A hybrid decomposition and Machine learning model for forecasting Chlorophyll-a and total nitrogen concentration in coastal waters
•A hybrid model named CVXS was proposed to forecast the ChlA and TN concentrations.•Machine learning was integrated with decomposition algorithms in the CVXS model.•The superiority of the CVXS model over the other models was examined.•The mechanism of the CVXS model for water quality forecasting was...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 619; s. 129207 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.04.2023
|
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A hybrid model named CVXS was proposed to forecast the ChlA and TN concentrations.•Machine learning was integrated with decomposition algorithms in the CVXS model.•The superiority of the CVXS model over the other models was examined.•The mechanism of the CVXS model for water quality forecasting was explained.•The Long-term forecasting ability of the CVXS model was verified.
Information regarding Chlorophyll-a (ChlA) and total nitrogen (TN) is critical for early warning of algal blooms. However, reliable models for accurate forecasting of the ChlA and TN are still lacking due to the optical complexity of coastal waters. To address this issue, we proposed a novel hybrid model named the CEEMDAN-VMD-XGBOOST-SARIMA (CVXS) model to forecast ChlA and TN concentrations. The model performance was validated at three hydrological monitoring stations in Hong Kong, China. Four independent models including extreme gradient boosting (XGBoost), support vector regression (SVR), deep learning (DL), and Seasonal autoregressive integrated moving average (SARIMA), and three hybrid models including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-XGBoost, CEEMDAN-SVR, and CEEMDAN-DL were developed to compare their performance with the CVXS model. In addition, the physical mechanisms of the CVXS model were further explored through correlation analysis between the decomposed time series of water quality parameters. The result indicated that (1) the CVXS model had the best accuracy among all models for forecasting ChlA and TN, and all the NSEs remained above 0.97 at three hydrological monitoring stations. For forecasting ChlA, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > DL > SARIMA > SVR. For forecasting TN, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > SVR > SARIMA > DL; (2) the optimal forecasting time horizons of the CVXS model were one to two months; and (3) the variability of ChlA and TN concentrations induced by hydrologic factors has been inherently embedded in the decomposed time series data, thus providing the theoretical basis for the CVXS model forecasting water quality parameters. The results of this study are promising with respect to forecasting algal blooms and coastal water resource management. |
|---|---|
| AbstractList | Information regarding Chlorophyll-a (ChlA) and total nitrogen (TN) is critical for early warning of algal blooms. However, reliable models for accurate forecasting of the ChlA and TN are still lacking due to the optical complexity of coastal waters. To address this issue, we proposed a novel hybrid model named the CEEMDAN-VMD-XGBOOST-SARIMA (CVXS) model to forecast ChlA and TN concentrations. The model performance was validated at three hydrological monitoring stations in Hong Kong, China. Four independent models including extreme gradient boosting (XGBoost), support vector regression (SVR), deep learning (DL), and Seasonal autoregressive integrated moving average (SARIMA), and three hybrid models including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-XGBoost, CEEMDAN-SVR, and CEEMDAN-DL were developed to compare their performance with the CVXS model. In addition, the physical mechanisms of the CVXS model were further explored through correlation analysis between the decomposed time series of water quality parameters. The result indicated that (1) the CVXS model had the best accuracy among all models for forecasting ChlA and TN, and all the NSEs remained above 0.97 at three hydrological monitoring stations. For forecasting ChlA, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > DL > SARIMA > SVR. For forecasting TN, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > SVR > SARIMA > DL; (2) the optimal forecasting time horizons of the CVXS model were one to two months; and (3) the variability of ChlA and TN concentrations induced by hydrologic factors has been inherently embedded in the decomposed time series data, thus providing the theoretical basis for the CVXS model forecasting water quality parameters. The results of this study are promising with respect to forecasting algal blooms and coastal water resource management. •A hybrid model named CVXS was proposed to forecast the ChlA and TN concentrations.•Machine learning was integrated with decomposition algorithms in the CVXS model.•The superiority of the CVXS model over the other models was examined.•The mechanism of the CVXS model for water quality forecasting was explained.•The Long-term forecasting ability of the CVXS model was verified. Information regarding Chlorophyll-a (ChlA) and total nitrogen (TN) is critical for early warning of algal blooms. However, reliable models for accurate forecasting of the ChlA and TN are still lacking due to the optical complexity of coastal waters. To address this issue, we proposed a novel hybrid model named the CEEMDAN-VMD-XGBOOST-SARIMA (CVXS) model to forecast ChlA and TN concentrations. The model performance was validated at three hydrological monitoring stations in Hong Kong, China. Four independent models including extreme gradient boosting (XGBoost), support vector regression (SVR), deep learning (DL), and Seasonal autoregressive integrated moving average (SARIMA), and three hybrid models including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-XGBoost, CEEMDAN-SVR, and CEEMDAN-DL were developed to compare their performance with the CVXS model. In addition, the physical mechanisms of the CVXS model were further explored through correlation analysis between the decomposed time series of water quality parameters. The result indicated that (1) the CVXS model had the best accuracy among all models for forecasting ChlA and TN, and all the NSEs remained above 0.97 at three hydrological monitoring stations. For forecasting ChlA, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > DL > SARIMA > SVR. For forecasting TN, the performance of the eight models is ranked as CVXS > CEEMDAN-XGBoost > CEEMDAN-DL > CEEMDAN-SVR > XGBoost > SVR > SARIMA > DL; (2) the optimal forecasting time horizons of the CVXS model were one to two months; and (3) the variability of ChlA and TN concentrations induced by hydrologic factors has been inherently embedded in the decomposed time series data, thus providing the theoretical basis for the CVXS model forecasting water quality parameters. The results of this study are promising with respect to forecasting algal blooms and coastal water resource management. |
| ArticleNumber | 129207 |
| Author | Zhu, Xiaotong Guo, Hongwei Huang, Jinhui Jeanne Zhang, Zijie Tian, Shang |
| Author_xml | – sequence: 1 givenname: Xiaotong surname: Zhu fullname: Zhu, Xiaotong – sequence: 2 givenname: Hongwei surname: Guo fullname: Guo, Hongwei – sequence: 3 givenname: Jinhui Jeanne surname: Huang fullname: Huang, Jinhui Jeanne – sequence: 4 givenname: Shang surname: Tian fullname: Tian, Shang – sequence: 5 givenname: Zijie surname: Zhang fullname: Zhang, Zijie |
| BookMark | eNqFkE1rGzEQhkVJoU7an1DQMZd19bFa79JDCSZpAym95C6U0axXRpYcSWnwNb-8WtunXiIQguF9ZjTPJbkIMSAhXzlbcsa7b9vldjrYFP1SMCGXXAyCrT6QBe9XQyNWbHVBFowJ0fBuaD-Ry5y3rB4p2wV5u6HT4Sk5Sy1C3O1jdsXFQE2w9LeByQWkHk0KLmzoLlr0dIxpvggml7m6nnxMcT8dvG_MESyxGE-DKyluMFCIATCUZI6d3VyoaE28moIpfyYfR-Mzfjm_V-Tx7vZx_at5-PPzfn3z0IBsRWlUr-xTDzCgxQ5ba4SyWHeQHAGk7VWrTKe6Ee1oVDtgB2PfjwO0UkkwSl6R61PbfYrPL5iL3rkM6L0JGF-yFn0dw0Wrhhr9fopCijknHDW4cvx9XcJ5zZmexeutPovXs3h9El9p9R-9T25n0uFd7seJwyrhr8OkMzis6qyrsou20b3T4R8baabF |
| CitedBy_id | crossref_primary_10_1016_j_scs_2024_105508 crossref_primary_10_1016_j_desal_2025_118880 crossref_primary_10_1016_j_watres_2024_121673 crossref_primary_10_1016_j_envsoft_2025_106575 crossref_primary_10_3390_w16213099 crossref_primary_10_1016_j_envsoft_2025_106412 crossref_primary_10_1007_s11600_023_01240_z crossref_primary_10_1016_j_marpolbul_2024_117263 crossref_primary_10_1016_j_jenvman_2025_125146 crossref_primary_10_1016_j_jhydrol_2024_131297 crossref_primary_10_1016_j_ecolind_2025_113244 crossref_primary_10_1016_j_jenvman_2024_121463 crossref_primary_10_1038_s41467_025_62901_9 crossref_primary_10_3390_atmos16050535 crossref_primary_10_1016_j_compag_2024_109439 crossref_primary_10_1016_j_watres_2024_122160 crossref_primary_10_3389_feart_2023_1229704 crossref_primary_10_3390_machines11050539 crossref_primary_10_1007_s11802_025_5833_z crossref_primary_10_1016_j_envsoft_2024_106091 crossref_primary_10_3390_app15115957 crossref_primary_10_1016_j_scitotenv_2023_169253 crossref_primary_10_1016_j_jhydrol_2025_133927 crossref_primary_10_1016_j_watres_2025_123800 crossref_primary_10_1016_j_envsoft_2025_106560 crossref_primary_10_1016_j_envpol_2025_126801 crossref_primary_10_1016_j_jhydrol_2023_130034 crossref_primary_10_1016_j_envres_2024_119254 crossref_primary_10_1016_j_ecoinf_2025_103337 crossref_primary_10_1016_j_envres_2024_118267 crossref_primary_10_1016_j_scitotenv_2024_175451 crossref_primary_10_3390_w16243615 crossref_primary_10_1007_s11356_023_31148_6 crossref_primary_10_3390_app14052200 crossref_primary_10_1016_j_jag_2024_103971 crossref_primary_10_1029_2023WR035676 crossref_primary_10_1109_TGRS_2024_3451999 crossref_primary_10_1007_s11227_024_06806_2 crossref_primary_10_3390_su151411275 crossref_primary_10_1007_s11269_023_03566_1 crossref_primary_10_1016_j_ecoinf_2025_103061 crossref_primary_10_1109_TIM_2025_3578690 crossref_primary_10_1093_inteam_vjae034 |
| Cites_doi | 10.13031/trans.58.10715 10.1155/2022/9415863 10.1016/j.renene.2020.09.141 10.1038/s41561-021-00887-x 10.1007/s10661-021-09127-6 10.1080/15481603.2014.900983 10.1016/j.ecolmodel.2005.03.018 10.1016/j.hal.2019.101702 10.1007/s11356-021-13086-3 10.3390/rs12091412 10.1016/j.envpol.2021.117489 10.1016/j.rse.2020.112200 10.1109/TGRS.2020.3016473 10.1016/j.jhydrol.2019.123915 10.1016/j.isprsjprs.2021.11.023 10.1016/j.scitotenv.2018.05.215 10.1016/j.compeleceng.2015.10.003 10.1109/ICASSP.2011.5947265 10.1098/rspa.1998.0193 10.1016/j.marpolbul.2008.05.021 10.1061/(ASCE)0733-9496(2003)129:4(307) 10.1016/j.scitotenv.2019.135760 10.1016/j.marpolbul.2017.04.027 10.1016/j.rse.2015.01.023 10.1109/TNN.1997.641482 10.1016/j.jhydrol.2015.11.037 10.3390/w12010030 10.1016/j.ijforecast.2010.09.003 10.1007/s11269-020-02483-x 10.1016/j.marpolbul.2008.01.027 10.1016/j.marpolbul.2020.110889 10.1016/j.jes.2016.07.017 10.1016/j.jclepro.2019.119134 10.1061/(ASCE)HE.1943-5584.0001794 10.3390/en9120989 10.1073/pnas.1216006110 10.1080/19942060.2018.1553742 10.1016/j.hal.2015.01.002 10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2 10.2166/ws.2021.123 10.1007/s12665-022-10380-2 10.1016/j.csr.2018.04.012 10.1016/j.envsoft.2014.02.006 10.1016/j.envsoft.2020.104954 10.1016/j.jclepro.2006.07.047 10.1016/j.jconhyd.2022.104078 10.1016/j.scitotenv.2018.08.221 10.1016/j.jmarsys.2006.02.010 10.1016/j.renene.2019.01.006 10.1016/j.scitotenv.2012.03.092 10.5194/npg-12-741-2005 10.1007/s11356-017-8402-1 10.1016/j.ecoinf.2020.101174 10.1109/TSP.2013.2288675 10.1029/2019WR025575 10.1016/j.marpolbul.2007.03.001 10.2112/SI90-027.1 10.1016/j.envpol.2022.119136 10.1038/s41579-018-0040-1 10.1007/s10236-019-01287-x 10.1007/s11071-019-05252-7 10.1061/9780784415948.ch8 10.1002/2013JD020420 10.1016/j.chemosphere.2020.126169 10.1016/j.ecolmodel.2017.09.013 10.1016/j.jhydrol.2021.127320 10.1016/j.scitotenv.2020.140993 10.1016/j.jher.2013.04.003 10.1016/j.jenvman.2010.09.014 10.1007/BF00121323 10.1007/s10661-021-08907-4 10.1007/s12665-012-2152-7 10.1088/1748-9326/ab2c26 10.3390/rs14153694 10.1016/j.isatra.2018.10.008 10.1016/j.scib.2018.11.024 10.3389/fgene.2019.01077 10.4319/lo.1977.22.4.0709 10.1023/B:HYDR.0000020329.06666.8c 10.1145/2939672.2939785 10.1016/j.apor.2015.09.001 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2023.129207 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2023_129207 S002216942300149X |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-585db8cc9ede6e4da25de33431ecc3d8545a656fedfa549e6cf88f9c4353ca53 |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000953911400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Nov 09 10:44:48 EST 2025 Sat Nov 29 07:29:41 EST 2025 Tue Nov 18 22:18:19 EST 2025 Fri Feb 23 02:34:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Decomposition algorithm Extreme gradient boosting algorithm Forecasting Water quality Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-585db8cc9ede6e4da25de33431ecc3d8545a656fedfa549e6cf88f9c4353ca53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834212459 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834212459 crossref_citationtrail_10_1016_j_jhydrol_2023_129207 crossref_primary_10_1016_j_jhydrol_2023_129207 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_129207 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Razavi (bib585) 2021; 137 Tang, Ip, Zhang, Shin, Qian, Li (b0420) 2008; 57 Hou, Feng, Dai, Hu, Gibson, Tang, Lee, Wang, Cai, Liu, Zheng, Zheng (b0145) 2022; 15 Muttil, Lee (bib572) 2005; 189 Naik, Dash, Dhar (b0325) 2019; 136 He, Luo, Li, Zuo, Xie (bib588) 2020; 34 Sharma, Gall, Gironás, Mejia (b0400) 2019; 14 Xie, Zhang, Hou, Xie, Lv, Liu (b0495) 2019; 577 Chau (bib573) 2007; 15 Munnooru, Dash, Rao, Karri, Rao (b0315) 2019; 69 Guo (bib580) 2022; 183 Morel (bib593) 1980; 18 Yan-Long (b9000) 2019; 90 Nordstrom, Gupta, Chase (b0345) 2005; 12 Huang, Yuan, Cai, Xing (bib578) 2016 Chen, Guan, Yun, Li, Recknagel (b0060) 2015; 43 dtide/redtide/red03.html. Michalak, Anderson, Beletsky, Boland, Bosch, Bridgeman, Chaffin, Cho, Confesor, Daloğlu, DePinto, Evans, Fahnenstiel, He, Ho, Jenkins, Johengen, Kuo, LaPorte, Liu, McWilliams, Moore, Posselt, Richards, Scavia, Steiner, Verhamme, Wright, Zagorski (b0280) 2013; 110 Qi, Chen, Wang, Xu, Wang, Shen, Lu, Hodgkiss (b0365) 2004; 512 Song, Yao (bib583) 2022; 81 Kumar, Kumaraswami, Rao, Ezhilarasan, Sivasankar, Rao, Ramu (b0205) 2018; 161 Wang, Peng, Liang (b0450) 2022; 605 Hu, Feng, Guan (b0150) 2021; 59 Zhang, Zou, Shan (bib586) 2017; 56 Adedeji, Ahmadisharaf, Sun (b0005) 2022; 251 Bedri, Corkery, O'Sullivan, Alvarez, Erichsen, Deering, Demeter, O'Hare, Meijer, Masterson (b0045) 2014; 61 Mamun, Kim, Alam, An (b0260) 2020; 12 Lu, Cai, Zhang, Fu (b0245) 2021; 21 Li, Zhang, Zhu, Kaufmann, Xu (b0225) 2022; 14 Ahmadisharaf, Camacho-Rincon, Zhang, Hantush, Mohamoud (b0025) 2022 Glibert (b0110) 2017; 124 Gómez, Salvador, Sanz, Casanova (b0115) 2021; 286 Loucks, Van Beek (bib589) 2017 Mélin, Vantrepotte (b0270) 2015; 160 Mulia, I.E., Tay, H., Roopsekhar, K., Tkalich, P., 2013. Hybrid ANN–GA model for predicting turbidity and chlorophyll-a concentrations. Journal of Hydro-environment Research 7, 279-299.DOI:https://doi.org/10.1016/j.jher.2013.04.003. Kim, Im, Ha, Choi, Ha (bib571) 2014; 51 Wang, Tian, Liao (b0455) 2021; 28 Kerimoglu, O., Große, F., Kreus, M., Lenhart, H.-J., van Beusekom, J.E.E., 2018. A model-based projection of historical state of a coastal ecosystem: Relevance of phytoplankton stoichiometry. Science of The Total Environment 639, 1311-1323.DOI:https://doi.org/10.1016/j.scitotenv.2018.05.215. Shamshirband (bib590) 2019; 13 Morel, Prieur (b0295) 1977; 22 Yin, Harrison (bib581) 2007; 54 Yang, X., Jomaa, S., Rode, M., 2019. Sensitivity Analysis of Fully Distributed Parameterization Reveals Insights Into Heterogeneous Catchment Responses for Water Quality Modeling. Water Resources Research, 55(12): 10935-10953. DOI:10.1029/2019wr025575. Alexakis, Kagalou, Tsakiris (b0030) 2012; 70 Yu, Kim, Li, Jong, Kim, Ryang (b0530) 2022; 303 He, Oki, Sun, Komori, Kanae, Wang, Kim, Yamazaki (b0135) 2011; 92 Ni, Song, Peng, Shen, Peng, Li, Wang, Hu, Cai, Shang, Zhao, Jiang, Huang, Mu, Chen, Peng, Zhang, Zeng, Li, Yang, Jiang, Xu, Li, Chen, Xiang, Cao, Guo, Chen (b0340) 2018; 63 Ahmad (b0015) 2022; 2022 Dodson, Arnott, Cottingham (b0090) 2000; 81 Miao, Zhao, Lin (b0275) 2019; 84 Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, San Francisco, California, USA, pp. 785–794. https://doi.org/10.1145/2939672.2939785. Cherkassky, V., 1997. The Nature Of Statistical Learning Theory∼. IEEE Transactions on Neural Networks 8, 1564-1564. Doi:10.1109/TNN.1997.641482. Pahlevan, Smith, Binding, Gurlin, Li, Bresciani, Giardino (bib579) 2021; 253 Allen, Somerfield, Gilbert (b0035) 2007; 64 Li, Yan, Yu, Zhou (bib591) 2019; 90 Fijani, Barzegar, Deo, Tziritis, Skordas (b0100) 2019; 648 Zhang, Hong (bib584) 2019; 98 Gao, Huang, Shi, Tai, Zhang (b0105) 2020; 162 Vakili, Amanollahi (bib576) 2020; 247 Lu, Ma (b0250) 2020; 249 Palani, Liong, Tkalich (b0355) 2008; 56 Mohebzadeh, Yeom, Lee (b0285) 2020; 12 Tian, Liao, Zhang (b0425) 2017; 364 Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P., 2011. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague. 2011, pp. 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265. Li, Yin, Quan, Zhang (bib577) 2019; 10 N. Moriasi, D., W. Gitau, M., Pai, N., Daggupati, P., 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 58(6): 1763-1785. DOI:https://doi.org/10.13031/trans.58.10715. Yau, P.S., Lee, S.C., Corbett, J.J., Wang, C., Cheng, Y., Ho, K.F., 2012. Estimation of exhaust emission from ocean-going vessels in Hong Kong. Science of The Total Environment 431, 299-306.DOI:https://doi.org/10.1016/j.scitotenv.2012.03.092. Zhang, Zhang, Huang, Gao (bib574) 2017; 24 AFCD, 2019. History of red tide/HAB in Hong Kong. Agriculture, Fisheries and Conservation Department, HKSAR. Ahmadisharaf, Camacho, Zhang, Hantush, Mohamoud (b0020) 2019; 24 Rajaee, Boroumand (b0370) 2015; 53 Cheng, Chan, Lee (b0070) 2020; 152 Dragomiretskiy, Zosso (b0095) 2014; 62 Antico, Schlotthauer, Torres (b0040) 2014; 119 Derot, Yajima, Schmitt (b0085) 2020; 60 McClelland, J.L., 1988. Parallel Distributed Processing: Implications for Cognition and Developmen. Song, C., Yao, L., Hua, C., Ni, Q., 2021. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Environ Monit Assess, 193(6): 363. DOI:10.1007/s10661-021-09127-6. Zhou, Wang, Zhou, Mao (b0565) 2020; 705 Guo, Dong, Lee (b0120) 2020; 161 Huisman, Codd, Paerl, Ibelings, Verspagen, Visser (b0180) 2018; 16 Wang, Wu, Yiu, Shen, Lam (b0460) 2020; 745 Liu, Xu, Li (b0230) 2016; 49 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Tung, Liu (b0170) 1998; 454 Nazeer, M., Nichol, J.E., 2016. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. Journal of Hydrology 532, 80-89.DOI:https://doi.org/10.1016/j.jhydrol.2015.11.037. Stow, Roessler, Borsuk, Bowen, Reckhow (b0415) 2003; 129 West, Dellana (bib575) 2011; 27 Liu (10.1016/j.jhydrol.2023.129207_b0230) 2016; 49 Lu (10.1016/j.jhydrol.2023.129207_b0245) 2021; 21 Stow (10.1016/j.jhydrol.2023.129207_b0415) 2003; 129 Bedri (10.1016/j.jhydrol.2023.129207_b0045) 2014; 61 Razavi (10.1016/j.jhydrol.2023.129207_bib585) 2021; 137 Wang (10.1016/j.jhydrol.2023.129207_b0460) 2020; 745 Gao (10.1016/j.jhydrol.2023.129207_b0105) 2020; 162 Zhang (10.1016/j.jhydrol.2023.129207_bib586) 2017; 56 Mélin (10.1016/j.jhydrol.2023.129207_b0270) 2015; 160 Song (10.1016/j.jhydrol.2023.129207_bib583) 2022; 81 Kumar (10.1016/j.jhydrol.2023.129207_b0205) 2018; 161 Tang (10.1016/j.jhydrol.2023.129207_b0420) 2008; 57 10.1016/j.jhydrol.2023.129207_b0430 10.1016/j.jhydrol.2023.129207_b0310 Ni (10.1016/j.jhydrol.2023.129207_b0340) 2018; 63 Gómez (10.1016/j.jhydrol.2023.129207_b0115) 2021; 286 Guo (10.1016/j.jhydrol.2023.129207_bib580) 2022; 183 West (10.1016/j.jhydrol.2023.129207_bib575) 2011; 27 10.1016/j.jhydrol.2023.129207_b0510 10.1016/j.jhydrol.2023.129207_b0195 10.1016/j.jhydrol.2023.129207_b0075 Adedeji (10.1016/j.jhydrol.2023.129207_b0005) 2022; 251 Dodson (10.1016/j.jhydrol.2023.129207_b0090) 2000; 81 Li (10.1016/j.jhydrol.2023.129207_bib577) 2019; 10 Palani (10.1016/j.jhydrol.2023.129207_b0355) 2008; 56 10.1016/j.jhydrol.2023.129207_b0505 He (10.1016/j.jhydrol.2023.129207_b0135) 2011; 92 Yu (10.1016/j.jhydrol.2023.129207_b0530) 2022; 303 Nordstrom (10.1016/j.jhydrol.2023.129207_b0345) 2005; 12 Hu (10.1016/j.jhydrol.2023.129207_b0150) 2021; 59 Miao (10.1016/j.jhydrol.2023.129207_b0275) 2019; 84 Kim (10.1016/j.jhydrol.2023.129207_bib571) 2014; 51 Muttil (10.1016/j.jhydrol.2023.129207_bib572) 2005; 189 Lu (10.1016/j.jhydrol.2023.129207_b0250) 2020; 249 Wang (10.1016/j.jhydrol.2023.129207_b0450) 2022; 605 Tian (10.1016/j.jhydrol.2023.129207_b0425) 2017; 364 Chau (10.1016/j.jhydrol.2023.129207_bib573) 2007; 15 Huang (10.1016/j.jhydrol.2023.129207_b0170) 1998; 454 10.1016/j.jhydrol.2023.129207_b0265 He (10.1016/j.jhydrol.2023.129207_bib588) 2020; 34 10.1016/j.jhydrol.2023.129207_b0300 Zhou (10.1016/j.jhydrol.2023.129207_b0565) 2020; 705 Yan-Long (10.1016/j.jhydrol.2023.129207_b9000) 2019; 90 10.1016/j.jhydrol.2023.129207_b0185 Morel (10.1016/j.jhydrol.2023.129207_b0295) 1977; 22 Derot (10.1016/j.jhydrol.2023.129207_b0085) 2020; 60 Michalak (10.1016/j.jhydrol.2023.129207_b0280) 2013; 110 Huang (10.1016/j.jhydrol.2023.129207_bib578) 2016 Xie (10.1016/j.jhydrol.2023.129207_b0495) 2019; 577 Wang (10.1016/j.jhydrol.2023.129207_b0455) 2021; 28 Dragomiretskiy (10.1016/j.jhydrol.2023.129207_b0095) 2014; 62 Guo (10.1016/j.jhydrol.2023.129207_b0120) 2020; 161 Qi (10.1016/j.jhydrol.2023.129207_b0365) 2004; 512 Shamshirband (10.1016/j.jhydrol.2023.129207_bib590) 2019; 13 Vakili (10.1016/j.jhydrol.2023.129207_bib576) 2020; 247 10.1016/j.jhydrol.2023.129207_b0410 Loucks (10.1016/j.jhydrol.2023.129207_bib589) 2017 Ahmadisharaf (10.1016/j.jhydrol.2023.129207_b0020) 2019; 24 Zhang (10.1016/j.jhydrol.2023.129207_bib574) 2017; 24 10.1016/j.jhydrol.2023.129207_b0010 10.1016/j.jhydrol.2023.129207_b0055 10.1016/j.jhydrol.2023.129207_b0330 Ahmadisharaf (10.1016/j.jhydrol.2023.129207_b0025) 2022 Zhang (10.1016/j.jhydrol.2023.129207_bib584) 2019; 98 Munnooru (10.1016/j.jhydrol.2023.129207_b0315) 2019; 69 Morel (10.1016/j.jhydrol.2023.129207_bib593) 1980; 18 Ahmad (10.1016/j.jhydrol.2023.129207_b0015) 2022; 2022 Rajaee (10.1016/j.jhydrol.2023.129207_b0370) 2015; 53 Mamun (10.1016/j.jhydrol.2023.129207_b0260) 2020; 12 Mohebzadeh (10.1016/j.jhydrol.2023.129207_b0285) 2020; 12 Yin (10.1016/j.jhydrol.2023.129207_bib581) 2007; 54 Hou (10.1016/j.jhydrol.2023.129207_b0145) 2022; 15 Alexakis (10.1016/j.jhydrol.2023.129207_b0030) 2012; 70 Naik (10.1016/j.jhydrol.2023.129207_b0325) 2019; 136 Antico (10.1016/j.jhydrol.2023.129207_b0040) 2014; 119 Huisman (10.1016/j.jhydrol.2023.129207_b0180) 2018; 16 Pahlevan (10.1016/j.jhydrol.2023.129207_bib579) 2021; 253 Cheng (10.1016/j.jhydrol.2023.129207_b0070) 2020; 152 Sharma (10.1016/j.jhydrol.2023.129207_b0400) 2019; 14 Li (10.1016/j.jhydrol.2023.129207_b0225) 2022; 14 Allen (10.1016/j.jhydrol.2023.129207_b0035) 2007; 64 Glibert (10.1016/j.jhydrol.2023.129207_b0110) 2017; 124 Chen (10.1016/j.jhydrol.2023.129207_b0060) 2015; 43 Li (10.1016/j.jhydrol.2023.129207_bib591) 2019; 90 Fijani (10.1016/j.jhydrol.2023.129207_b0100) 2019; 648 |
| References_xml | – reference: McClelland, J.L., 1988. Parallel Distributed Processing: Implications for Cognition and Developmen. – volume: 110 start-page: 6448 year: 2013 end-page: 6452 ident: b0280 article-title: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions publication-title: Proc Natl Acad Sci U S A – volume: 161 year: 2020 ident: b0120 article-title: A real time data driven algal bloom risk forecast system for mariculture management publication-title: Mar Pollut Bull – volume: 253 start-page: 112200 year: 2021 ident: bib579 article-title: Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters publication-title: Remote Sensing of Environment – volume: 81 start-page: 2662 year: 2000 end-page: 2679 ident: b0090 article-title: The Relationship In Lake Communities Between Primary Productivity And Species Richness publication-title: Ecology – volume: 62 start-page: 531 year: 2014 end-page: 544 ident: b0095 article-title: Variational Mode Decomposition publication-title: IEEE Transactions on Signal Processing – volume: 54 start-page: 646 year: 2007 end-page: 656 ident: bib581 article-title: Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters publication-title: Marine Pollution Bulletin – volume: 22 start-page: 709 year: 1977 end-page: 722 ident: b0295 article-title: Analysis of variations in ocean color1 publication-title: Limnology and Oceanography – volume: 69 start-page: 925 year: 2019 end-page: 937 ident: b0315 article-title: Estimation of inherent optical properties using quasi-analytical algorithm along the coastal waters of southeast Arabian Sea publication-title: Ocean Dynamics – volume: 43 start-page: 58 year: 2015 end-page: 65 ident: b0060 article-title: Online forecasting chlorophyll a concentrations by an auto-regressive integrated moving average model: Feasibilities and potentials publication-title: Harmful Algae – volume: 60 year: 2020 ident: b0085 article-title: Benefits of machine learning and sampling frequency on phytoplankton bloom forecasts in coastal areas publication-title: Ecological Informatics – volume: 137 start-page: 104954 year: 2021 ident: bib585 article-title: The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support publication-title: Environmental Modelling & Software – volume: 90 start-page: 101702 year: 2019 ident: bib591 article-title: A review of karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism publication-title: Harmful Algae – volume: 136 start-page: 701 year: 2019 end-page: 731 ident: b0325 article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-Kernel Robust Ridge regression publication-title: Renewable Energy – reference: AFCD, 2019. History of red tide/HAB in Hong Kong. Agriculture, Fisheries and Conservation Department, HKSAR. – reference: Mulia, I.E., Tay, H., Roopsekhar, K., Tkalich, P., 2013. Hybrid ANN–GA model for predicting turbidity and chlorophyll-a concentrations. Journal of Hydro-environment Research 7, 279-299.DOI:https://doi.org/10.1016/j.jher.2013.04.003. – volume: 24 year: 2019 ident: b0020 article-title: Calibration and Validation of Watershed Models and Advances in Uncertainty Analysis in TMDL Studies publication-title: Journal of Hydrologic Engineering – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: b0170 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A – volume: 63 start-page: 1626 year: 2018 end-page: 1634 ident: b0340 article-title: Pediatric reference intervals in China (PRINCE): design and rationale for a large, multicenter collaborative cross-sectional study publication-title: Science Bulletin – volume: 124 start-page: 591 year: 2017 end-page: 606 ident: b0110 article-title: Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes publication-title: Mar Pollut Bull – volume: 49 start-page: 1 year: 2016 end-page: 8 ident: b0230 article-title: Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks publication-title: Computers & Electrical Engineering – volume: 18 start-page: 177 year: 1980 end-page: 201 ident: bib593 article-title: In-water and remote measurements of ocean color publication-title: Boundary-Layer Meteorology – volume: 81 start-page: 262 year: 2022 ident: bib583 article-title: A hybrid model for water quality parameter prediction based on CEEMDAN-IALO-LSTM ensemble learning publication-title: Environmental Earth Sciences – reference: Song, C., Yao, L., Hua, C., Ni, Q., 2021. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River, China. Environ Monit Assess, 193(6): 363. DOI:10.1007/s10661-021-09127-6. – reference: dtide/redtide/red03.html. – volume: 59 start-page: 4590 year: 2021 end-page: 4607 ident: b0150 article-title: A Machine Learning Approach to Estimate Surface Chlorophyll Concentrations in Global Oceans From Satellite Measurements publication-title: IEEE Transactions on Geoscience and Remote Sensing – start-page: 215 year: 2022 end-page: 269 ident: b0025 article-title: Model Calibration and Validation publication-title: Total Maximum Daily Load Development and Implementation – volume: 286 year: 2021 ident: b0115 article-title: A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods publication-title: Environmental Pollution – reference: Yau, P.S., Lee, S.C., Corbett, J.J., Wang, C., Cheng, Y., Ho, K.F., 2012. Estimation of exhaust emission from ocean-going vessels in Hong Kong. Science of The Total Environment 431, 299-306.DOI:https://doi.org/10.1016/j.scitotenv.2012.03.092. – volume: 90 start-page: 221 year: 2019 end-page: 227 ident: b9000 article-title: Spatial-Temporal Distribution of Golden Tide Based on High-Resolution Satellite Remote Sensing in the South Yellow Sea publication-title: Journal of Coastal Research – volume: 64 start-page: 3 year: 2007 end-page: 14 ident: b0035 article-title: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models publication-title: Journal of Marine Systems – volume: 13 start-page: 91 year: 2019 end-page: 101 ident: bib590 article-title: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters publication-title: Engineering Applications of Computational Fluid Mechanics – volume: 745 year: 2020 ident: b0460 article-title: Long-term variation in phytoplankton assemblages during urbanization: A comparative case study of Deep Bay and Mirs Bay, Hong Kong publication-title: China. Science of The Total Environment – volume: 61 start-page: 458 year: 2014 end-page: 476 ident: b0045 article-title: An integrated catchment-coastal modelling system for real-time water quality forecasts publication-title: Environmental Modelling & Software – volume: 27 start-page: 777 year: 2011 end-page: 803 ident: bib575 article-title: An empirical analysis of neural network memory structures for basin water quality forecasting publication-title: International Journal of Forecasting – year: 2017 ident: bib589 publication-title: Water resource systems planning and management: An introduction to methods, models, and applications – volume: 249 year: 2020 ident: b0250 article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction publication-title: Chemosphere – volume: 16 start-page: 471 year: 2018 end-page: 483 ident: b0180 article-title: Cyanobacterial blooms publication-title: Nat Rev Microbiol – volume: 129 start-page: 307 year: 2003 end-page: 314 ident: b0415 article-title: Comparison of estuarine water quality models for total maximum daily load development in Neuse River estuary publication-title: J. Water Resour. Plann. Manage. – volume: 247 start-page: 119134 year: 2020 ident: bib576 article-title: Determination of optically inactive water quality variables using Landsat 8 data: A case study in Geshlagh reservoir affected by agricultural land use publication-title: Journal of Cleaner Production – volume: 12 year: 2020 ident: b0260 article-title: Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches publication-title: Water – reference: Torres, M.E., Colominas, M.A., Schlotthauer, G., Flandrin, P., 2011. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague. 2011, pp. 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265. – volume: 21 start-page: 3602 year: 2021 end-page: 3613 ident: b0245 article-title: Water quality in relation to land use in the Junshan Lake watershed and water quality predictions publication-title: Water Supply – volume: 56 start-page: 1586 year: 2008 end-page: 1597 ident: b0355 article-title: An ANN application for water quality forecasting publication-title: Mar Pollut Bull – reference: Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, San Francisco, California, USA, pp. 785–794. https://doi.org/10.1145/2939672.2939785. – volume: 119 start-page: 1218 year: 2014 end-page: 1233 ident: b0040 article-title: Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: Application to the Paraná River Basin publication-title: Journal of Geophysical Research: Atmospheres – volume: 12 start-page: 1412 year: 2020 ident: b0285 article-title: Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming in South Korea publication-title: Remote Sensing – volume: 98 start-page: 1107 year: 2019 end-page: 1136 ident: bib584 article-title: Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm publication-title: Nonlinear Dynamics – volume: 15 start-page: 1568 year: 2007 end-page: 1572 ident: bib573 article-title: Integrated water quality management in Tolo Harbour, Hong Kong: a case study publication-title: Journal of Cleaner Production – volume: 51 start-page: 158 year: 2014 end-page: 174 ident: bib571 article-title: Machine learning approaches to coastal water quality monitoring using GOCI satellite data publication-title: GIScience & Remote Sensing – volume: 14 year: 2022 ident: b0225 article-title: Inversion and Driving Force Analysis of Nutrient Concentrations in the Ecosystem of the Shenzhen-Hong Kong Bay Area publication-title: Remote Sensing – volume: 577 start-page: 123915 year: 2019 ident: b0495 article-title: Hybrid forecasting model for non-stationary daily runoff series: A case study in the Han River Basin publication-title: China. Journal of Hydrology – reference: Yang, X., Jomaa, S., Rode, M., 2019. Sensitivity Analysis of Fully Distributed Parameterization Reveals Insights Into Heterogeneous Catchment Responses for Water Quality Modeling. Water Resources Research, 55(12): 10935-10953. DOI:10.1029/2019wr025575. – reference: Cherkassky, V., 1997. The Nature Of Statistical Learning Theory∼. IEEE Transactions on Neural Networks 8, 1564-1564. Doi:10.1109/TNN.1997.641482. – volume: 648 start-page: 839 year: 2019 end-page: 853 ident: b0100 article-title: Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters publication-title: Sci Total Environ – volume: 24 start-page: 6746 year: 2017 end-page: 6756 ident: bib574 article-title: Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors publication-title: Environmental Science and Pollution Research – volume: 189 start-page: 363 year: 2005 end-page: 376 ident: bib572 article-title: Genetic programming for analysis and real-time prediction of coastal algal blooms publication-title: Ecological Modelling – volume: 152 year: 2020 ident: b0070 article-title: Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs) publication-title: Marine Pollution Bulletin – volume: 605 start-page: 127320 year: 2022 ident: b0450 article-title: Prediction of estuarine water quality using interpretable machine learning approach publication-title: Journal of Hydrology – reference: N. Moriasi, D., W. Gitau, M., Pai, N., Daggupati, P., 2015. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Transactions of the ASABE, 58(6): 1763-1785. DOI:https://doi.org/10.13031/trans.58.10715. – volume: 160 start-page: 235 year: 2015 end-page: 251 ident: b0270 article-title: How optically diverse is the coastal ocean? publication-title: Remote Sensing of Environment – volume: 705 year: 2020 ident: b0565 article-title: Eutrophication control strategies for highly anthropogenic influenced coastal waters publication-title: Sci Total Environ – reference: Nazeer, M., Nichol, J.E., 2016. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. Journal of Hydrology 532, 80-89.DOI:https://doi.org/10.1016/j.jhydrol.2015.11.037. – volume: 56 start-page: 240 year: 2017 end-page: 246 ident: bib586 article-title: Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China publication-title: Journal of Environmental Sciences – volume: 15 start-page: 130 year: 2022 end-page: 134 ident: b0145 article-title: Global mapping reveals increase in lacustrine algal blooms over the past decade publication-title: Nature Geoscience – volume: 70 start-page: 687 year: 2012 end-page: 698 ident: b0030 article-title: Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake, Greece publication-title: Environmental Earth Sciences – volume: 162 start-page: 1665 year: 2020 end-page: 1683 ident: b0105 article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks publication-title: Renewable Energy – volume: 364 start-page: 42 year: 2017 end-page: 52 ident: b0425 article-title: An optimization of artificial neural network model for predicting chlorophyll dynamics publication-title: Ecological Modelling – volume: 14 start-page: 084016 year: 2019 ident: b0400 article-title: Seasonal hydroclimatic ensemble forecasts anticipate nutrient and suspended sediment loads using a dynamical-statistical approach publication-title: Environmental Research Letters – volume: 57 start-page: 816 year: 2008 end-page: 825 ident: b0420 article-title: The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong publication-title: Marine Pollution Bulletin – year: 2016 ident: bib578 article-title: Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine publication-title: Energies – volume: 512 start-page: 209 year: 2004 end-page: 214 ident: b0365 article-title: Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998 publication-title: Hydrobiologia – volume: 34 start-page: 865 year: 2020 end-page: 884 ident: bib588 article-title: A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting publication-title: Water Resources Management – volume: 10 start-page: 1077 year: 2019 ident: bib577 article-title: Gene Expression Value Prediction Based on XGBoost Algorithm publication-title: Front Genet – volume: 84 start-page: 82 year: 2019 end-page: 95 ident: b0275 article-title: Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition publication-title: ISA Trans – volume: 303 start-page: 119136 year: 2022 ident: b0530 article-title: Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network publication-title: Environ Pollut – volume: 2022 start-page: 1 year: 2022 end-page: 11 ident: b0015 article-title: Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials publication-title: Complexity – volume: 28 start-page: 33531 year: 2021 end-page: 33544 ident: b0455 article-title: Statistical comparison between SARIMA and ANN's performance for surface water quality time series prediction publication-title: Environ Sci Pollut Res Int – volume: 12 start-page: 741 year: 2005 end-page: 753 ident: b0345 article-title: Role of the hydrological cycle in regulating the planetary climate system of a simple nonlinear dynamical model publication-title: Nonlin. Processes Geophys. – volume: 92 start-page: 172 year: 2011 end-page: 177 ident: b0135 article-title: Estimating monthly total nitrogen concentration in streams by using artificial neural network publication-title: Journal of Environmental Management – volume: 161 start-page: 20 year: 2018 end-page: 28 ident: b0205 article-title: Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea publication-title: Continental Shelf Research – volume: 183 start-page: 451 year: 2022 end-page: 469 ident: bib580 article-title: Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 251 year: 2022 ident: b0005 article-title: Predicting in-stream water quality constituents at the watershed scale using machine learning publication-title: J Contam Hydrol – volume: 53 start-page: 208 year: 2015 end-page: 217 ident: b0370 article-title: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models publication-title: Applied Ocean Research – reference: Kerimoglu, O., Große, F., Kreus, M., Lenhart, H.-J., van Beusekom, J.E.E., 2018. A model-based projection of historical state of a coastal ecosystem: Relevance of phytoplankton stoichiometry. Science of The Total Environment 639, 1311-1323.DOI:https://doi.org/10.1016/j.scitotenv.2018.05.215. – volume: 161 issue: Pt B year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0120 article-title: A real time data driven algal bloom risk forecast system for mariculture management publication-title: Mar Pollut Bull – ident: 10.1016/j.jhydrol.2023.129207_b0300 doi: 10.13031/trans.58.10715 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_b0015 article-title: Extreme Gradient Boosting Algorithm for Predicting Shear Strengths of Rockfill Materials publication-title: Complexity doi: 10.1155/2022/9415863 – year: 2017 ident: 10.1016/j.jhydrol.2023.129207_bib589 – volume: 162 start-page: 1665 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0105 article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks publication-title: Renewable Energy doi: 10.1016/j.renene.2020.09.141 – volume: 15 start-page: 130 issue: 2 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_b0145 article-title: Global mapping reveals increase in lacustrine algal blooms over the past decade publication-title: Nature Geoscience doi: 10.1038/s41561-021-00887-x – ident: 10.1016/j.jhydrol.2023.129207_b0410 doi: 10.1007/s10661-021-09127-6 – volume: 51 start-page: 158 issue: 2 year: 2014 ident: 10.1016/j.jhydrol.2023.129207_bib571 article-title: Machine learning approaches to coastal water quality monitoring using GOCI satellite data publication-title: GIScience & Remote Sensing doi: 10.1080/15481603.2014.900983 – volume: 189 start-page: 363 issue: 3 year: 2005 ident: 10.1016/j.jhydrol.2023.129207_bib572 article-title: Genetic programming for analysis and real-time prediction of coastal algal blooms publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2005.03.018 – volume: 90 start-page: 101702 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_bib591 article-title: A review of karenia mikimotoi: Bloom events, physiology, toxicity and toxic mechanism publication-title: Harmful Algae doi: 10.1016/j.hal.2019.101702 – volume: 28 start-page: 33531 issue: 25 year: 2021 ident: 10.1016/j.jhydrol.2023.129207_b0455 article-title: Statistical comparison between SARIMA and ANN's performance for surface water quality time series prediction publication-title: Environ Sci Pollut Res Int doi: 10.1007/s11356-021-13086-3 – ident: 10.1016/j.jhydrol.2023.129207_b0010 – volume: 12 start-page: 1412 issue: 9 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0285 article-title: Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming in South Korea publication-title: Remote Sensing doi: 10.3390/rs12091412 – volume: 286 year: 2021 ident: 10.1016/j.jhydrol.2023.129207_b0115 article-title: A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods publication-title: Environmental Pollution doi: 10.1016/j.envpol.2021.117489 – volume: 253 start-page: 112200 year: 2021 ident: 10.1016/j.jhydrol.2023.129207_bib579 article-title: Hyperspectral retrievals of phytoplankton absorption and chlorophyll-a in inland and nearshore coastal waters publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2020.112200 – volume: 59 start-page: 4590 year: 2021 ident: 10.1016/j.jhydrol.2023.129207_b0150 article-title: A Machine Learning Approach to Estimate Surface Chlorophyll Concentrations in Global Oceans From Satellite Measurements publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2020.3016473 – volume: 577 start-page: 123915 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_b0495 article-title: Hybrid forecasting model for non-stationary daily runoff series: A case study in the Han River Basin publication-title: China. Journal of Hydrology doi: 10.1016/j.jhydrol.2019.123915 – volume: 183 start-page: 451 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_bib580 article-title: Performance of deep learning in mapping water quality of Lake Simcoe with long-term Landsat archive publication-title: ISPRS Journal of Photogrammetry and Remote Sensing doi: 10.1016/j.isprsjprs.2021.11.023 – ident: 10.1016/j.jhydrol.2023.129207_b0185 doi: 10.1016/j.scitotenv.2018.05.215 – volume: 49 start-page: 1 year: 2016 ident: 10.1016/j.jhydrol.2023.129207_b0230 article-title: Multi-scale prediction of water temperature using empirical mode decomposition with back-propagation neural networks publication-title: Computers & Electrical Engineering doi: 10.1016/j.compeleceng.2015.10.003 – ident: 10.1016/j.jhydrol.2023.129207_b0430 doi: 10.1109/ICASSP.2011.5947265 – volume: 454 start-page: 903 issue: 1971 year: 1998 ident: 10.1016/j.jhydrol.2023.129207_b0170 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1998.0193 – volume: 56 start-page: 1586 year: 2008 ident: 10.1016/j.jhydrol.2023.129207_b0355 article-title: An ANN application for water quality forecasting publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2008.05.021 – volume: 129 start-page: 307 issue: 4 year: 2003 ident: 10.1016/j.jhydrol.2023.129207_b0415 article-title: Comparison of estuarine water quality models for total maximum daily load development in Neuse River estuary publication-title: J. Water Resour. Plann. Manage. doi: 10.1061/(ASCE)0733-9496(2003)129:4(307) – volume: 705 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0565 article-title: Eutrophication control strategies for highly anthropogenic influenced coastal waters publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.135760 – volume: 124 start-page: 591 issue: 2 year: 2017 ident: 10.1016/j.jhydrol.2023.129207_b0110 article-title: Eutrophication, harmful algae and biodiversity - Challenging paradigms in a world of complex nutrient changes publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2017.04.027 – volume: 160 start-page: 235 year: 2015 ident: 10.1016/j.jhydrol.2023.129207_b0270 article-title: How optically diverse is the coastal ocean? publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2015.01.023 – ident: 10.1016/j.jhydrol.2023.129207_b0075 doi: 10.1109/TNN.1997.641482 – ident: 10.1016/j.jhydrol.2023.129207_b0330 doi: 10.1016/j.jhydrol.2015.11.037 – volume: 12 issue: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0260 article-title: Prediction of Algal Chlorophyll-a and Water Clarity in Monsoon-Region Reservoir Using Machine Learning Approaches publication-title: Water doi: 10.3390/w12010030 – volume: 27 start-page: 777 issue: 3 year: 2011 ident: 10.1016/j.jhydrol.2023.129207_bib575 article-title: An empirical analysis of neural network memory structures for basin water quality forecasting publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2010.09.003 – volume: 34 start-page: 865 issue: 2 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_bib588 article-title: A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting publication-title: Water Resources Management doi: 10.1007/s11269-020-02483-x – volume: 57 start-page: 816 issue: 6-12 year: 2008 ident: 10.1016/j.jhydrol.2023.129207_b0420 article-title: The spatial and temporal distribution of heavy metals in sediments of Victoria Harbour, Hong Kong publication-title: Marine Pollution Bulletin doi: 10.1016/j.marpolbul.2008.01.027 – volume: 152 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0070 article-title: Remote sensing of coastal algal blooms using unmanned aerial vehicles (UAVs) publication-title: Marine Pollution Bulletin doi: 10.1016/j.marpolbul.2020.110889 – volume: 56 start-page: 240 year: 2017 ident: 10.1016/j.jhydrol.2023.129207_bib586 article-title: Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China publication-title: Journal of Environmental Sciences doi: 10.1016/j.jes.2016.07.017 – volume: 247 start-page: 119134 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_bib576 article-title: Determination of optically inactive water quality variables using Landsat 8 data: A case study in Geshlagh reservoir affected by agricultural land use publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2019.119134 – volume: 24 issue: 7 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_b0020 article-title: Calibration and Validation of Watershed Models and Advances in Uncertainty Analysis in TMDL Studies publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)HE.1943-5584.0001794 – year: 2016 ident: 10.1016/j.jhydrol.2023.129207_bib578 article-title: Hybrid Short Term Wind Speed Forecasting Using Variational Mode Decomposition and a Weighted Regularized Extreme Learning Machine publication-title: Energies doi: 10.3390/en9120989 – volume: 110 start-page: 6448 issue: 16 year: 2013 ident: 10.1016/j.jhydrol.2023.129207_b0280 article-title: Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1216006110 – volume: 13 start-page: 91 issue: 1 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_bib590 article-title: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2018.1553742 – volume: 43 start-page: 58 year: 2015 ident: 10.1016/j.jhydrol.2023.129207_b0060 article-title: Online forecasting chlorophyll a concentrations by an auto-regressive integrated moving average model: Feasibilities and potentials publication-title: Harmful Algae doi: 10.1016/j.hal.2015.01.002 – volume: 81 start-page: 2662 issue: 10 year: 2000 ident: 10.1016/j.jhydrol.2023.129207_b0090 article-title: The Relationship In Lake Communities Between Primary Productivity And Species Richness publication-title: Ecology doi: 10.1890/0012-9658(2000)081[2662:TRILCB]2.0.CO;2 – volume: 21 start-page: 3602 issue: 7 year: 2021 ident: 10.1016/j.jhydrol.2023.129207_b0245 article-title: Water quality in relation to land use in the Junshan Lake watershed and water quality predictions publication-title: Water Supply doi: 10.2166/ws.2021.123 – volume: 81 start-page: 262 issue: 9 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_bib583 article-title: A hybrid model for water quality parameter prediction based on CEEMDAN-IALO-LSTM ensemble learning publication-title: Environmental Earth Sciences doi: 10.1007/s12665-022-10380-2 – volume: 161 start-page: 20 year: 2018 ident: 10.1016/j.jhydrol.2023.129207_b0205 article-title: Influence of nutrient fluxes on phytoplankton community and harmful algal blooms along the coastal waters of southeastern Arabian Sea publication-title: Continental Shelf Research doi: 10.1016/j.csr.2018.04.012 – volume: 61 start-page: 458 year: 2014 ident: 10.1016/j.jhydrol.2023.129207_b0045 article-title: An integrated catchment-coastal modelling system for real-time water quality forecasts publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2014.02.006 – volume: 137 start-page: 104954 year: 2021 ident: 10.1016/j.jhydrol.2023.129207_bib585 article-title: The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support publication-title: Environmental Modelling & Software doi: 10.1016/j.envsoft.2020.104954 – volume: 15 start-page: 1568 issue: 16 year: 2007 ident: 10.1016/j.jhydrol.2023.129207_bib573 article-title: Integrated water quality management in Tolo Harbour, Hong Kong: a case study publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2006.07.047 – volume: 251 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_b0005 article-title: Predicting in-stream water quality constituents at the watershed scale using machine learning publication-title: J Contam Hydrol doi: 10.1016/j.jconhyd.2022.104078 – volume: 648 start-page: 839 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_b0100 article-title: Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.08.221 – volume: 64 start-page: 3 issue: 1–4 year: 2007 ident: 10.1016/j.jhydrol.2023.129207_b0035 article-title: Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models publication-title: Journal of Marine Systems doi: 10.1016/j.jmarsys.2006.02.010 – volume: 136 start-page: 701 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_b0325 article-title: A multi-objective wind speed and wind power prediction interval forecasting using variational modes decomposition based Multi-Kernel Robust Ridge regression publication-title: Renewable Energy doi: 10.1016/j.renene.2019.01.006 – ident: 10.1016/j.jhydrol.2023.129207_b0510 doi: 10.1016/j.scitotenv.2012.03.092 – volume: 12 start-page: 741 year: 2005 ident: 10.1016/j.jhydrol.2023.129207_b0345 article-title: Role of the hydrological cycle in regulating the planetary climate system of a simple nonlinear dynamical model publication-title: Nonlin. Processes Geophys. doi: 10.5194/npg-12-741-2005 – volume: 24 start-page: 6746 issue: 7 year: 2017 ident: 10.1016/j.jhydrol.2023.129207_bib574 article-title: Analysing the correlations of long-term seasonal water quality parameters, suspended solids and total dissolved solids in a shallow reservoir with meteorological factors publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-017-8402-1 – volume: 60 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0085 article-title: Benefits of machine learning and sampling frequency on phytoplankton bloom forecasts in coastal areas publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2020.101174 – volume: 62 start-page: 531 year: 2014 ident: 10.1016/j.jhydrol.2023.129207_b0095 article-title: Variational Mode Decomposition publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2013.2288675 – ident: 10.1016/j.jhydrol.2023.129207_b0505 doi: 10.1029/2019WR025575 – volume: 54 start-page: 646 issue: 6 year: 2007 ident: 10.1016/j.jhydrol.2023.129207_bib581 article-title: Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters publication-title: Marine Pollution Bulletin doi: 10.1016/j.marpolbul.2007.03.001 – volume: 90 start-page: 221 issue: sp1 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_b9000 article-title: Spatial-Temporal Distribution of Golden Tide Based on High-Resolution Satellite Remote Sensing in the South Yellow Sea publication-title: Journal of Coastal Research doi: 10.2112/SI90-027.1 – volume: 303 start-page: 119136 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_b0530 article-title: Water quality forecasting based on data decomposition, fuzzy clustering and deep learning neural network publication-title: Environ Pollut doi: 10.1016/j.envpol.2022.119136 – volume: 16 start-page: 471 issue: 8 year: 2018 ident: 10.1016/j.jhydrol.2023.129207_b0180 article-title: Cyanobacterial blooms publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0040-1 – volume: 69 start-page: 925 issue: 8 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_b0315 article-title: Estimation of inherent optical properties using quasi-analytical algorithm along the coastal waters of southeast Arabian Sea publication-title: Ocean Dynamics doi: 10.1007/s10236-019-01287-x – volume: 98 start-page: 1107 issue: 2 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_bib584 article-title: Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm publication-title: Nonlinear Dynamics doi: 10.1007/s11071-019-05252-7 – start-page: 215 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_b0025 article-title: Model Calibration and Validation publication-title: Total Maximum Daily Load Development and Implementation doi: 10.1061/9780784415948.ch8 – volume: 119 start-page: 1218 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2023.129207_b0040 article-title: Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: Application to the Paraná River Basin publication-title: Journal of Geophysical Research: Atmospheres doi: 10.1002/2013JD020420 – volume: 249 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0250 article-title: Hybrid decision tree-based machine learning models for short-term water quality prediction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126169 – volume: 364 start-page: 42 year: 2017 ident: 10.1016/j.jhydrol.2023.129207_b0425 article-title: An optimization of artificial neural network model for predicting chlorophyll dynamics publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2017.09.013 – volume: 605 start-page: 127320 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_b0450 article-title: Prediction of estuarine water quality using interpretable machine learning approach publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.127320 – volume: 745 year: 2020 ident: 10.1016/j.jhydrol.2023.129207_b0460 article-title: Long-term variation in phytoplankton assemblages during urbanization: A comparative case study of Deep Bay and Mirs Bay, Hong Kong publication-title: China. Science of The Total Environment doi: 10.1016/j.scitotenv.2020.140993 – ident: 10.1016/j.jhydrol.2023.129207_b0310 doi: 10.1016/j.jher.2013.04.003 – volume: 92 start-page: 172 year: 2011 ident: 10.1016/j.jhydrol.2023.129207_b0135 article-title: Estimating monthly total nitrogen concentration in streams by using artificial neural network publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2010.09.014 – volume: 18 start-page: 177 issue: 2 year: 1980 ident: 10.1016/j.jhydrol.2023.129207_bib593 article-title: In-water and remote measurements of ocean color publication-title: Boundary-Layer Meteorology doi: 10.1007/BF00121323 – ident: 10.1016/j.jhydrol.2023.129207_b0195 doi: 10.1007/s10661-021-08907-4 – volume: 70 start-page: 687 issue: 2 year: 2012 ident: 10.1016/j.jhydrol.2023.129207_b0030 article-title: Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake, Greece publication-title: Environmental Earth Sciences doi: 10.1007/s12665-012-2152-7 – volume: 14 start-page: 084016 issue: 8 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_b0400 article-title: Seasonal hydroclimatic ensemble forecasts anticipate nutrient and suspended sediment loads using a dynamical-statistical approach publication-title: Environmental Research Letters doi: 10.1088/1748-9326/ab2c26 – volume: 14 issue: 15 year: 2022 ident: 10.1016/j.jhydrol.2023.129207_b0225 article-title: Inversion and Driving Force Analysis of Nutrient Concentrations in the Ecosystem of the Shenzhen-Hong Kong Bay Area publication-title: Remote Sensing doi: 10.3390/rs14153694 – volume: 84 start-page: 82 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_b0275 article-title: Identification of mechanical compound-fault based on the improved parameter-adaptive variational mode decomposition publication-title: ISA Trans doi: 10.1016/j.isatra.2018.10.008 – volume: 63 start-page: 1626 issue: 24 year: 2018 ident: 10.1016/j.jhydrol.2023.129207_b0340 article-title: Pediatric reference intervals in China (PRINCE): design and rationale for a large, multicenter collaborative cross-sectional study publication-title: Science Bulletin doi: 10.1016/j.scib.2018.11.024 – volume: 10 start-page: 1077 year: 2019 ident: 10.1016/j.jhydrol.2023.129207_bib577 article-title: Gene Expression Value Prediction Based on XGBoost Algorithm publication-title: Front Genet doi: 10.3389/fgene.2019.01077 – volume: 22 start-page: 709 issue: 4 year: 1977 ident: 10.1016/j.jhydrol.2023.129207_b0295 article-title: Analysis of variations in ocean color1 publication-title: Limnology and Oceanography doi: 10.4319/lo.1977.22.4.0709 – volume: 512 start-page: 209 issue: 1-3 year: 2004 ident: 10.1016/j.jhydrol.2023.129207_b0365 article-title: Some observations on harmful algal bloom (HAB) events along the coast of Guangdong, southern China in 1998 publication-title: Hydrobiologia doi: 10.1023/B:HYDR.0000020329.06666.8c – ident: 10.1016/j.jhydrol.2023.129207_b0055 doi: 10.1145/2939672.2939785 – ident: 10.1016/j.jhydrol.2023.129207_b0265 – volume: 53 start-page: 208 year: 2015 ident: 10.1016/j.jhydrol.2023.129207_b0370 article-title: Forecasting of chlorophyll-a concentrations in South San Francisco Bay using five different models publication-title: Applied Ocean Research doi: 10.1016/j.apor.2015.09.001 |
| SSID | ssj0000334 |
| Score | 2.582498 |
| Snippet | •A hybrid model named CVXS was proposed to forecast the ChlA and TN concentrations.•Machine learning was integrated with decomposition algorithms in the CVXS... Information regarding Chlorophyll-a (ChlA) and total nitrogen (TN) is critical for early warning of algal blooms. However, reliable models for accurate... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 129207 |
| SubjectTerms | algae China chlorophyll coastal water Decomposition algorithm Extreme gradient boosting algorithm Forecasting Machine learning model validation regression analysis time series analysis total nitrogen water management Water quality |
| Title | A hybrid decomposition and Machine learning model for forecasting Chlorophyll-a and total nitrogen concentration in coastal waters |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2023.129207 https://www.proquest.com/docview/2834212459 |
| Volume | 619 |
| WOSCitedRecordID | wos000953911400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLhJcEE-xvGQkblWK6jgPH6vVwtLDikMPFZfIcSbbVN1k1cc-rvwb_iUzsZO07KIFJA6NKreOlXxf7JnJNx7GPogglQIEeL6B0JO5jr1UauFJE-YiEGFqUltsIjo5iadT9bXX-9HkwlwsorKMr67U-X-FGtsQbEqd_Qu425NiA35H0PGIsOPxj4Af9WfXlIbVz4D04k6U5QQVpJyEplTEqa2DUysN8QNGr2oR9OEMnfgK7_9i4WkrsawoZxKf_mWF45JU3Yo6G6WkqbAr_uNSr52i_haDd3adLe2OT2jVjs5oh4aM6NiGIr7NNoT4tNAVWqSnrTRoU4dzj7HpEoqOhy7SPS7K2aboj0GXnURgUrjALsXDtyMbwt8SxNThthspN236wTC0lZEHYGftOFKUWBdtT-uhnYpvLBE2WjEfzO1VD2jkwZCKdkXdmtgqFelltqDh0FUjb3J6j-2LKFA4ge6PvhxNx92y7_uy2ZqeOnTpYh9vHex3htAvJkFt50wes0cOLz6yxHrCelA-ZQ8-g9va_Bn7PuKWYHyHYBx5wh3BeEMwXhOMI7n4FsH4DsHqjjXBeEMwvkMwXlBDTTBuCfacTT4dTQ6PPVfJwzO-FGsPfdIsjY1RkEEIMtMiyADvlz_EGcTPYjTjNToWOWS5DqSC0ORxnCuDtrxvdOC_YHtlVcJLxqNMqEzgT3mgpA7zFD1qEeQqhVCmEIQHTDZ3NTFul3sqtrJIGjnjPHFgJARGYsE4YIO227nd5uWuDnEDWeJsVWuDJsizu7q-byBOcC6nF3S6hGqzStDUJ4GGDNSrfz_9a_awe5jesL31cgNv2X1zsS5Wy3eOtT8BaRvPbA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+decomposition+and+Machine+learning+model+for+forecasting+Chlorophyll-a+and+total+nitrogen+concentration+in+coastal+waters&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zhu%2C+Xiaotong&rft.au=Guo%2C+Hongwei&rft.au=Huang%2C+Jinhui+Jeanne&rft.au=Tian%2C+Shang&rft.date=2023-04-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=619&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.129207&rft.externalDocID=S002216942300149X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |