and system-beneficial district heating systems using a dynamic emission factor for grid-sourced electricity
  publication-title: Energies
  doi: 10.3390/en13030619
– volume: 319
  year: 2024
  ident: 10.1016/j.enconman.2025.120132_b0060
  article-title: On the discrepancy of using annual or hourly emission factors for power generation to estimate CO2 reduction of building retrofitting
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2024.114499
SSID ssj0003506
Score 2.4777226
Snippet •Dynamic accounting shows a deviation of 10% compared to conventional methods.•Quasi-Input-Output model enables time-dependent tracking of emission...
Detailed emission accounting methods are becoming increasingly important as a measurement tool for the decarbonization of energy systems. Conventional...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 120132
SubjectTerms administrative management
Bayreuth method
carbon
Carbon emission flow theory
case studies
Dynamic emission accounting
electricity
Emission allocation
energy conversion
heat
Heat pump
heat pumps
hybrids
Python
Quasi-Input-Output (QIO)
Title Dynamic accounting model with integrated emission allocation methods for coupled energy systems with combined heat and power plants and hybrid heat pumps
URI https://dx.doi.org/10.1016/j.enconman.2025.120132
https://www.proquest.com/docview/3271854636
Volume 342
WOSCitedRecordID wos001530647000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0196-8904
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003506
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM8ID7FGCAj8ValtHGcxI_rPgRITEgMqW9RPmy20aVV0k7bT-GH8P-419dOBgMBQrxElZvYVe5pfOycew9jL3MpDTAFEaRGjAOYb02QYi3CIokqKSKT63JszSaSw8N0NlPvB4OvPhfmfJ7UdXpxoZb_NdTQBsHG1Nm_CHfXKTTAZwg6HCHscPyjwO-Rx_ww730grN0Nbbl25SGqITq9tVaNPMcZzQKBDKVtjYYhXL6c43mUHkg1n1svVj-DJTV8ic9yKjaAdmtoSo26Gmw4vsRkMDphCaBpv3sJQH1azXvTekn02TUtznTdfCYdga2C0KuFYIFf5GRj9Q4CuOj3dAvdkET6AMWFPfinVhQw3f0EIzhn6L2TTp3sNj5CWzCVUj9pN85n5PTyJ7tBquIgVWRp7J_wggp4XZstaOPidIQlQ2sYeoTDjCYhvn_q58dOtfgBO8e-gTYCc4vVDbYZJlLBfLC582Z_9rajAEJaU9fux1xJTf_5aL9iRT_wA0t6ju6yO261wncIZffYQNf32e0rNSwfsC8Ob7zHG7d44wgU3uONe7zxHm_c4Y0D3rjDGye8cYc36sbjjSOcOGCFW7xxwpttILzRCRZvD9nHg_2j3deB8_sISojQKpAayPA4NMk4LfJCKyGrqAAyJaXMVVxMdJinE5FUwHhLbaSWppI6FlUMC8RSR5F4xDbqRa0fM56WY4W1GI2c6KiMtSpMXOYmUnGkTKjVFnvl73e2pLIumdc7nmY-QhlGKKMIbTHlw5I5ckqkMwM0_fbaFz6OGdxqfCWX13qxbjMRAjdER4r4yT_0v81u9X-Qp2xj1az1M3azPF-dtM1zB85vIdPNwg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+accounting+model+with+integrated+emission+allocation+methods+for+coupled+energy+systems+with+combined+heat+and+power+plants+and+hybrid+heat+pumps&rft.jtitle=Energy+conversion+and+management&rft.au=Burkel%2C+Chris&rft.au=Griesbach%2C+Marco&rft.au=Heberle%2C+Florian&rft.au=Br%C3%BCggemann%2C+Dieter&rft.date=2025-10-15&rft.pub=Elsevier+Ltd&rft.issn=0196-8904&rft.volume=342&rft_id=info:doi/10.1016%2Fj.enconman.2025.120132&rft.externalDocID=S0196890425006569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon