A hybrid decomposition and Machine learning model for forecasting Chlorophyll-a and total nitrogen concentration in coastal waters

•A hybrid model named CVXS was proposed to forecast the ChlA and TN concentrations.•Machine learning was integrated with decomposition algorithms in the CVXS model.•The superiority of the CVXS model over the other models was examined.•The mechanism of the CVXS model for water quality forecasting was...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrology (Amsterdam) Ročník 619; s. 129207
Hlavní autoři: Zhu, Xiaotong, Guo, Hongwei, Huang, Jinhui Jeanne, Tian, Shang, Zhang, Zijie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2023
Témata:
ISSN:0022-1694, 1879-2707
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A hybrid model named CVXS was proposed to forecast the ChlA and TN concentrations.•Machine learning was integrated with decomposition algorithms in the CVXS model.•The superiority of the CVXS model over the other models was examined.•The mechanism of the CVXS model for water quality forecasting was explained.•The Long-term forecasting ability of the CVXS model was verified. Information regarding Chlorophyll-a (ChlA) and total nitrogen (TN) is critical for early warning of algal blooms. However, reliable models for accurate forecasting of the ChlA and TN are still lacking due to the optical complexity of coastal waters. To address this issue, we proposed a novel hybrid model named the CEEMDAN-VMD-XGBOOST-SARIMA (CVXS) model to forecast ChlA and TN concentrations. The model performance was validated at three hydrological monitoring stations in Hong Kong, China. Four independent models including extreme gradient boosting (XGBoost), support vector regression (SVR), deep learning (DL), and Seasonal autoregressive integrated moving average (SARIMA), and three hybrid models including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-XGBoost, CEEMDAN-SVR, and CEEMDAN-DL were developed to compare their performance with the CVXS model. In addition, the physical mechanisms of the CVXS model were further explored through correlation analysis between the decomposed time series of water quality parameters. The result indicated that (1) the CVXS model had the best accuracy among all models for forecasting ChlA and TN, and all the NSEs remained above 0.97 at three hydrological monitoring stations. For forecasting ChlA, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > DL > SARIMA > SVR. For forecasting TN, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > SVR > SARIMA > DL; (2) the optimal forecasting time horizons of the CVXS model were one to two months; and (3) the variability of ChlA and TN concentrations induced by hydrologic factors has been inherently embedded in the decomposed time series data, thus providing the theoretical basis for the CVXS model forecasting water quality parameters. The results of this study are promising with respect to forecasting algal blooms and coastal water resource management.
AbstractList Information regarding Chlorophyll-a (ChlA) and total nitrogen (TN) is critical for early warning of algal blooms. However, reliable models for accurate forecasting of the ChlA and TN are still lacking due to the optical complexity of coastal waters. To address this issue, we proposed a novel hybrid model named the CEEMDAN-VMD-XGBOOST-SARIMA (CVXS) model to forecast ChlA and TN concentrations. The model performance was validated at three hydrological monitoring stations in Hong Kong, China. Four independent models including extreme gradient boosting (XGBoost), support vector regression (SVR), deep learning (DL), and Seasonal autoregressive integrated moving average (SARIMA), and three hybrid models including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-XGBoost, CEEMDAN-SVR, and CEEMDAN-DL were developed to compare their performance with the CVXS model. In addition, the physical mechanisms of the CVXS model were further explored through correlation analysis between the decomposed time series of water quality parameters. The result indicated that (1) the CVXS model had the best accuracy among all models for forecasting ChlA and TN, and all the NSEs remained above 0.97 at three hydrological monitoring stations. For forecasting ChlA, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > DL > SARIMA > SVR. For forecasting TN, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > SVR > SARIMA > DL; (2) the optimal forecasting time horizons of the CVXS model were one to two months; and (3) the variability of ChlA and TN concentrations induced by hydrologic factors has been inherently embedded in the decomposed time series data, thus providing the theoretical basis for the CVXS model forecasting water quality parameters. The results of this study are promising with respect to forecasting algal blooms and coastal water resource management.
•A hybrid model named CVXS was proposed to forecast the ChlA and TN concentrations.•Machine learning was integrated with decomposition algorithms in the CVXS model.•The superiority of the CVXS model over the other models was examined.•The mechanism of the CVXS model for water quality forecasting was explained.•The Long-term forecasting ability of the CVXS model was verified. Information regarding Chlorophyll-a (ChlA) and total nitrogen (TN) is critical for early warning of algal blooms. However, reliable models for accurate forecasting of the ChlA and TN are still lacking due to the optical complexity of coastal waters. To address this issue, we proposed a novel hybrid model named the CEEMDAN-VMD-XGBOOST-SARIMA (CVXS) model to forecast ChlA and TN concentrations. The model performance was validated at three hydrological monitoring stations in Hong Kong, China. Four independent models including extreme gradient boosting (XGBoost), support vector regression (SVR), deep learning (DL), and Seasonal autoregressive integrated moving average (SARIMA), and three hybrid models including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-XGBoost, CEEMDAN-SVR, and CEEMDAN-DL were developed to compare their performance with the CVXS model. In addition, the physical mechanisms of the CVXS model were further explored through correlation analysis between the decomposed time series of water quality parameters. The result indicated that (1) the CVXS model had the best accuracy among all models for forecasting ChlA and TN, and all the NSEs remained above 0.97 at three hydrological monitoring stations. For forecasting ChlA, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > DL > SARIMA > SVR. For forecasting TN, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > SVR > SARIMA > DL; (2) the optimal forecasting time horizons of the CVXS model were one to two months; and (3) the variability of ChlA and TN concentrations induced by hydrologic factors has been inherently embedded in the decomposed time series data, thus providing the theoretical basis for the CVXS model forecasting water quality parameters. The results of this study are promising with respect to forecasting algal blooms and coastal water resource management.
ArticleNumber 129207
Author Zhu, Xiaotong
Guo, Hongwei
Huang, Jinhui Jeanne
Zhang, Zijie
Tian, Shang
Author_xml – sequence: 1
  givenname: Xiaotong
  surname: Zhu
  fullname: Zhu, Xiaotong
– sequence: 2
  givenname: Hongwei
  surname: Guo
  fullname: Guo, Hongwei
– sequence: 3
  givenname: Jinhui Jeanne
  surname: Huang
  fullname: Huang, Jinhui Jeanne
– sequence: 4
  givenname: Shang
  surname: Tian
  fullname: Tian, Shang
– sequence: 5
  givenname: Zijie
  surname: Zhang
  fullname: Zhang, Zijie
BookMark eNqFkE1rGzEQhkVJoU7an1DQMZd19bFa79JDCSZpAym95C6U0axXRpYcSWnwNb-8WtunXiIQguF9ZjTPJbkIMSAhXzlbcsa7b9vldjrYFP1SMCGXXAyCrT6QBe9XQyNWbHVBFowJ0fBuaD-Ry5y3rB4p2wV5u6HT4Sk5Sy1C3O1jdsXFQE2w9LeByQWkHk0KLmzoLlr0dIxpvggml7m6nnxMcT8dvG_MESyxGE-DKyluMFCIATCUZI6d3VyoaE28moIpfyYfR-Mzfjm_V-Tx7vZx_at5-PPzfn3z0IBsRWlUr-xTDzCgxQ5ba4SyWHeQHAGk7VWrTKe6Ee1oVDtgB2PfjwO0UkkwSl6R61PbfYrPL5iL3rkM6L0JGF-yFn0dw0Wrhhr9fopCijknHDW4cvx9XcJ5zZmexeutPovXs3h9El9p9R-9T25n0uFd7seJwyrhr8OkMzis6qyrsou20b3T4R8baabF
CitedBy_id crossref_primary_10_1016_j_scs_2024_105508
crossref_primary_10_1016_j_desal_2025_118880
crossref_primary_10_1016_j_watres_2024_121673
crossref_primary_10_1016_j_envsoft_2025_106575
crossref_primary_10_3390_w16213099
crossref_primary_10_1016_j_envsoft_2025_106412
crossref_primary_10_1007_s11600_023_01240_z
crossref_primary_10_1016_j_marpolbul_2024_117263
crossref_primary_10_1016_j_jenvman_2025_125146
crossref_primary_10_1016_j_jhydrol_2024_131297
crossref_primary_10_1016_j_ecolind_2025_113244
crossref_primary_10_1016_j_jenvman_2024_121463
crossref_primary_10_1038_s41467_025_62901_9
crossref_primary_10_3390_atmos16050535
crossref_primary_10_1016_j_compag_2024_109439
crossref_primary_10_1016_j_watres_2024_122160
crossref_primary_10_3389_feart_2023_1229704
crossref_primary_10_3390_machines11050539
crossref_primary_10_1007_s11802_025_5833_z
crossref_primary_10_1016_j_envsoft_2024_106091
crossref_primary_10_3390_app15115957
crossref_primary_10_1016_j_scitotenv_2023_169253
crossref_primary_10_1016_j_jhydrol_2025_133927
crossref_primary_10_1016_j_watres_2025_123800
crossref_primary_10_1016_j_envsoft_2025_106560
crossref_primary_10_1016_j_envpol_2025_126801
crossref_primary_10_1016_j_jhydrol_2023_130034
crossref_primary_10_1016_j_envres_2024_119254
crossref_primary_10_1016_j_ecoinf_2025_103337
crossref_primary_10_1016_j_envres_2024_118267
crossref_primary_10_1016_j_scitotenv_2024_175451
crossref_primary_10_3390_w16243615
crossref_primary_10_1007_s11356_023_31148_6
crossref_primary_10_3390_app14052200
crossref_primary_10_1016_j_jag_2024_103971
crossref_primary_10_1029_2023WR035676
crossref_primary_10_1109_TGRS_2024_3451999
crossref_primary_10_1007_s11227_024_06806_2
crossref_primary_10_3390_su151411275
crossref_primary_10_1007_s11269_023_03566_1
crossref_primary_10_1016_j_ecoinf_2025_103061
crossref_primary_10_1109_TIM_2025_3578690
crossref_primary_10_1093_inteam_vjae034
Cites_doi 10.13031/trans.58.10715
10.1155/2022/9415863
10.1016/j.renene.2020.09.141
10.1038/s41561-021-00887-x
10.1007/s10661-021-09127-6
10.1080/15481603.2014.900983
10.1016/j.ecolmodel.2005.03.018
10.1016/j.hal.2019.101702
10.1007/s11356-021-13086-3
10.3390/rs12091412
10.1016/j.envpol.2021.117489
10.1016/j.rse.2020.112200
10.1109/TGRS.2020.3016473
10.1016/j.jhydrol.2019.123915
10.1016/j.isprsjprs.2021.11.023
10.1016/j.scitotenv.2018.05.215
10.1016/j.compeleceng.2015.10.003
10.1109/ICASSP.2011.5947265
10.1098/rspa.1998.0193
10.1016/j.marpolbul.2008.05.021
10.1061/(ASCE)0733-9496(2003)129:4(307)
10.1016/j.scitotenv.2019.135760
10.1016/j.marpolbul.2017.04.027
10.1016/j.rse.2015.01.023
10.1109/TNN.1997.641482
10.1016/j.jhydrol.2015.11.037
10.3390/w12010030
10.1016/j.ijforecast.2010.09.003
10.1007/s11269-020-02483-x
10.1016/j.marpolbul.2008.01.027
10.1016/j.marpolbul.2020.110889
10.1016/j.jes.2016.07.017
10.1016/j.jclepro.2019.119134
10.1061/(ASCE)HE.1943-5584.0001794
10.3390/en9120989
10.1073/pnas.1216006110
10.1080/19942060.2018.1553742
10.1016/j.hal.2015.01.002
10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2
10.2166/ws.2021.123
10.1007/s12665-022-10380-2
10.1016/j.csr.2018.04.012
10.1016/j.envsoft.2014.02.006
10.1016/j.envsoft.2020.104954
10.1016/j.jclepro.2006.07.047
10.1016/j.jconhyd.2022.104078
10.1016/j.scitotenv.2018.08.221
10.1016/j.jmarsys.2006.02.010
10.1016/j.renene.2019.01.006
10.1016/j.scitotenv.2012.03.092
10.5194/npg-12-741-2005
10.1007/s11356-017-8402-1
10.1016/j.ecoinf.2020.101174
10.1109/TSP.2013.2288675
10.1029/2019WR025575
10.1016/j.marpolbul.2007.03.001
10.2112/SI90-027.1
10.1016/j.envpol.2022.119136
10.1038/s41579-018-0040-1
10.1007/s10236-019-01287-x
10.1007/s11071-019-05252-7
10.1061/9780784415948.ch8
10.1002/2013JD020420
10.1016/j.chemosphere.2020.126169
10.1016/j.ecolmodel.2017.09.013
10.1016/j.jhydrol.2021.127320
10.1016/j.scitotenv.2020.140993
10.1016/j.jher.2013.04.003
10.1016/j.jenvman.2010.09.014
10.1007/BF00121323
10.1007/s10661-021-08907-4
10.1007/s12665-012-2152-7
10.1088/1748-9326/ab2c26
10.3390/rs14153694
10.1016/j.isatra.2018.10.008
10.1016/j.scib.2018.11.024
10.3389/fgene.2019.01077
10.4319/lo.1977.22.4.0709
10.1023/B:HYDR.0000020329.06666.8c
10.1145/2939672.2939785
10.1016/j.apor.2015.09.001
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2023.129207
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2023_129207
S002216942300149X
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-585db8cc9ede6e4da25de33431ecc3d8545a656fedfa549e6cf88f9c4353ca53
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000953911400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 10:44:48 EST 2025
Sat Nov 29 07:29:41 EST 2025
Tue Nov 18 22:18:19 EST 2025
Fri Feb 23 02:34:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Decomposition algorithm
Extreme gradient boosting algorithm
Forecasting
Water quality
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-585db8cc9ede6e4da25de33431ecc3d8545a656fedfa549e6cf88f9c4353ca53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834212459
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834212459
crossref_citationtrail_10_1016_j_jhydrol_2023_129207
crossref_primary_10_1016_j_jhydrol_2023_129207
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_129207
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Razavi (bib585) 2021; 137
Tang, Ip, Zhang, Shin, Qian, Li (b0420) 2008; 57
Hou, Feng, Dai, Hu, Gibson, Tang, Lee, Wang, Cai, Liu, Zheng, Zheng (b0145) 2022; 15
Muttil, Lee (bib572) 2005; 189
Naik, Dash, Dhar (b0325) 2019; 136
He, Luo, Li, Zuo, Xie (bib588) 2020; 34
Sharma, Gall, Gironás, Mejia (b0400) 2019; 14
Xie, Zhang, Hou, Xie, Lv, Liu (b0495) 2019; 577
Chau (bib573) 2007; 15
Munnooru, Dash, Rao, Karri, Rao (b0315) 2019; 69
Guo (bib580) 2022; 183
Morel (bib593) 1980; 18
Yan-Long (b9000) 2019; 90
Nordstrom, Gupta, Chase (b0345) 2005; 12
Huang, Yuan, Cai, Xing (bib578) 2016
Chen, Guan, Yun, Li, Recknagel (b0060) 2015; 43
dtide/redtide/red03.html.
Michalak, Anderson, Beletsky, Boland, Bosch, Bridgeman, Chaffin, Cho, Confesor, Daloğlu, DePinto, Evans, Fahnenstiel, He, Ho, Jenkins, Johengen, Kuo, LaPorte, Liu, McWilliams, Moore, Posselt, Richards, Scavia, Steiner, Verhamme, Wright, Zagorski (b0280) 2013; 110
Qi, Chen, Wang, Xu, Wang, Shen, Lu, Hodgkiss (b0365) 2004; 512
Song, Yao (bib583) 2022; 81
Kumar, Kumaraswami, Rao, Ezhilarasan, Sivasankar, Rao, Ramu (b0205) 2018; 161
Wang, Peng, Liang (b0450) 2022; 605
Hu, Feng, Guan (b0150) 2021; 59
Zhang, Zou, Shan (bib586) 2017; 56
Adedeji, Ahmadisharaf, Sun (b0005) 2022; 251
Bedri, Corkery, O'Sullivan, Alvarez, Erichsen, Deering, Demeter, O'Hare, Meijer, Masterson (b0045) 2014; 61
Mamun, Kim, Alam, An (b0260) 2020; 12
Lu, Cai, Zhang, Fu (b0245) 2021; 21
Li, Zhang, Zhu, Kaufmann, Xu (b0225) 2022; 14
Ahmadisharaf, Camacho-Rincon, Zhang, Hantush, Mohamoud (b0025) 2022
Glibert (b0110) 2017; 124
Gómez, Salvador, Sanz, Casanova (b0115) 2021; 286
Loucks, Van Beek (bib589) 2017
Mélin, Vantrepotte (b0270) 2015; 160
Mulia, I.E., Tay, H., Roopsekhar, K., Tkalich, P., 2013. Hybrid ANN–GA model for predicting turbidity and chlorophyll-a concentrations. Journal of Hydro-environment Research 7, 279-299.DOI:https://doi.org/10.1016/j.jher.2013.04.003.
Kim, Im, Ha, Choi, Ha (bib571) 2014; 51
Wang, Tian, Liao (b0455) 2021; 28
Kerimoglu, O., Große, F., Kreus, M., Lenhart, H.-J., van Beusekom, J.E.E., 2018. A model-based projection of historical state of a coastal ecosystem: Relevance of phytoplankton stoichiometry. Science of The Total Environment 639, 1311-1323.DOI:https://doi.org/10.1016/j.scitotenv.2018.05.215.
Shamshirband (bib590) 2019; 13
Morel, Prieur (b0295) 1977; 22
Yin, Harrison (bib581) 2007; 54
Yang, X., Jomaa, S., Rode, M., 2019. Sensitivity Analysis of Fully Distributed Parameterization Reveals Insights Into Heterogeneous Catchment Responses for Water Quality Modeling. Water Resources Research, 55(12): 10935-10953. DOI:10.1029/2019wr025575.
Alexakis, Kagalou, Tsakiris (b0030) 2012; 70
Yu, Kim, Li, Jong, Kim, Ryang (b0530) 2022; 303
He, Oki, Sun, Komori, Kanae, Wang, Kim, Yamazaki (b0135) 2011; 92
Ni, Song, Peng, Shen, Peng, Li, Wang, Hu, Cai, Shang, Zhao, Jiang, Huang, Mu, Chen, Peng, Zhang, Zeng, Li, Yang, Jiang, Xu, Li, Chen, Xiang, Cao, Guo, Chen (b0340) 2018; 63
Ahmad (b0015) 2022; 2022
Dodson, Arnott, Cottingham (b0090) 2000; 81
Miao, Zhao, Lin (b0275) 2019; 84
Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, San Francisco, California, USA, pp. 785–794. https://doi.org/10.1145/2939672.2939785.
Cherkassky, V., 1997. The Nature Of Statistical Learning Theory∼. IEEE Transactions on Neural Networks 8, 1564-1564. Doi:10.1109/TNN.1997.641482.
Pahlevan, Smith, Binding, Gurlin, Li, Bresciani, Giardino (bib579) 2021; 253
Allen, Somerfield, Gilbert (b0035) 2007; 64
Li, Yan, Yu, Zhou (bib591) 2019; 90
Fijani, Barzegar, Deo, Tziritis, Skordas (b0100) 2019; 648
Zhang, Hong (bib584) 2019; 98
Gao, Huang, Shi, Tai, Zhang (b0105) 2020; 162
Vakili, Amanollahi (bib576) 2020; 247
Lu, Ma (b0250) 2020; 249
Palani, Liong, Tkalich (b0355) 2008; 56
Mohebzadeh, Yeom, Lee (b0285) 2020; 12
Tian, Liao, Zhang (b0425) 2017; 364
Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P., 2011. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague. 2011, pp. 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265.
Li, Yin, Quan, Zhang (bib577) 2019; 10
N. Moriasi, D., W. Gitau, M., Pai, N., Daggupati, P., 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 58(6): 1763-1785. DOI:https://doi.org/10.13031/trans.58.10715.
Yau, P.S., Lee, S.C., Corbett, J.J., Wang, C., Cheng, Y., Ho, K.F., 2012. Estimation of exhaust emission from ocean-going vessels in Hong Kong. Science of The Total Environment 431, 299-306.DOI:https://doi.org/10.1016/j.scitotenv.2012.03.092.
Zhang, Zhang, Huang, Gao (bib574) 2017; 24
AFCD, 2019. History of red tide/HAB in Hong Kong. Agriculture, Fisheries and Conservation Department, HKSAR.
Ahmadisharaf, Camacho, Zhang, Hantush, Mohamoud (b0020) 2019; 24
Rajaee, Boroumand (b0370) 2015; 53
Cheng, Chan, Lee (b0070) 2020; 152
Dragomiretskiy, Zosso (b0095) 2014; 62
Antico, Schlotthauer, Torres (b0040) 2014; 119
Derot, Yajima, Schmitt (b0085) 2020; 60
McClelland, J.L., 1988. Parallel Distributed Processing: Implications for Cognition and Developmen.
Song, C., Yao, L., Hua, C., Ni, Q., 2021. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Environ Monit Assess, 193(6): 363. DOI:10.1007/s10661-021-09127-6.
Zhou, Wang, Zhou, Mao (b0565) 2020; 705
Guo, Dong, Lee (b0120) 2020; 161
Huisman, Codd, Paerl, Ibelings, Verspagen, Visser (b0180) 2018; 16
Wang, Wu, Yiu, Shen, Lam (b0460) 2020; 745
Liu, Xu, Li (b0230) 2016; 49
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0170) 1998; 454
Nazeer, M., Nichol, J.E., 2016. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. Journal of Hydrology 532, 80-89.DOI:https://doi.org/10.1016/j.jhydrol.2015.11.037.
Stow, Roessler, Borsuk, Bowen, Reckhow (b0415) 2003; 129
West, Dellana (bib575) 2011; 27
Liu (10.1016/j.jhydrol.2023.129207_b0230) 2016; 49
Lu (10.1016/j.jhydrol.2023.129207_b0245) 2021; 21
Stow (10.1016/j.jhydrol.2023.129207_b0415) 2003; 129
Bedri (10.1016/j.jhydrol.2023.129207_b0045) 2014; 61
Razavi (10.1016/j.jhydrol.2023.129207_bib585) 2021; 137
Wang (10.1016/j.jhydrol.2023.129207_b0460) 2020; 745
Gao (10.1016/j.jhydrol.2023.129207_b0105) 2020; 162
Zhang (10.1016/j.jhydrol.2023.129207_bib586) 2017; 56
Mélin (10.1016/j.jhydrol.2023.129207_b0270) 2015; 160
Song (10.1016/j.jhydrol.2023.129207_bib583) 2022; 81
Kumar (10.1016/j.jhydrol.2023.129207_b0205) 2018; 161
Tang (10.1016/j.jhydrol.2023.129207_b0420) 2008; 57
10.1016/j.jhydrol.2023.129207_b0430
10.1016/j.jhydrol.2023.129207_b0310
Ni (10.1016/j.jhydrol.2023.129207_b0340) 2018; 63
Gómez (10.1016/j.jhydrol.2023.129207_b0115) 2021; 286
Guo (10.1016/j.jhydrol.2023.129207_bib580) 2022; 183
West (10.1016/j.jhydrol.2023.129207_bib575) 2011; 27
10.1016/j.jhydrol.2023.129207_b0510
10.1016/j.jhydrol.2023.129207_b0195
10.1016/j.jhydrol.2023.129207_b0075
Adedeji (10.1016/j.jhydrol.2023.129207_b0005) 2022; 251
Dodson (10.1016/j.jhydrol.2023.129207_b0090) 2000; 81
Li (10.1016/j.jhydrol.2023.129207_bib577) 2019; 10
Palani (10.1016/j.jhydrol.2023.129207_b0355) 2008; 56
10.1016/j.jhydrol.2023.129207_b0505
He (10.1016/j.jhydrol.2023.129207_b0135) 2011; 92
Yu (10.1016/j.jhydrol.2023.129207_b0530) 2022; 303
Nordstrom (10.1016/j.jhydrol.2023.129207_b0345) 2005; 12
Hu (10.1016/j.jhydrol.2023.129207_b0150) 2021; 59
Miao (10.1016/j.jhydrol.2023.129207_b0275) 2019; 84
Kim (10.1016/j.jhydrol.2023.129207_bib571) 2014; 51
Muttil (10.1016/j.jhydrol.2023.129207_bib572) 2005; 189
Lu (10.1016/j.jhydrol.2023.129207_b0250) 2020; 249
Wang (10.1016/j.jhydrol.2023.129207_b0450) 2022; 605
Tian (10.1016/j.jhydrol.2023.129207_b0425) 2017; 364
Chau (10.1016/j.jhydrol.2023.129207_bib573) 2007; 15
Huang (10.1016/j.jhydrol.2023.129207_b0170) 1998; 454
10.1016/j.jhydrol.2023.129207_b0265
He (10.1016/j.jhydrol.2023.129207_bib588) 2020; 34
10.1016/j.jhydrol.2023.129207_b0300
Zhou (10.1016/j.jhydrol.2023.129207_b0565) 2020; 705
Yan-Long (10.1016/j.jhydrol.2023.129207_b9000) 2019; 90
10.1016/j.jhydrol.2023.129207_b0185
Morel (10.1016/j.jhydrol.2023.129207_b0295) 1977; 22
Derot (10.1016/j.jhydrol.2023.129207_b0085) 2020; 60
Michalak (10.1016/j.jhydrol.2023.129207_b0280) 2013; 110
Huang (10.1016/j.jhydrol.2023.129207_bib578) 2016
Xie (10.1016/j.jhydrol.2023.129207_b0495) 2019; 577
Wang (10.1016/j.jhydrol.2023.129207_b0455) 2021; 28
Dragomiretskiy (10.1016/j.jhydrol.2023.129207_b0095) 2014; 62
Guo (10.1016/j.jhydrol.2023.129207_b0120) 2020; 161
Qi (10.1016/j.jhydrol.2023.129207_b0365) 2004; 512
Shamshirband (10.1016/j.jhydrol.2023.129207_bib590) 2019; 13
Vakili (10.1016/j.jhydrol.2023.129207_bib576) 2020; 247
10.1016/j.jhydrol.2023.129207_b0410
Loucks (10.1016/j.jhydrol.2023.129207_bib589) 2017
Ahmadisharaf (10.1016/j.jhydrol.2023.129207_b0020) 2019; 24
Zhang (10.1016/j.jhydrol.2023.129207_bib574) 2017; 24
10.1016/j.jhydrol.2023.129207_b0010
10.1016/j.jhydrol.2023.129207_b0055
10.1016/j.jhydrol.2023.129207_b0330
Ahmadisharaf (10.1016/j.jhydrol.2023.129207_b0025) 2022
Zhang (10.1016/j.jhydrol.2023.129207_bib584) 2019; 98
Munnooru (10.1016/j.jhydrol.2023.129207_b0315) 2019; 69
Morel (10.1016/j.jhydrol.2023.129207_bib593) 1980; 18
Ahmad (10.1016/j.jhydrol.2023.129207_b0015) 2022; 2022
Rajaee (10.1016/j.jhydrol.2023.129207_b0370) 2015; 53
Mamun (10.1016/j.jhydrol.2023.129207_b0260) 2020; 12
Mohebzadeh (10.1016/j.jhydrol.2023.129207_b0285) 2020; 12
Yin (10.1016/j.jhydrol.2023.129207_bib581) 2007; 54
Hou (10.1016/j.jhydrol.2023.129207_b0145) 2022; 15
Alexakis (10.1016/j.jhydrol.2023.129207_b0030) 2012; 70
Naik (10.1016/j.jhydrol.2023.129207_b0325) 2019; 136
Antico (10.1016/j.jhydrol.2023.129207_b0040) 2014; 119
Huisman (10.1016/j.jhydrol.2023.129207_b0180) 2018; 16
Pahlevan (10.1016/j.jhydrol.2023.129207_bib579) 2021; 253
Cheng (10.1016/j.jhydrol.2023.129207_b0070) 2020; 152
Sharma (10.1016/j.jhydrol.2023.129207_b0400) 2019; 14
Li (10.1016/j.jhydrol.2023.129207_b0225) 2022; 14
Allen (10.1016/j.jhydrol.2023.129207_b0035) 2007; 64
Glibert (10.1016/j.jhydrol.2023.129207_b0110) 2017; 124
Chen (10.1016/j.jhydrol.2023.129207_b0060) 2015; 43
Li (10.1016/j.jhydrol.2023.129207_bib591) 2019; 90
Fijani (10.1016/j.jhydrol.2023.129207_b0100) 2019; 648
References_xml – reference: McClelland, J.L., 1988. Parallel Distributed Processing: Implications for Cognition and Developmen.
– volume: 110
  start-page: 6448
  year: 2013
  end-page: 6452
  ident: b0280
  article-title: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions
  publication-title: Proc Natl Acad Sci U S A
– volume: 161
  year: 2020
  ident: b0120
  article-title: A real time data driven algal bloom risk forecast system for mariculture management
  publication-title: Mar Pollut Bull
– volume: 253
  start-page: 112200
  year: 2021
  ident: bib579
  article-title: Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters
  publication-title: Remote Sensing of Environment
– volume: 81
  start-page: 2662
  year: 2000
  end-page: 2679
  ident: b0090
  article-title: The Relationship In Lake Communities Between Primary Productivity And Species Richness
  publication-title: Ecology
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: b0095
  article-title: Variational Mode Decomposition
  publication-title: IEEE Transactions on Signal Processing
– volume: 54
  start-page: 646
  year: 2007
  end-page: 656
  ident: bib581
  article-title: Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters
  publication-title: Marine Pollution Bulletin
– volume: 22
  start-page: 709
  year: 1977
  end-page: 722
  ident: b0295
  article-title: Analysis of variations in ocean color1
  publication-title: Limnology and Oceanography
– volume: 69
  start-page: 925
  year: 2019
  end-page: 937
  ident: b0315
  article-title: Estimation of inherent optical properties using quasi-analytical algorithm along the coastal waters of southeast Arabian Sea
  publication-title: Ocean Dynamics
– volume: 43
  start-page: 58
  year: 2015
  end-page: 65
  ident: b0060
  article-title: Online forecasting chlorophyll a concentrations by an auto-regressive integrated moving average model: Feasibilities and potentials
  publication-title: Harmful Algae
– volume: 60
  year: 2020
  ident: b0085
  article-title: Benefits of machine learning and sampling frequency on phytoplankton bloom forecasts in coastal areas
  publication-title: Ecological Informatics
– volume: 137
  start-page: 104954
  year: 2021
  ident: bib585
  article-title: The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support
  publication-title: Environmental Modelling & Software
– volume: 90
  start-page: 101702
  year: 2019
  ident: bib591
  article-title: A review of karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism
  publication-title: Harmful Algae
– volume: 136
  start-page: 701
  year: 2019
  end-page: 731
  ident: b0325
  article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-Kernel Robust Ridge regression
  publication-title: Renewable Energy
– reference: AFCD, 2019. History of red tide/HAB in Hong Kong. Agriculture, Fisheries and Conservation Department, HKSAR.
– reference: Mulia, I.E., Tay, H., Roopsekhar, K., Tkalich, P., 2013. Hybrid ANN–GA model for predicting turbidity and chlorophyll-a concentrations. Journal of Hydro-environment Research 7, 279-299.DOI:https://doi.org/10.1016/j.jher.2013.04.003.
– volume: 24
  year: 2019
  ident: b0020
  article-title: Calibration and Validation of Watershed Models and Advances in Uncertainty Analysis in TMDL Studies
  publication-title: Journal of Hydrologic Engineering
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: b0170
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A
– volume: 63
  start-page: 1626
  year: 2018
  end-page: 1634
  ident: b0340
  article-title: Pediatric reference intervals in China (PRINCE): design and rationale for a large, multicenter collaborative cross-sectional study
  publication-title: Science Bulletin
– volume: 124
  start-page: 591
  year: 2017
  end-page: 606
  ident: b0110
  article-title: Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes
  publication-title: Mar Pollut Bull
– volume: 49
  start-page: 1
  year: 2016
  end-page: 8
  ident: b0230
  article-title: Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks
  publication-title: Computers & Electrical Engineering
– volume: 18
  start-page: 177
  year: 1980
  end-page: 201
  ident: bib593
  article-title: In-water and remote measurements of ocean color
  publication-title: Boundary-Layer Meteorology
– volume: 81
  start-page: 262
  year: 2022
  ident: bib583
  article-title: A hybrid model for water quality parameter prediction based on CEEMDAN-IALO-LSTM ensemble learning
  publication-title: Environmental Earth Sciences
– reference: Song, C., Yao, L., Hua, C., Ni, Q., 2021. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Environ Monit Assess, 193(6): 363. DOI:10.1007/s10661-021-09127-6.
– reference: dtide/redtide/red03.html.
– volume: 59
  start-page: 4590
  year: 2021
  end-page: 4607
  ident: b0150
  article-title: A Machine Learning Approach to Estimate Surface Chlorophyll Concentrations in Global Oceans From Satellite Measurements
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 215
  year: 2022
  end-page: 269
  ident: b0025
  article-title: Model Calibration and Validation
  publication-title: Total Maximum Daily Load Development and Implementation
– volume: 286
  year: 2021
  ident: b0115
  article-title: A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods
  publication-title: Environmental Pollution
– reference: Yau, P.S., Lee, S.C., Corbett, J.J., Wang, C., Cheng, Y., Ho, K.F., 2012. Estimation of exhaust emission from ocean-going vessels in Hong Kong. Science of The Total Environment 431, 299-306.DOI:https://doi.org/10.1016/j.scitotenv.2012.03.092.
– volume: 90
  start-page: 221
  year: 2019
  end-page: 227
  ident: b9000
  article-title: Spatial-Temporal Distribution of Golden Tide Based on High-Resolution Satellite Remote Sensing in the South Yellow Sea
  publication-title: Journal of Coastal Research
– volume: 64
  start-page: 3
  year: 2007
  end-page: 14
  ident: b0035
  article-title: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models
  publication-title: Journal of Marine Systems
– volume: 13
  start-page: 91
  year: 2019
  end-page: 101
  ident: bib590
  article-title: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters
  publication-title: Engineering Applications of Computational Fluid Mechanics
– volume: 745
  year: 2020
  ident: b0460
  article-title: Long-term variation in phytoplankton assemblages during urbanization: A comparative case study of Deep Bay and Mirs Bay, Hong Kong
  publication-title: China. Science of The Total Environment
– volume: 61
  start-page: 458
  year: 2014
  end-page: 476
  ident: b0045
  article-title: An integrated catchment-coastal modelling system for real-time water quality forecasts
  publication-title: Environmental Modelling & Software
– volume: 27
  start-page: 777
  year: 2011
  end-page: 803
  ident: bib575
  article-title: An empirical analysis of neural network memory structures for basin water quality forecasting
  publication-title: International Journal of Forecasting
– year: 2017
  ident: bib589
  publication-title: Water resource systems planning and management: An introduction to methods, models, and applications
– volume: 249
  year: 2020
  ident: b0250
  article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction
  publication-title: Chemosphere
– volume: 16
  start-page: 471
  year: 2018
  end-page: 483
  ident: b0180
  article-title: Cyanobacterial blooms
  publication-title: Nat Rev Microbiol
– volume: 129
  start-page: 307
  year: 2003
  end-page: 314
  ident: b0415
  article-title: Comparison of estuarine water quality models for total maximum daily load development in Neuse River estuary
  publication-title: J. Water Resour. Plann. Manage.
– volume: 247
  start-page: 119134
  year: 2020
  ident: bib576
  article-title: Determination of optically inactive water quality variables using Landsat 8 data: A case study in Geshlagh reservoir affected by agricultural land use
  publication-title: Journal of Cleaner Production
– volume: 12
  year: 2020
  ident: b0260
  article-title: Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches
  publication-title: Water
– reference: Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P., 2011. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague. 2011, pp. 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265.
– volume: 21
  start-page: 3602
  year: 2021
  end-page: 3613
  ident: b0245
  article-title: Water quality in relation to land use in the Junshan Lake watershed and water quality predictions
  publication-title: Water Supply
– volume: 56
  start-page: 1586
  year: 2008
  end-page: 1597
  ident: b0355
  article-title: An ANN application for water quality forecasting
  publication-title: Mar Pollut Bull
– reference: Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, San Francisco, California, USA, pp. 785–794. https://doi.org/10.1145/2939672.2939785.
– volume: 119
  start-page: 1218
  year: 2014
  end-page: 1233
  ident: b0040
  article-title: Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: Application to the Paraná River Basin
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 12
  start-page: 1412
  year: 2020
  ident: b0285
  article-title: Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming in South Korea
  publication-title: Remote Sensing
– volume: 98
  start-page: 1107
  year: 2019
  end-page: 1136
  ident: bib584
  article-title: Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm
  publication-title: Nonlinear Dynamics
– volume: 15
  start-page: 1568
  year: 2007
  end-page: 1572
  ident: bib573
  article-title: Integrated water quality management in Tolo Harbour, Hong Kong: a case study
  publication-title: Journal of Cleaner Production
– volume: 51
  start-page: 158
  year: 2014
  end-page: 174
  ident: bib571
  article-title: Machine learning approaches to coastal water quality monitoring using GOCI satellite data
  publication-title: GIScience & Remote Sensing
– volume: 14
  year: 2022
  ident: b0225
  article-title: Inversion and Driving Force Analysis of Nutrient Concentrations in the Ecosystem of the Shenzhen-Hong Kong Bay Area
  publication-title: Remote Sensing
– volume: 577
  start-page: 123915
  year: 2019
  ident: b0495
  article-title: Hybrid forecasting model for non-stationary daily runoff series: A case study in the Han River Basin
  publication-title: China. Journal of Hydrology
– reference: Yang, X., Jomaa, S., Rode, M., 2019. Sensitivity Analysis of Fully Distributed Parameterization Reveals Insights Into Heterogeneous Catchment Responses for Water Quality Modeling. Water Resources Research, 55(12): 10935-10953. DOI:10.1029/2019wr025575.
– reference: Cherkassky, V., 1997. The Nature Of Statistical Learning Theory∼. IEEE Transactions on Neural Networks 8, 1564-1564. Doi:10.1109/TNN.1997.641482.
– volume: 648
  start-page: 839
  year: 2019
  end-page: 853
  ident: b0100
  article-title: Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters
  publication-title: Sci Total Environ
– volume: 24
  start-page: 6746
  year: 2017
  end-page: 6756
  ident: bib574
  article-title: Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors
  publication-title: Environmental Science and Pollution Research
– volume: 189
  start-page: 363
  year: 2005
  end-page: 376
  ident: bib572
  article-title: Genetic programming for analysis and real-time prediction of coastal algal blooms
  publication-title: Ecological Modelling
– volume: 152
  year: 2020
  ident: b0070
  article-title: Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs)
  publication-title: Marine Pollution Bulletin
– volume: 605
  start-page: 127320
  year: 2022
  ident: b0450
  article-title: Prediction of estuarine water quality using interpretable machine learning approach
  publication-title: Journal of Hydrology
– reference: N. Moriasi, D., W. Gitau, M., Pai, N., Daggupati, P., 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 58(6): 1763-1785. DOI:https://doi.org/10.13031/trans.58.10715.
– volume: 160
  start-page: 235
  year: 2015
  end-page: 251
  ident: b0270
  article-title: How optically diverse is the coastal ocean?
  publication-title: Remote Sensing of Environment
– volume: 705
  year: 2020
  ident: b0565
  article-title: Eutrophication control strategies for highly anthropogenic influenced coastal waters
  publication-title: Sci Total Environ
– reference: Nazeer, M., Nichol, J.E., 2016. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. Journal of Hydrology 532, 80-89.DOI:https://doi.org/10.1016/j.jhydrol.2015.11.037.
– volume: 56
  start-page: 240
  year: 2017
  end-page: 246
  ident: bib586
  article-title: Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China
  publication-title: Journal of Environmental Sciences
– volume: 15
  start-page: 130
  year: 2022
  end-page: 134
  ident: b0145
  article-title: Global mapping reveals increase in lacustrine algal blooms over the past decade
  publication-title: Nature Geoscience
– volume: 70
  start-page: 687
  year: 2012
  end-page: 698
  ident: b0030
  article-title: Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake, Greece
  publication-title: Environmental Earth Sciences
– volume: 162
  start-page: 1665
  year: 2020
  end-page: 1683
  ident: b0105
  article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks
  publication-title: Renewable Energy
– volume: 364
  start-page: 42
  year: 2017
  end-page: 52
  ident: b0425
  article-title: An optimization of artificial neural network model for predicting chlorophyll dynamics
  publication-title: Ecological Modelling
– volume: 14
  start-page: 084016
  year: 2019
  ident: b0400
  article-title: Seasonal hydroclimatic ensemble forecasts anticipate nutrient and suspended sediment loads using a dynamical-statistical approach
  publication-title: Environmental Research Letters
– volume: 57
  start-page: 816
  year: 2008
  end-page: 825
  ident: b0420
  article-title: The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong
  publication-title: Marine Pollution Bulletin
– year: 2016
  ident: bib578
  article-title: Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine
  publication-title: Energies
– volume: 512
  start-page: 209
  year: 2004
  end-page: 214
  ident: b0365
  article-title: Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998
  publication-title: Hydrobiologia
– volume: 34
  start-page: 865
  year: 2020
  end-page: 884
  ident: bib588
  article-title: A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting
  publication-title: Water Resources Management
– volume: 10
  start-page: 1077
  year: 2019
  ident: bib577
  article-title: Gene Expression Value Prediction Based on XGBoost Algorithm
  publication-title: Front Genet
– volume: 84
  start-page: 82
  year: 2019
  end-page: 95
  ident: b0275
  article-title: Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition
  publication-title: ISA Trans
– volume: 303
  start-page: 119136
  year: 2022
  ident: b0530
  article-title: Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network
  publication-title: Environ Pollut
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 11
  ident: b0015
  article-title: Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials
  publication-title: Complexity
– volume: 28
  start-page: 33531
  year: 2021
  end-page: 33544
  ident: b0455
  article-title: Statistical comparison between SARIMA and ANN's performance for surface water quality time series prediction
  publication-title: Environ Sci Pollut Res Int
– volume: 12
  start-page: 741
  year: 2005
  end-page: 753
  ident: b0345
  article-title: Role of the hydrological cycle in regulating the planetary climate system of a simple nonlinear dynamical model
  publication-title: Nonlin. Processes Geophys.
– volume: 92
  start-page: 172
  year: 2011
  end-page: 177
  ident: b0135
  article-title: Estimating monthly total nitrogen concentration in streams by using artificial neural network
  publication-title: Journal of Environmental Management
– volume: 161
  start-page: 20
  year: 2018
  end-page: 28
  ident: b0205
  article-title: Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea
  publication-title: Continental Shelf Research
– volume: 183
  start-page: 451
  year: 2022
  end-page: 469
  ident: bib580
  article-title: Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
– volume: 251
  year: 2022
  ident: b0005
  article-title: Predicting in-stream water quality constituents at the watershed scale using machine learning
  publication-title: J Contam Hydrol
– volume: 53
  start-page: 208
  year: 2015
  end-page: 217
  ident: b0370
  article-title: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models
  publication-title: Applied Ocean Research
– reference: Kerimoglu, O., Große, F., Kreus, M., Lenhart, H.-J., van Beusekom, J.E.E., 2018. A model-based projection of historical state of a coastal ecosystem: Relevance of phytoplankton stoichiometry. Science of The Total Environment 639, 1311-1323.DOI:https://doi.org/10.1016/j.scitotenv.2018.05.215.
– volume: 161
  issue: Pt B
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0120
  article-title: A real time data driven algal bloom risk forecast system for mariculture management
  publication-title: Mar Pollut Bull
– ident: 10.1016/j.jhydrol.2023.129207_b0300
  doi: 10.13031/trans.58.10715
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_b0015
  article-title: Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials
  publication-title: Complexity
  doi: 10.1155/2022/9415863
– year: 2017
  ident: 10.1016/j.jhydrol.2023.129207_bib589
– volume: 162
  start-page: 1665
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0105
  article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2020.09.141
– volume: 15
  start-page: 130
  issue: 2
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_b0145
  article-title: Global mapping reveals increase in lacustrine algal blooms over the past decade
  publication-title: Nature Geoscience
  doi: 10.1038/s41561-021-00887-x
– ident: 10.1016/j.jhydrol.2023.129207_b0410
  doi: 10.1007/s10661-021-09127-6
– volume: 51
  start-page: 158
  issue: 2
  year: 2014
  ident: 10.1016/j.jhydrol.2023.129207_bib571
  article-title: Machine learning approaches to coastal water quality monitoring using GOCI satellite data
  publication-title: GIScience & Remote Sensing
  doi: 10.1080/15481603.2014.900983
– volume: 189
  start-page: 363
  issue: 3
  year: 2005
  ident: 10.1016/j.jhydrol.2023.129207_bib572
  article-title: Genetic programming for analysis and real-time prediction of coastal algal blooms
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2005.03.018
– volume: 90
  start-page: 101702
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_bib591
  article-title: A review of karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2019.101702
– volume: 28
  start-page: 33531
  issue: 25
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129207_b0455
  article-title: Statistical comparison between SARIMA and ANN's performance for surface water quality time series prediction
  publication-title: Environ Sci Pollut Res Int
  doi: 10.1007/s11356-021-13086-3
– ident: 10.1016/j.jhydrol.2023.129207_b0010
– volume: 12
  start-page: 1412
  issue: 9
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0285
  article-title: Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming in South Korea
  publication-title: Remote Sensing
  doi: 10.3390/rs12091412
– volume: 286
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129207_b0115
  article-title: A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2021.117489
– volume: 253
  start-page: 112200
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129207_bib579
  article-title: Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2020.112200
– volume: 59
  start-page: 4590
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129207_b0150
  article-title: A Machine Learning Approach to Estimate Surface Chlorophyll Concentrations in Global Oceans From Satellite Measurements
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2020.3016473
– volume: 577
  start-page: 123915
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_b0495
  article-title: Hybrid forecasting model for non-stationary daily runoff series: A case study in the Han River Basin
  publication-title: China. Journal of Hydrology
  doi: 10.1016/j.jhydrol.2019.123915
– volume: 183
  start-page: 451
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_bib580
  article-title: Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive
  publication-title: ISPRS Journal of Photogrammetry and Remote Sensing
  doi: 10.1016/j.isprsjprs.2021.11.023
– ident: 10.1016/j.jhydrol.2023.129207_b0185
  doi: 10.1016/j.scitotenv.2018.05.215
– volume: 49
  start-page: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2023.129207_b0230
  article-title: Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks
  publication-title: Computers & Electrical Engineering
  doi: 10.1016/j.compeleceng.2015.10.003
– ident: 10.1016/j.jhydrol.2023.129207_b0430
  doi: 10.1109/ICASSP.2011.5947265
– volume: 454
  start-page: 903
  issue: 1971
  year: 1998
  ident: 10.1016/j.jhydrol.2023.129207_b0170
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1998.0193
– volume: 56
  start-page: 1586
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129207_b0355
  article-title: An ANN application for water quality forecasting
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2008.05.021
– volume: 129
  start-page: 307
  issue: 4
  year: 2003
  ident: 10.1016/j.jhydrol.2023.129207_b0415
  article-title: Comparison of estuarine water quality models for total maximum daily load development in Neuse River estuary
  publication-title: J. Water Resour. Plann. Manage.
  doi: 10.1061/(ASCE)0733-9496(2003)129:4(307)
– volume: 705
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0565
  article-title: Eutrophication control strategies for highly anthropogenic influenced coastal waters
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.135760
– volume: 124
  start-page: 591
  issue: 2
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129207_b0110
  article-title: Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes
  publication-title: Mar Pollut Bull
  doi: 10.1016/j.marpolbul.2017.04.027
– volume: 160
  start-page: 235
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129207_b0270
  article-title: How optically diverse is the coastal ocean?
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2015.01.023
– ident: 10.1016/j.jhydrol.2023.129207_b0075
  doi: 10.1109/TNN.1997.641482
– ident: 10.1016/j.jhydrol.2023.129207_b0330
  doi: 10.1016/j.jhydrol.2015.11.037
– volume: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0260
  article-title: Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches
  publication-title: Water
  doi: 10.3390/w12010030
– volume: 27
  start-page: 777
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129207_bib575
  article-title: An empirical analysis of neural network memory structures for basin water quality forecasting
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2010.09.003
– volume: 34
  start-page: 865
  issue: 2
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_bib588
  article-title: A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting
  publication-title: Water Resources Management
  doi: 10.1007/s11269-020-02483-x
– volume: 57
  start-page: 816
  issue: 6-12
  year: 2008
  ident: 10.1016/j.jhydrol.2023.129207_b0420
  article-title: The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong
  publication-title: Marine Pollution Bulletin
  doi: 10.1016/j.marpolbul.2008.01.027
– volume: 152
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0070
  article-title: Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs)
  publication-title: Marine Pollution Bulletin
  doi: 10.1016/j.marpolbul.2020.110889
– volume: 56
  start-page: 240
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129207_bib586
  article-title: Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China
  publication-title: Journal of Environmental Sciences
  doi: 10.1016/j.jes.2016.07.017
– volume: 247
  start-page: 119134
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_bib576
  article-title: Determination of optically inactive water quality variables using Landsat 8 data: A case study in Geshlagh reservoir affected by agricultural land use
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2019.119134
– volume: 24
  issue: 7
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_b0020
  article-title: Calibration and Validation of Watershed Models and Advances in Uncertainty Analysis in TMDL Studies
  publication-title: Journal of Hydrologic Engineering
  doi: 10.1061/(ASCE)HE.1943-5584.0001794
– year: 2016
  ident: 10.1016/j.jhydrol.2023.129207_bib578
  article-title: Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine
  publication-title: Energies
  doi: 10.3390/en9120989
– volume: 110
  start-page: 6448
  issue: 16
  year: 2013
  ident: 10.1016/j.jhydrol.2023.129207_b0280
  article-title: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1216006110
– volume: 13
  start-page: 91
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_bib590
  article-title: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters
  publication-title: Engineering Applications of Computational Fluid Mechanics
  doi: 10.1080/19942060.2018.1553742
– volume: 43
  start-page: 58
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129207_b0060
  article-title: Online forecasting chlorophyll a concentrations by an auto-regressive integrated moving average model: Feasibilities and potentials
  publication-title: Harmful Algae
  doi: 10.1016/j.hal.2015.01.002
– volume: 81
  start-page: 2662
  issue: 10
  year: 2000
  ident: 10.1016/j.jhydrol.2023.129207_b0090
  article-title: The Relationship In Lake Communities Between Primary Productivity And Species Richness
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2
– volume: 21
  start-page: 3602
  issue: 7
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129207_b0245
  article-title: Water quality in relation to land use in the Junshan Lake watershed and water quality predictions
  publication-title: Water Supply
  doi: 10.2166/ws.2021.123
– volume: 81
  start-page: 262
  issue: 9
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_bib583
  article-title: A hybrid model for water quality parameter prediction based on CEEMDAN-IALO-LSTM ensemble learning
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-022-10380-2
– volume: 161
  start-page: 20
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129207_b0205
  article-title: Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea
  publication-title: Continental Shelf Research
  doi: 10.1016/j.csr.2018.04.012
– volume: 61
  start-page: 458
  year: 2014
  ident: 10.1016/j.jhydrol.2023.129207_b0045
  article-title: An integrated catchment-coastal modelling system for real-time water quality forecasts
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2014.02.006
– volume: 137
  start-page: 104954
  year: 2021
  ident: 10.1016/j.jhydrol.2023.129207_bib585
  article-title: The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support
  publication-title: Environmental Modelling & Software
  doi: 10.1016/j.envsoft.2020.104954
– volume: 15
  start-page: 1568
  issue: 16
  year: 2007
  ident: 10.1016/j.jhydrol.2023.129207_bib573
  article-title: Integrated water quality management in Tolo Harbour, Hong Kong: a case study
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2006.07.047
– volume: 251
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_b0005
  article-title: Predicting in-stream water quality constituents at the watershed scale using machine learning
  publication-title: J Contam Hydrol
  doi: 10.1016/j.jconhyd.2022.104078
– volume: 648
  start-page: 839
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_b0100
  article-title: Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.08.221
– volume: 64
  start-page: 3
  issue: 1–4
  year: 2007
  ident: 10.1016/j.jhydrol.2023.129207_b0035
  article-title: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models
  publication-title: Journal of Marine Systems
  doi: 10.1016/j.jmarsys.2006.02.010
– volume: 136
  start-page: 701
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_b0325
  article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-Kernel Robust Ridge regression
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.01.006
– ident: 10.1016/j.jhydrol.2023.129207_b0510
  doi: 10.1016/j.scitotenv.2012.03.092
– volume: 12
  start-page: 741
  year: 2005
  ident: 10.1016/j.jhydrol.2023.129207_b0345
  article-title: Role of the hydrological cycle in regulating the planetary climate system of a simple nonlinear dynamical model
  publication-title: Nonlin. Processes Geophys.
  doi: 10.5194/npg-12-741-2005
– volume: 24
  start-page: 6746
  issue: 7
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129207_bib574
  article-title: Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-017-8402-1
– volume: 60
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0085
  article-title: Benefits of machine learning and sampling frequency on phytoplankton bloom forecasts in coastal areas
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2020.101174
– volume: 62
  start-page: 531
  year: 2014
  ident: 10.1016/j.jhydrol.2023.129207_b0095
  article-title: Variational Mode Decomposition
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2013.2288675
– ident: 10.1016/j.jhydrol.2023.129207_b0505
  doi: 10.1029/2019WR025575
– volume: 54
  start-page: 646
  issue: 6
  year: 2007
  ident: 10.1016/j.jhydrol.2023.129207_bib581
  article-title: Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters
  publication-title: Marine Pollution Bulletin
  doi: 10.1016/j.marpolbul.2007.03.001
– volume: 90
  start-page: 221
  issue: sp1
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_b9000
  article-title: Spatial-Temporal Distribution of Golden Tide Based on High-Resolution Satellite Remote Sensing in the South Yellow Sea
  publication-title: Journal of Coastal Research
  doi: 10.2112/SI90-027.1
– volume: 303
  start-page: 119136
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_b0530
  article-title: Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2022.119136
– volume: 16
  start-page: 471
  issue: 8
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129207_b0180
  article-title: Cyanobacterial blooms
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0040-1
– volume: 69
  start-page: 925
  issue: 8
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_b0315
  article-title: Estimation of inherent optical properties using quasi-analytical algorithm along the coastal waters of southeast Arabian Sea
  publication-title: Ocean Dynamics
  doi: 10.1007/s10236-019-01287-x
– volume: 98
  start-page: 1107
  issue: 2
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_bib584
  article-title: Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-019-05252-7
– start-page: 215
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_b0025
  article-title: Model Calibration and Validation
  publication-title: Total Maximum Daily Load Development and Implementation
  doi: 10.1061/9780784415948.ch8
– volume: 119
  start-page: 1218
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2023.129207_b0040
  article-title: Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: Application to the Paraná River Basin
  publication-title: Journal of Geophysical Research: Atmospheres
  doi: 10.1002/2013JD020420
– volume: 249
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0250
  article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126169
– volume: 364
  start-page: 42
  year: 2017
  ident: 10.1016/j.jhydrol.2023.129207_b0425
  article-title: An optimization of artificial neural network model for predicting chlorophyll dynamics
  publication-title: Ecological Modelling
  doi: 10.1016/j.ecolmodel.2017.09.013
– volume: 605
  start-page: 127320
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_b0450
  article-title: Prediction of estuarine water quality using interpretable machine learning approach
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2021.127320
– volume: 745
  year: 2020
  ident: 10.1016/j.jhydrol.2023.129207_b0460
  article-title: Long-term variation in phytoplankton assemblages during urbanization: A comparative case study of Deep Bay and Mirs Bay, Hong Kong
  publication-title: China. Science of The Total Environment
  doi: 10.1016/j.scitotenv.2020.140993
– ident: 10.1016/j.jhydrol.2023.129207_b0310
  doi: 10.1016/j.jher.2013.04.003
– volume: 92
  start-page: 172
  year: 2011
  ident: 10.1016/j.jhydrol.2023.129207_b0135
  article-title: Estimating monthly total nitrogen concentration in streams by using artificial neural network
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2010.09.014
– volume: 18
  start-page: 177
  issue: 2
  year: 1980
  ident: 10.1016/j.jhydrol.2023.129207_bib593
  article-title: In-water and remote measurements of ocean color
  publication-title: Boundary-Layer Meteorology
  doi: 10.1007/BF00121323
– ident: 10.1016/j.jhydrol.2023.129207_b0195
  doi: 10.1007/s10661-021-08907-4
– volume: 70
  start-page: 687
  issue: 2
  year: 2012
  ident: 10.1016/j.jhydrol.2023.129207_b0030
  article-title: Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake, Greece
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-012-2152-7
– volume: 14
  start-page: 084016
  issue: 8
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_b0400
  article-title: Seasonal hydroclimatic ensemble forecasts anticipate nutrient and suspended sediment loads using a dynamical-statistical approach
  publication-title: Environmental Research Letters
  doi: 10.1088/1748-9326/ab2c26
– volume: 14
  issue: 15
  year: 2022
  ident: 10.1016/j.jhydrol.2023.129207_b0225
  article-title: Inversion and Driving Force Analysis of Nutrient Concentrations in the Ecosystem of the Shenzhen-Hong Kong Bay Area
  publication-title: Remote Sensing
  doi: 10.3390/rs14153694
– volume: 84
  start-page: 82
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_b0275
  article-title: Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.10.008
– volume: 63
  start-page: 1626
  issue: 24
  year: 2018
  ident: 10.1016/j.jhydrol.2023.129207_b0340
  article-title: Pediatric reference intervals in China (PRINCE): design and rationale for a large, multicenter collaborative cross-sectional study
  publication-title: Science Bulletin
  doi: 10.1016/j.scib.2018.11.024
– volume: 10
  start-page: 1077
  year: 2019
  ident: 10.1016/j.jhydrol.2023.129207_bib577
  article-title: Gene Expression Value Prediction Based on XGBoost Algorithm
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.01077
– volume: 22
  start-page: 709
  issue: 4
  year: 1977
  ident: 10.1016/j.jhydrol.2023.129207_b0295
  article-title: Analysis of variations in ocean color1
  publication-title: Limnology and Oceanography
  doi: 10.4319/lo.1977.22.4.0709
– volume: 512
  start-page: 209
  issue: 1-3
  year: 2004
  ident: 10.1016/j.jhydrol.2023.129207_b0365
  article-title: Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998
  publication-title: Hydrobiologia
  doi: 10.1023/B:HYDR.0000020329.06666.8c
– ident: 10.1016/j.jhydrol.2023.129207_b0055
  doi: 10.1145/2939672.2939785
– ident: 10.1016/j.jhydrol.2023.129207_b0265
– volume: 53
  start-page: 208
  year: 2015
  ident: 10.1016/j.jhydrol.2023.129207_b0370
  article-title: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models
  publication-title: Applied Ocean Research
  doi: 10.1016/j.apor.2015.09.001
SSID ssj0000334
Score 2.582498
Snippet •A hybrid model named CVXS was proposed to forecast the ChlA and TN concentrations.•Machine learning was integrated with decomposition algorithms in the CVXS...
Information regarding Chlorophyll-a (ChlA) and total nitrogen (TN) is critical for early warning of algal blooms. However, reliable models for accurate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129207
SubjectTerms algae
China
chlorophyll
coastal water
Decomposition algorithm
Extreme gradient boosting algorithm
Forecasting
Machine learning
model validation
regression analysis
time series analysis
total nitrogen
water management
Water quality
Title A hybrid decomposition and Machine learning model for forecasting Chlorophyll-a and total nitrogen concentration in coastal waters
URI https://dx.doi.org/10.1016/j.jhydrol.2023.129207
https://www.proquest.com/docview/2834212459
Volume 619
WOSCitedRecordID wos000953911400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLhJcEE-xvGQkblWK6jgPH6vVwtLDikMPFZfIcSbbVN1k1cc-rvwb_iUzsZO07KIFJA6NKreOlXxf7JnJNx7GPogglQIEeL6B0JO5jr1UauFJE-YiEGFqUltsIjo5iadT9bXX-9HkwlwsorKMr67U-X-FGtsQbEqd_Qu425NiA35H0PGIsOPxj4Af9WfXlIbVz4D04k6U5QQVpJyEplTEqa2DUysN8QNGr2oR9OEMnfgK7_9i4WkrsawoZxKf_mWF45JU3Yo6G6WkqbAr_uNSr52i_haDd3adLe2OT2jVjs5oh4aM6NiGIr7NNoT4tNAVWqSnrTRoU4dzj7HpEoqOhy7SPS7K2aboj0GXnURgUrjALsXDtyMbwt8SxNThthspN236wTC0lZEHYGftOFKUWBdtT-uhnYpvLBE2WjEfzO1VD2jkwZCKdkXdmtgqFelltqDh0FUjb3J6j-2LKFA4ge6PvhxNx92y7_uy2ZqeOnTpYh9vHex3htAvJkFt50wes0cOLz6yxHrCelA-ZQ8-g9va_Bn7PuKWYHyHYBx5wh3BeEMwXhOMI7n4FsH4DsHqjjXBeEMwvkMwXlBDTTBuCfacTT4dTQ6PPVfJwzO-FGsPfdIsjY1RkEEIMtMiyADvlz_EGcTPYjTjNToWOWS5DqSC0ORxnCuDtrxvdOC_YHtlVcJLxqNMqEzgT3mgpA7zFD1qEeQqhVCmEIQHTDZ3NTFul3sqtrJIGjnjPHFgJARGYsE4YIO227nd5uWuDnEDWeJsVWuDJsizu7q-byBOcC6nF3S6hGqzStDUJ4GGDNSrfz_9a_awe5jesL31cgNv2X1zsS5Wy3eOtT8BaRvPbA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+decomposition+and+Machine+learning+model+for+forecasting+Chlorophyll-a+and+total+nitrogen+concentration+in+coastal+waters&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zhu%2C+Xiaotong&rft.au=Guo%2C+Hongwei&rft.au=Huang%2C+Jinhui+Jeanne&rft.au=Tian%2C+Shang&rft.date=2023-04-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=619&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.129207&rft.externalDocID=S002216942300149X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon