A spectral analysis approach for the a priori generation of computational grids in the 2-D hydrodynamic-based runoff simulations at a basin scale

•Rigorous approach for the a priori design of computational grids.•Identification of characteristic scales based on 2-D Fourier analysis.•“A-priori” design of the computational grid starting from the characteristic scales.•Significant decrease of run times and negligible errors on outflow hydrograph...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 582; p. 124508
Main Authors: Ferraro, Domenico, Costabile, Pierfranco, Costanzo, Carmelina, Petaccia, Gabriella, Macchione, Francesco
Format: Journal Article
Language:English
Published: Elsevier B.V 01.03.2020
Subjects:
ISSN:0022-1694, 1879-2707
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Rigorous approach for the a priori design of computational grids.•Identification of characteristic scales based on 2-D Fourier analysis.•“A-priori” design of the computational grid starting from the characteristic scales.•Significant decrease of run times and negligible errors on outflow hydrographs. The increasing availability of high-resolution terrain data fostered the development of two-dimensional hydrodynamic-based surface runoff models at basin scale, for flood hazard assessment and mapping purposes. The generation of the computational domain is one of the most important preliminary steps for practical applications of this kind of modeling. Several studies can be found in the technical literature showing the influence exerted by the computational grid type used on the results in terms of water depth, flow velocity and discharge. Several approaches were proposed for the mesh generation even though, in practice, it is subject to the modeller choice and experience. In any case, the reason why a specific mesh is used is rarely discussed and its impact on the model results in terms of outflow hydrographs, runoff volumes and flooded areas extent is seldom analysed. In this work a rigorous approach for an a priori design of a computational grid is proposed. The a priori term suggests that the proposed procedure aims at generating a computational mesh, close to the optimal one, in a time-saving process which is not based on trial meshes and trial simulations. Namely, the process is based on the application of the two-dimensional Fourier analysis to a high-resolution digital elevation model in order to compute the power spectrum and finally to identify the significant waves lengths and the characteristic scales. The latter ones are located in the catchment and used for the generation of a computational grid characterized by different elements size. The simulations of surface runoff at a basin scale have shown that the application of the proposed method for the a priori construction of the grid leads to the generation of a computational mesh which reduces the calculation time by approximately 87%, if compared to a fine grid taken as reference, with negligible errors on outflow hydrographs and flooded areas extent.
AbstractList •Rigorous approach for the a priori design of computational grids.•Identification of characteristic scales based on 2-D Fourier analysis.•“A-priori” design of the computational grid starting from the characteristic scales.•Significant decrease of run times and negligible errors on outflow hydrographs. The increasing availability of high-resolution terrain data fostered the development of two-dimensional hydrodynamic-based surface runoff models at basin scale, for flood hazard assessment and mapping purposes. The generation of the computational domain is one of the most important preliminary steps for practical applications of this kind of modeling. Several studies can be found in the technical literature showing the influence exerted by the computational grid type used on the results in terms of water depth, flow velocity and discharge. Several approaches were proposed for the mesh generation even though, in practice, it is subject to the modeller choice and experience. In any case, the reason why a specific mesh is used is rarely discussed and its impact on the model results in terms of outflow hydrographs, runoff volumes and flooded areas extent is seldom analysed. In this work a rigorous approach for an a priori design of a computational grid is proposed. The a priori term suggests that the proposed procedure aims at generating a computational mesh, close to the optimal one, in a time-saving process which is not based on trial meshes and trial simulations. Namely, the process is based on the application of the two-dimensional Fourier analysis to a high-resolution digital elevation model in order to compute the power spectrum and finally to identify the significant waves lengths and the characteristic scales. The latter ones are located in the catchment and used for the generation of a computational grid characterized by different elements size. The simulations of surface runoff at a basin scale have shown that the application of the proposed method for the a priori construction of the grid leads to the generation of a computational mesh which reduces the calculation time by approximately 87%, if compared to a fine grid taken as reference, with negligible errors on outflow hydrographs and flooded areas extent.
The increasing availability of high-resolution terrain data fostered the development of two-dimensional hydrodynamic-based surface runoff models at basin scale, for flood hazard assessment and mapping purposes. The generation of the computational domain is one of the most important preliminary steps for practical applications of this kind of modeling. Several studies can be found in the technical literature showing the influence exerted by the computational grid type used on the results in terms of water depth, flow velocity and discharge. Several approaches were proposed for the mesh generation even though, in practice, it is subject to the modeller choice and experience. In any case, the reason why a specific mesh is used is rarely discussed and its impact on the model results in terms of outflow hydrographs, runoff volumes and flooded areas extent is seldom analysed. In this work a rigorous approach for an a priori design of a computational grid is proposed. The a priori term suggests that the proposed procedure aims at generating a computational mesh, close to the optimal one, in a time-saving process which is not based on trial meshes and trial simulations. Namely, the process is based on the application of the two-dimensional Fourier analysis to a high-resolution digital elevation model in order to compute the power spectrum and finally to identify the significant waves lengths and the characteristic scales. The latter ones are located in the catchment and used for the generation of a computational grid characterized by different elements size. The simulations of surface runoff at a basin scale have shown that the application of the proposed method for the a priori construction of the grid leads to the generation of a computational mesh which reduces the calculation time by approximately 87%, if compared to a fine grid taken as reference, with negligible errors on outflow hydrographs and flooded areas extent.
ArticleNumber 124508
Author Costanzo, Carmelina
Costabile, Pierfranco
Ferraro, Domenico
Macchione, Francesco
Petaccia, Gabriella
Author_xml – sequence: 1
  givenname: Domenico
  surname: Ferraro
  fullname: Ferraro, Domenico
  organization: Dipartimento di Ingegneria Civile e Architettura, Università di Pavia, Italy
– sequence: 2
  givenname: Pierfranco
  orcidid: 0000-0003-1147-9929
  surname: Costabile
  fullname: Costabile, Pierfranco
  email: pierfranco.costabile@unical.it
  organization: LAMPIT, Laboratorio di Modellistica Numerica per la Protezione Idraulica del Territorio, Università della Calabria, Italy
– sequence: 3
  givenname: Carmelina
  surname: Costanzo
  fullname: Costanzo, Carmelina
  organization: LAMPIT, Laboratorio di Modellistica Numerica per la Protezione Idraulica del Territorio, Università della Calabria, Italy
– sequence: 4
  givenname: Gabriella
  surname: Petaccia
  fullname: Petaccia, Gabriella
  organization: Dipartimento di Ingegneria Civile e Architettura, Università di Pavia, Italy
– sequence: 5
  givenname: Francesco
  orcidid: 0000-0003-4847-8196
  surname: Macchione
  fullname: Macchione, Francesco
  organization: LAMPIT, Laboratorio di Modellistica Numerica per la Protezione Idraulica del Territorio, Università della Calabria, Italy
BookMark eNqFkcFu3CAQhlGVSN2kfYRKHHvxBjBer9VDFaVtEmmlXpozGsOQZYXBBbvSPkbeuOw6p1zCBY2Y7x_m_6_IRYgBCfnC2Zozvrk5rA_7o0nRrwXj3ZoL2bDtB7Li27arRMvaC7JiTIiKbzr5kVzlfGDl1LVckZdbmkfUUwJPIYA_ZpcpjGOKoPfUxkSnPVKgY3IxOfqMARNMLgYaLdVxGOfpXBb8OTmTqQtnQlQ_6PlT5hhgcLrqIaOhaQ7RWprdMPszV4ZNRb68FjBr8PiJXFrwGT-_3tfk6dfPP3cP1e73_ePd7a7StRRTJTecN6yzDZiut1LLDvpSQ83a3nJjBTMd6BaNFLK2m0Zowa0EVmveA0dWX5Ovi27Z9e-MeVKDyxq9h4BxzkpIxhohtvW2tH5bWnWKOSe0Srtl7eKb84ozdQpCHdRrEOoUhFqCKHTzhi5mDpCO73LfFw6LC_8cJpW1w6DRuFQSUya6dxT-A5KKqsU
CitedBy_id crossref_primary_10_1016_j_jhydrol_2022_127870
crossref_primary_10_1016_j_envsoft_2024_106098
crossref_primary_10_1016_j_jhydrol_2022_128182
crossref_primary_10_3390_w12092416
crossref_primary_10_1007_s00477_023_02621_y
crossref_primary_10_1016_j_envsoft_2020_104889
crossref_primary_10_3390_su13105651
crossref_primary_10_2166_nh_2021_243
crossref_primary_10_3390_su17062524
crossref_primary_10_3390_w12092397
crossref_primary_10_3390_hydrology8030110
crossref_primary_10_1016_j_jhydrol_2021_126962
crossref_primary_10_1016_j_jhydrol_2021_126306
crossref_primary_10_1080_10095020_2024_2446306
crossref_primary_10_1016_j_jhydrol_2023_129667
crossref_primary_10_1016_j_oceaneng_2023_116426
crossref_primary_10_2166_hydro_2020_198
crossref_primary_10_3390_hydrology8030109
crossref_primary_10_1016_j_jhydrol_2021_127126
crossref_primary_10_3390_w12030884
crossref_primary_10_1080_19475705_2024_2378991
crossref_primary_10_3390_w12092326
crossref_primary_10_1016_j_jhydrol_2022_129021
crossref_primary_10_1007_s00704_022_03925_9
crossref_primary_10_3390_w15061127
crossref_primary_10_5194_hess_26_4345_2022
crossref_primary_10_1016_j_jhydrol_2021_126756
crossref_primary_10_3390_hydrology9030050
crossref_primary_10_1016_j_jhydrol_2020_125523
crossref_primary_10_1016_j_jhydrol_2023_129826
Cites_doi 10.1002/fld.729
10.1016/j.advwatres.2018.09.003
10.1061/(ASCE)HE.1943-5584.0001124
10.1175/1520-0469(1985)042<2884:AOTDTH>2.0.CO;2
10.1016/j.cageo.2005.01.014
10.1016/j.advwatres.2019.02.007
10.1002/2014WR016547
10.1016/j.envsoft.2018.11.005
10.1029/95JB00758
10.1016/j.jhydrol.2016.03.021
10.1016/j.jhydrol.2018.02.078
10.1016/S0022-1694(02)00121-X
10.1117/12.823844
10.1016/j.jhydrol.2009.12.020
10.1029/2018WR023679
10.1016/j.envsoft.2015.01.009
10.1016/j.cma.2017.08.050
10.1017/S0022112078002293
10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2
10.1016/S0022-1694(99)00002-5
10.1016/j.jhydrol.2019.124231
10.1016/j.advwatres.2018.11.011
10.1029/GL016i007p00673
10.1016/j.jhydrol.2014.03.052
10.1016/j.envsoft.2010.03.014
10.1002/hyp.9237
10.1007/s12665-015-4215-z
10.1017/S0022112006008871
10.1007/BF00897325
10.1016/j.geomorph.2015.03.040
10.1109/PROC.1978.10837
10.1016/j.compfluid.2010.11.018
10.1016/j.jhydrol.2012.04.006
10.1007/s11069-015-1606-0
10.1002/hyp.10967
10.1016/j.jhydrol.2018.07.027
10.1016/j.compfluid.2018.03.024
10.1016/j.jhydrol.2016.07.018
10.1002/hyp.13319
10.1016/j.jhydrol.2016.06.040
10.1007/s10596-016-9580-5
10.1017/S0022112098002432
10.1080/02723646.2014.886923
10.1007/s11629-015-3466-1
10.1029/2018WR024083
10.2166/hydro.2011.077
10.1016/j.advwatres.2014.02.013
10.1016/j.jhydrol.2013.01.042
10.2166/hydro.2013.173
10.1016/j.envsoft.2014.02.003
10.1007/s12665-015-4744-5
10.1016/j.advwatres.2019.103392
10.1016/j.advwatres.2018.05.004
10.1016/S0924-2716(99)00008-8
10.1016/j.jhydrol.2017.11.033
10.1061/(ASCE)HE.1943-5584.0001428
10.1016/j.jhydrol.2019.03.061
10.1002/2016WR020055
10.1063/1.869889
10.1029/93WR03553
10.1016/0021-9991(81)90128-5
10.1002/hyp.5632
10.1155/2016/8582041
10.1109/TASSP.1978.1163153
10.1002/hyp.13409
10.1016/j.jhydrol.2019.06.031
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2019.124508
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2019_124508
S0022169419312430
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-4611509f5ad9bf4c49ab509a307bf1df20d9ac7ed4243f652c21f4a03c1ba1e03
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517663700062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Mon Sep 29 05:39:27 EDT 2025
Sat Nov 29 06:56:02 EST 2025
Tue Nov 18 21:02:52 EST 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrodynamic-based rainfall runoff modelling
Computational grid
Spatial scales
Direct rainfall method
Spectral analysis
Overland flow model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-4611509f5ad9bf4c49ab509a307bf1df20d9ac7ed4243f652c21f4a03c1ba1e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4847-8196
0000-0003-1147-9929
PQID 2400522838
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2400522838
crossref_citationtrail_10_1016_j_jhydrol_2019_124508
crossref_primary_10_1016_j_jhydrol_2019_124508
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2019_124508
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Savant, Trahan, Pettey, McAlpin, Bell, McKnight (b0285) 2019; 573
Singh, Altinakar, Ding (b0300) 2014; 20
Bout, Jetten (b0030) 2018; 556
Hoch, van Beek, Winsemius, Bierkens (b0165) 2018; 121
Priestley, M.B., 1981. Spectral analysis and time series. Academic Press. ISBN: 9780125649223.
Sidick, E., 2009. Power spectral density specification and analysis of large optical surfaces. In: Modeling Aspects in Optical Metrology II. Vol. 7390. International Society for Optics and Photonics, p. 73900L.
Habtezion, Tahmasebi Nasab, Chu (b0135) 2016; 30
Xia, Liang, Ming, Hou (b0345) 2017; 53
Liang, Özgen, Hinkelmann, Xiao, Chen (b0235) 2015; 74
Axelsson (b0015) 1999; 54
Costabile, Costanzo, De Bartolo, Gangi, Macchione, Tomasicchio (b0065) 2019; 55
Huang, Cao, Qi, Pender, Zhao (b0200) 2015; 12
Cea, Legout, Darboux, Esteves, Nord (b0060) 2014; 513
Fernández-Pato, Morales-Hernández, García-Navarro (b0110) 2018; 328
Bomers, Schielen, Hulscher (b0025) 2019
Hu, Fang, Salinas, Pain, Domingo, Mark (b0195) 2019; 123
Xia, Liang, Ming (b0340) 2019; 132
Fraga, Cea, Puertas (b0120) 2019; 33
Horritt, Bates (b0170) 2002; 268
Bellos, Tsakiris (b0020) 2016; 540
Hancock (b0145) 2005; 19
Zhang, Li, Saifullah, Li, Li (b0365) 2016; 2016
Macchione, Costabile, Costanzo, De Santis (b0245) 2019; 111
Haugerud, Harding, Johnson, Harless, Weaver, Sherrod (b0160) 2003; 13
Tsubaki, Kawahara (b0315) 2013; 486
Costabile, Costanzo, Macchione (b0075) 2012; 14
Woodrow, Lindsay, Berg (b0330) 2016; 540
Ansoult (b0005) 1989; 21
Cea, Garrido, Puertas (b0055) 2010; 382
Hu, Fang, Salinas, Pain (b0190) 2018; 560
Ariza-Villaverde, Jiménez-Hornero, De Ravé (b0010) 2015; 241
Cea, Bladé (b0050) 2015; 51
Hardy, Bates, Anderson (b0150) 1999; 216
Caviedes-Voullième, García-Navarro, Murillo (b0045) 2012; 448
Kirby (b0225) 2005; 31
Ying, Shen, Piao, Liu, Malanson (b0355) 2014; 35
Costabile, Macchione, Natale, Petaccia (b0095) 2015; 77
Geckinli, Yavuz (b0125) 1978; 26
Perron, Kirchner, Dietrich (b0260) 2008; 113
Ferraro, D., Petaccia, G., Costanzo, C., Costabile, P., Macchione, F., 2019. A novel approach based on the spectral analysis for the generation of a priori computational grid within the 2-d fully-dynamic modelling at the basin scale. Proceeding of the Italian Conference on Integrated River Basin Management (ICIRBM - Guardia 2019). vol. 40. EdiBios. ISSN:2282-5517, pp. 135–148.
Hall (b0140) 2015; 19
Hough (b0185) 1989; 16
Macchione, Costabile, Costanzo, De Lorenzo (b0240) 2019; 576
Sanders, Schubert (b0280) 2019; 126
Yeh, Shih, Cheng (b0350) 2011; 45
Costabile, Costanzo, Macchione (b0080) 2013; 27
Roe (b0275) 1981; 43
Brufau, García-Navarro, Vázquez-Cendón (b0035) 2004; 45
Hou, Wang, Liang, Li, Huang, Hinkelmann (b0175) 2018; 176
Costabile, Costanzo, De Lorenzo, Macchione (b0070) 2020; 580
Lacasta, Morales-Hernández, Murillo, García-Navarro (b0230) 2015; 74
Thomas, Jordan, Shine, Fenton, Mellander, Dunlop, Murphy (b0310) 2017; 54
Vaze, Teng, Spencer (b0325) 2010; 25
Kim, Adrian (b0220) 1999; 11
Jimenez (b0210) 1998; 376
Maus, Dimri (b0255) 1995; 100
Simons, Busse, Hou, Özgen, Hinkelmann (b0295) 2014; 16
Xia, Liang (b0335) 2018; 117
Bullock, Cooper, Abernathy (b0040) 1978; 88
Costabile, Macchione (b0085) 2015; 67
Zhang, Montgomery (b0370) 1994; 30
Jamali, Bach, Cunningham, Deletic (b0205) 2019; 55
Fernández-Pato, García-Navarro (b0105) 2016; 21
Macchione, Costabile, Costanzo, Gangi (b0250) 2019; 40
Vacondio, Dal Palù, Mignosa (b0320) 2014; 57
Guala, Hommema, Adrian (b0130) 2006; 554
Petaccia, Leporati, Torti (b0265) 2016; 20
Costabile, Macchione, Natale, Petaccia (b0090) 2015; 109
Hou, Wang, Li, Li, Zhang, Zhao, Hinkelmann (b0180) 2018; 564
Steyn, Ayotte (b0305) 1985; 42
Yu, Harbor (b0360) 2019; 33
Fernández-Pato, Caviedes-Voullième, García-Navarro (b0100) 2016; 536
Kim, Sanders, Schubert, Famiglietti (b0215) 2014; 68
Harris (b0155) 1978; 66
Habtezion (10.1016/j.jhydrol.2019.124508_b0135) 2016; 30
Savant (10.1016/j.jhydrol.2019.124508_b0285) 2019; 573
Guala (10.1016/j.jhydrol.2019.124508_b0130) 2006; 554
Kim (10.1016/j.jhydrol.2019.124508_b0220) 1999; 11
10.1016/j.jhydrol.2019.124508_b0270
Costabile (10.1016/j.jhydrol.2019.124508_b0070) 2020; 580
Hough (10.1016/j.jhydrol.2019.124508_b0185) 1989; 16
Ariza-Villaverde (10.1016/j.jhydrol.2019.124508_b0010) 2015; 241
Bullock (10.1016/j.jhydrol.2019.124508_b0040) 1978; 88
Hu (10.1016/j.jhydrol.2019.124508_b0195) 2019; 123
Brufau (10.1016/j.jhydrol.2019.124508_b0035) 2004; 45
Costabile (10.1016/j.jhydrol.2019.124508_b0085) 2015; 67
Bout (10.1016/j.jhydrol.2019.124508_b0030) 2018; 556
Yeh (10.1016/j.jhydrol.2019.124508_b0350) 2011; 45
Simons (10.1016/j.jhydrol.2019.124508_b0295) 2014; 16
10.1016/j.jhydrol.2019.124508_b0115
Steyn (10.1016/j.jhydrol.2019.124508_b0305) 1985; 42
Xia (10.1016/j.jhydrol.2019.124508_b0335) 2018; 117
Roe (10.1016/j.jhydrol.2019.124508_b0275) 1981; 43
Woodrow (10.1016/j.jhydrol.2019.124508_b0330) 2016; 540
Lacasta (10.1016/j.jhydrol.2019.124508_b0230) 2015; 74
Bellos (10.1016/j.jhydrol.2019.124508_b0020) 2016; 540
Ansoult (10.1016/j.jhydrol.2019.124508_b0005) 1989; 21
Cea (10.1016/j.jhydrol.2019.124508_b0055) 2010; 382
Petaccia (10.1016/j.jhydrol.2019.124508_b0265) 2016; 20
Costabile (10.1016/j.jhydrol.2019.124508_b0065) 2019; 55
Costabile (10.1016/j.jhydrol.2019.124508_b0080) 2013; 27
Jamali (10.1016/j.jhydrol.2019.124508_b0205) 2019; 55
Costabile (10.1016/j.jhydrol.2019.124508_b0095) 2015; 77
Hardy (10.1016/j.jhydrol.2019.124508_b0150) 1999; 216
Sanders (10.1016/j.jhydrol.2019.124508_b0280) 2019; 126
Thomas (10.1016/j.jhydrol.2019.124508_b0310) 2017; 54
10.1016/j.jhydrol.2019.124508_b0290
Tsubaki (10.1016/j.jhydrol.2019.124508_b0315) 2013; 486
Hou (10.1016/j.jhydrol.2019.124508_b0175) 2018; 176
Costabile (10.1016/j.jhydrol.2019.124508_b0075) 2012; 14
Geckinli (10.1016/j.jhydrol.2019.124508_b0125) 1978; 26
Macchione (10.1016/j.jhydrol.2019.124508_b0245) 2019; 111
Zhang (10.1016/j.jhydrol.2019.124508_b0365) 2016; 2016
Cea (10.1016/j.jhydrol.2019.124508_b0060) 2014; 513
Axelsson (10.1016/j.jhydrol.2019.124508_b0015) 1999; 54
Hancock (10.1016/j.jhydrol.2019.124508_b0145) 2005; 19
Macchione (10.1016/j.jhydrol.2019.124508_b0250) 2019; 40
Harris (10.1016/j.jhydrol.2019.124508_b0155) 1978; 66
Kirby (10.1016/j.jhydrol.2019.124508_b0225) 2005; 31
Vacondio (10.1016/j.jhydrol.2019.124508_b0320) 2014; 57
Jimenez (10.1016/j.jhydrol.2019.124508_b0210) 1998; 376
Yu (10.1016/j.jhydrol.2019.124508_b0360) 2019; 33
Costabile (10.1016/j.jhydrol.2019.124508_b0090) 2015; 109
Fernández-Pato (10.1016/j.jhydrol.2019.124508_b0105) 2016; 21
Macchione (10.1016/j.jhydrol.2019.124508_b0240) 2019; 576
Xia (10.1016/j.jhydrol.2019.124508_b0340) 2019; 132
Caviedes-Voullième (10.1016/j.jhydrol.2019.124508_b0045) 2012; 448
Bomers (10.1016/j.jhydrol.2019.124508_b0025) 2019
Singh (10.1016/j.jhydrol.2019.124508_b0300) 2014; 20
Ying (10.1016/j.jhydrol.2019.124508_b0355) 2014; 35
Hoch (10.1016/j.jhydrol.2019.124508_b0165) 2018; 121
Vaze (10.1016/j.jhydrol.2019.124508_b0325) 2010; 25
Fernández-Pato (10.1016/j.jhydrol.2019.124508_b0110) 2018; 328
Zhang (10.1016/j.jhydrol.2019.124508_b0370) 1994; 30
Fernández-Pato (10.1016/j.jhydrol.2019.124508_b0100) 2016; 536
Horritt (10.1016/j.jhydrol.2019.124508_b0170) 2002; 268
Huang (10.1016/j.jhydrol.2019.124508_b0200) 2015; 12
Liang (10.1016/j.jhydrol.2019.124508_b0235) 2015; 74
Hu (10.1016/j.jhydrol.2019.124508_b0190) 2018; 560
Xia (10.1016/j.jhydrol.2019.124508_b0345) 2017; 53
Perron (10.1016/j.jhydrol.2019.124508_b0260) 2008; 113
Fraga (10.1016/j.jhydrol.2019.124508_b0120) 2019; 33
Kim (10.1016/j.jhydrol.2019.124508_b0215) 2014; 68
Maus (10.1016/j.jhydrol.2019.124508_b0255) 1995; 100
Cea (10.1016/j.jhydrol.2019.124508_b0050) 2015; 51
Haugerud (10.1016/j.jhydrol.2019.124508_b0160) 2003; 13
Hall (10.1016/j.jhydrol.2019.124508_b0140) 2015; 19
Hou (10.1016/j.jhydrol.2019.124508_b0180) 2018; 564
References_xml – volume: 11
  start-page: 417
  year: 1999
  end-page: 422
  ident: b0220
  article-title: Very large-scale motion in the outer layer
  publication-title: Phys. Fluids
– volume: 43
  start-page: 357
  year: 1981
  end-page: 372
  ident: b0275
  article-title: Approximate riemann solvers, parameter vectors, and difference schemes
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 1203
  year: 2015
  end-page: 1218
  ident: b0200
  article-title: Full 2d hydrodynamic modelling of rainfall-induced flash floods
  publication-title: J. Mountain Sci.
– reference: Sidick, E., 2009. Power spectral density specification and analysis of large optical surfaces. In: Modeling Aspects in Optical Metrology II. Vol. 7390. International Society for Optics and Photonics, p. 73900L.
– volume: 564
  start-page: 357
  year: 2018
  end-page: 366
  ident: b0180
  article-title: An implicit friction source term treatment for overland flow simulation using shallow water flow model
  publication-title: J. Hydrol.
– volume: 67
  start-page: 89
  year: 2015
  end-page: 107
  ident: b0085
  article-title: Enhancing river model set-up for 2-d dynamic flood modelling
  publication-title: Environ. Modell. Software
– volume: 126
  start-page: 79
  year: 2019
  end-page: 95
  ident: b0280
  article-title: Primo: parallel raster inundation model
  publication-title: Adv. Water Resour.
– volume: 513
  start-page: 142
  year: 2014
  end-page: 153
  ident: b0060
  article-title: Experimental validation of a 2d overland flow model using high resolution water depth and velocity data
  publication-title: J. Hydrol.
– volume: 580
  year: 2020
  ident: b0070
  article-title: Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model?
  publication-title: J. Hydrol.
– volume: 109
  start-page: 81
  year: 2015
  end-page: 103
  ident: b0090
  article-title: Comparison of scenarios with and without bridges and analysis of backwater effect in 1-d and 2-d river flood modeling
  publication-title: CMES: Comput. Modeling Eng. Sci.
– volume: 20
  start-page: 04014089
  year: 2014
  ident: b0300
  article-title: Numerical modeling of rainfall-generated overland flow using nonlinear shallow-water equations
  publication-title: J. Hydrol. Eng.
– volume: 33
  start-page: 160
  year: 2019
  end-page: 173
  ident: b0120
  article-title: Effect of rainfall uncertainty on the performance of physically based rainfall-runoff models
  publication-title: Hydrol. Process.
– volume: 486
  start-page: 71
  year: 2013
  end-page: 87
  ident: b0315
  article-title: The uncertainty of local flow parameters during inundation flow over complex topographies with elevation errors
  publication-title: J. Hydrol.
– volume: 33
  start-page: 1403
  year: 2019
  end-page: 1419
  ident: b0360
  article-title: The effects of topographic depressions on multiscale overland flow connectivity: a high-resolution spatiotemporal pattern analysis approach based on connectivity statistics
  publication-title: Hydrol. Process.
– volume: 111
  start-page: 510
  year: 2019
  end-page: 522
  ident: b0245
  article-title: Moving to 3-d flood hazard maps for enhancing risk communication
  publication-title: Environ. Modell. Software
– volume: 132
  year: 2019
  ident: b0340
  article-title: A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS)
  publication-title: Adv. Water Resour.
– volume: 448
  start-page: 39
  year: 2012
  end-page: 59
  ident: b0045
  article-title: Influence of mesh structure on 2d full shallow water equations and SCS curve number simulation of rainfall/runoff events
  publication-title: J. Hydrol.
– volume: 31
  start-page: 846
  year: 2005
  end-page: 864
  ident: b0225
  article-title: Which wavelet best reproduces the fourier power spectrum?
  publication-title: Comput. Geosci.
– volume: 117
  start-page: 87
  year: 2018
  end-page: 97
  ident: b0335
  article-title: A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations
  publication-title: Adv. Water Resour.
– volume: 268
  start-page: 87
  year: 2002
  end-page: 99
  ident: b0170
  article-title: Evaluation of 1d and 2d numerical models for predicting river flood inundation
  publication-title: J. Hydrol.
– volume: 27
  start-page: 554
  year: 2013
  end-page: 569
  ident: b0080
  article-title: A storm event watershed model for surface runoff based on 2d fully dynamic wave equations
  publication-title: Hydrol. Process.
– volume: 30
  start-page: 4870
  year: 2016
  end-page: 4892
  ident: b0135
  article-title: How does dem resolution affect microtopographic characteristics, hydrologic connectivity, and modelling of hydrologic processes?
  publication-title: Hydrol. Process.
– volume: 216
  start-page: 124
  year: 1999
  end-page: 136
  ident: b0150
  article-title: The importance of spatial resolution in hydraulic models for floodplain environments
  publication-title: J. Hydrol.
– volume: 16
  start-page: 375
  year: 2014
  end-page: 391
  ident: b0295
  article-title: A model for overland flow and associated processes within the hydroinformatics modelling system
  publication-title: J. Hydroinf.
– volume: 88
  start-page: 585
  year: 1978
  end-page: 608
  ident: b0040
  article-title: Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow
  publication-title: J. Fluid Mech.
– volume: 21
  start-page: 04016038
  year: 2016
  ident: b0105
  article-title: 2d zero-inertia model for solution of overland flow problems in flexible meshes
  publication-title: J. Hydrol. Eng.
– volume: 13
  start-page: 4
  year: 2003
  end-page: 10
  ident: b0160
  article-title: High-resolution lidar topography of the Puget Lowland, Washington
  publication-title: GSA Today
– volume: 45
  start-page: 2
  year: 2011
  end-page: 13
  ident: b0350
  article-title: An integrated media, integrated processes watershed model
  publication-title: Comput. Fluids
– volume: 540
  start-page: 331
  year: 2016
  end-page: 339
  ident: b0020
  article-title: A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques
  publication-title: J. Hydrol.
– volume: 576
  start-page: 443
  year: 2019
  end-page: 465
  ident: b0240
  article-title: Extracting quantitative data from non-conventional information for the hydraulic reconstruction of past urban flood events. a case study
  publication-title: J. Hydrol.
– volume: 536
  start-page: 496
  year: 2016
  end-page: 513
  ident: b0100
  article-title: Rainfall/runoff simulation with 2d full shallow water equations: sensitivity analysis and calibration of infiltration parameters
  publication-title: J. Hydrol.
– reference: Priestley, M.B., 1981. Spectral analysis and time series. Academic Press. ISBN: 9780125649223.
– volume: 113
  year: 2008
  ident: b0260
  article-title: Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes
  publication-title: J. Geophys. Res.: Earth Surface
– volume: 74
  start-page: 7307
  year: 2015
  end-page: 7318
  ident: b0235
  article-title: Shallow water simulation of overland flows in idealised catchments
  publication-title: Environ. Earth Sci.
– volume: 123
  start-page: 173
  year: 2019
  end-page: 188
  ident: b0195
  article-title: Numerical simulation of floods from multiple sources using an adaptive anisotropic unstructured mesh method
  publication-title: Adv. Water Resour.
– volume: 68
  start-page: 42
  year: 2014
  end-page: 61
  ident: b0215
  article-title: Mesh type tradeoffs in 2d hydrodynamic modeling of flooding with a godunov-based flow solver
  publication-title: Adv. Water Resour.
– volume: 54
  start-page: 38
  year: 2017
  end-page: 52
  ident: b0310
  article-title: Defining optimal dem resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 40
  start-page: 105
  year: 2019
  end-page: 117
  ident: b0250
  article-title: Fully-hydrodynamics watershed model for flash-flood hazard analysis
  publication-title: Proceeding of the Italian Conference on Integrated River Basin Management (ICIRBM - Guardia 2019) held in Guardia Piemontese (CS)
– volume: 121
  start-page: 350
  year: 2018
  end-page: 360
  ident: b0165
  article-title: Benchmarking flexible meshes and regular grids for large-scale fluvial inundation modelling
  publication-title: Adv. Water Resour.
– volume: 176
  start-page: 117
  year: 2018
  end-page: 134
  ident: b0175
  article-title: Efficient surface water flow simulation on static cartesian grid with local refinement according to key topographic features
  publication-title: Comput. Fluids
– volume: 57
  start-page: 60
  year: 2014
  end-page: 75
  ident: b0320
  article-title: Gpu-enhanced finite volume shallow water solver for fast flood simulations
  publication-title: Environ. Modell. Software
– volume: 19
  start-page: 1727
  year: 2005
  end-page: 1749
  ident: b0145
  article-title: The use of digital elevation models in the identification and characterization of catchments over different grid scales
  publication-title: Hydrol. Process.
– volume: 26
  start-page: 501
  year: 1978
  end-page: 507
  ident: b0125
  article-title: Some novel windows and a concise tutorial comparison of window families
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 66
  start-page: 51
  year: 1978
  end-page: 83
  ident: b0155
  article-title: On the use of windows for harmonic analysis with the discrete fourier transform
  publication-title: Proc. IEEE
– volume: 376
  start-page: 139
  year: 1998
  end-page: 147
  ident: b0210
  article-title: Turbulent velocity fluctuations need not be gaussian
  publication-title: J. Fluid Mech.
– volume: 100
  start-page: 12605
  year: 1995
  end-page: 12616
  ident: b0255
  article-title: Potential field power spectrum inversion for scaling geology
  publication-title: J. Geophys. Res.: Solid Earth
– volume: 554
  start-page: 521
  year: 2006
  end-page: 542
  ident: b0130
  article-title: Large-scale and very-large-scale motions in turbulent pipe flow
  publication-title: J. Fluid Mech.
– volume: 53
  start-page: 3730
  year: 2017
  end-page: 3759
  ident: b0345
  article-title: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations
  publication-title: Water Resour. Res.
– volume: 74
  start-page: 7295
  year: 2015
  end-page: 7305
  ident: b0230
  article-title: GPU implementation of the 2d shallow water equations for the simulation of rainfall/runoff events
  publication-title: Environ. Earth Sci.
– volume: 560
  start-page: 354
  year: 2018
  end-page: 363
  ident: b0190
  article-title: Unstructured mesh adaptivity for urban flooding modelling
  publication-title: J. Hydrol.
– volume: 328
  start-page: 1
  year: 2018
  end-page: 25
  ident: b0110
  article-title: Implicit finite volume simulation of 2d shallow water flows in flexible meshes
  publication-title: Comput. Methods Appl. Mech. Eng.
– reference: Ferraro, D., Petaccia, G., Costanzo, C., Costabile, P., Macchione, F., 2019. A novel approach based on the spectral analysis for the generation of a priori computational grid within the 2-d fully-dynamic modelling at the basin scale. Proceeding of the Italian Conference on Integrated River Basin Management (ICIRBM - Guardia 2019). vol. 40. EdiBios. ISSN:2282-5517, pp. 135–148.
– volume: 20
  start-page: 1123
  year: 2016
  end-page: 1132
  ident: b0265
  article-title: OpenMP and CUDA simulations of sella zerbino dam break on unstructured rids
  publication-title: Comput. Geosci.
– start-page: 1
  year: 2019
  end-page: 22
  ident: b0025
  article-title: The influence of grid shape and grid size on hydraulic river modelling performance
  publication-title: Environ. Fluid Mech.
– volume: 54
  start-page: 138
  year: 1999
  end-page: 147
  ident: b0015
  article-title: Processing of laser scanner data-algorithms and applications
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 55
  start-page: 7717
  year: 2019
  end-page: 7752
  ident: b0065
  article-title: Hydraulic characterization of river networks based on flow patterns simulated by 2-d shallow water modeling: scaling properties, multifractal interpretation and perspectives for channel heads detection
  publication-title: Water Resour. Res.
– volume: 25
  start-page: 1086
  year: 2010
  end-page: 1098
  ident: b0325
  article-title: Impact of dem accuracy and resolution on topographic indices
  publication-title: Environ. Modell. Software
– volume: 21
  start-page: 401
  year: 1989
  end-page: 410
  ident: b0005
  article-title: Circular sampling for fourier analysis of digital terrain data
  publication-title: Math. Geol.
– volume: 30
  start-page: 1019
  year: 1994
  end-page: 1028
  ident: b0370
  article-title: Digital elevation model grid size, landscape representation, and hydrologic simulations
  publication-title: Water Resour. Res.
– volume: 45
  start-page: 1047
  year: 2004
  end-page: 1082
  ident: b0035
  article-title: Zero mass error using unsteady wetting–drying conditions in shallow flows over dry irregular topography
  publication-title: Int. J. Numer. Meth. Fluids
– volume: 2016
  year: 2016
  ident: b0365
  article-title: Impact of dem resolution and spatial scale: analysis of influence factors and parameters on physically based distributed model
  publication-title: Adv. Meteorol.
– volume: 14
  start-page: 122
  year: 2012
  end-page: 135
  ident: b0075
  article-title: Comparative analysis of overland flow models using finite volume schemes
  publication-title: J. Hydroinf.
– volume: 16
  start-page: 673
  year: 1989
  end-page: 676
  ident: b0185
  article-title: On the use of spectral methods for the determination of fractal dimension
  publication-title: Geophys. Res. Lett.
– volume: 19
  start-page: 74
  year: 2015
  end-page: 85
  ident: b0140
  article-title: Direct rainfall flood modelling: the good, the bad and the ugly
  publication-title: Austral. J. Water Resour.
– volume: 573
  start-page: 13
  year: 2019
  end-page: 30
  ident: b0285
  article-title: Urban and overland flow modeling with dynamic adaptive mesh and implicit diffusive wave equation solver
  publication-title: J. Hydrol.
– volume: 382
  start-page: 88
  year: 2010
  end-page: 102
  ident: b0055
  article-title: Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas
  publication-title: J. Hydrol.
– volume: 540
  start-page: 1022
  year: 2016
  end-page: 1029
  ident: b0330
  article-title: Evaluating dem conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction
  publication-title: J. Hydrol.
– volume: 35
  start-page: 297
  year: 2014
  end-page: 312
  ident: b0355
  article-title: Terrestrial surface-area increment: the effects of topography, dem resolution, and algorithm
  publication-title: Phys. Geogr.
– volume: 556
  start-page: 674
  year: 2018
  end-page: 688
  ident: b0030
  article-title: The validity of flow approximations when simulating catchment-integrated flash floods
  publication-title: J. Hydrol.
– volume: 51
  start-page: 5464
  year: 2015
  end-page: 5486
  ident: b0050
  article-title: A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications
  publication-title: Water Resour. Res.
– volume: 77
  start-page: 181
  year: 2015
  end-page: 204
  ident: b0095
  article-title: Flood mapping using lidar dem. limitations of the 1-d modeling highlighted by the 2-d approach
  publication-title: Nat. Hazards
– volume: 55
  start-page: 4936
  year: 2019
  end-page: 4953
  ident: b0205
  article-title: A cellular automata fast flood evaluation (ca-ffé) model
  publication-title: Water Resour. Res.
– volume: 241
  start-page: 243
  year: 2015
  end-page: 254
  ident: b0010
  article-title: Influence of dem resolution on drainage network extraction: a multifractal analysis
  publication-title: Geomorphology
– volume: 42
  start-page: 2884
  year: 1985
  end-page: 2887
  ident: b0305
  article-title: Application of two-dimensional terrain height spectra to mesoscale modeling
  publication-title: J. Atmos. Sci.
– volume: 45
  start-page: 1047
  issue: 10
  year: 2004
  ident: 10.1016/j.jhydrol.2019.124508_b0035
  article-title: Zero mass error using unsteady wetting–drying conditions in shallow flows over dry irregular topography
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.729
– volume: 121
  start-page: 350
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124508_b0165
  article-title: Benchmarking flexible meshes and regular grids for large-scale fluvial inundation modelling
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.09.003
– volume: 20
  start-page: 04014089
  issue: 8
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124508_b0300
  article-title: Numerical modeling of rainfall-generated overland flow using nonlinear shallow-water equations
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001124
– volume: 42
  start-page: 2884
  issue: 24
  year: 1985
  ident: 10.1016/j.jhydrol.2019.124508_b0305
  article-title: Application of two-dimensional terrain height spectra to mesoscale modeling
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1985)042<2884:AOTDTH>2.0.CO;2
– volume: 31
  start-page: 846
  issue: 7
  year: 2005
  ident: 10.1016/j.jhydrol.2019.124508_b0225
  article-title: Which wavelet best reproduces the fourier power spectrum?
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.01.014
– volume: 126
  start-page: 79
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0280
  article-title: Primo: parallel raster inundation model
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.02.007
– volume: 109
  start-page: 81
  issue: 2
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0090
  article-title: Comparison of scenarios with and without bridges and analysis of backwater effect in 1-d and 2-d river flood modeling
  publication-title: CMES: Comput. Modeling Eng. Sci.
– volume: 113
  issue: F4
  year: 2008
  ident: 10.1016/j.jhydrol.2019.124508_b0260
  article-title: Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes
  publication-title: J. Geophys. Res.: Earth Surface
– volume: 51
  start-page: 5464
  issue: 7
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0050
  article-title: A simple and efficient unstructured finite volume scheme for solving the shallow water equations in overland flow applications
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016547
– volume: 111
  start-page: 510
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0245
  article-title: Moving to 3-d flood hazard maps for enhancing risk communication
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2018.11.005
– volume: 100
  start-page: 12605
  issue: B7
  year: 1995
  ident: 10.1016/j.jhydrol.2019.124508_b0255
  article-title: Potential field power spectrum inversion for scaling geology
  publication-title: J. Geophys. Res.: Solid Earth
  doi: 10.1029/95JB00758
– volume: 536
  start-page: 496
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124508_b0100
  article-title: Rainfall/runoff simulation with 2d full shallow water equations: sensitivity analysis and calibration of infiltration parameters
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.03.021
– volume: 560
  start-page: 354
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124508_b0190
  article-title: Unstructured mesh adaptivity for urban flooding modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.02.078
– volume: 268
  start-page: 87
  issue: 1–4
  year: 2002
  ident: 10.1016/j.jhydrol.2019.124508_b0170
  article-title: Evaluation of 1d and 2d numerical models for predicting river flood inundation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00121-X
– ident: 10.1016/j.jhydrol.2019.124508_b0290
  doi: 10.1117/12.823844
– volume: 382
  start-page: 88
  issue: 1–4
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124508_b0055
  article-title: Experimental validation of two-dimensional depth-averaged models for forecasting rainfall-runoff from precipitation data in urban areas
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.12.020
– volume: 55
  start-page: 4936
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0205
  article-title: A cellular automata fast flood evaluation (ca-ffé) model
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR023679
– volume: 67
  start-page: 89
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0085
  article-title: Enhancing river model set-up for 2-d dynamic flood modelling
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2015.01.009
– volume: 328
  start-page: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124508_b0110
  article-title: Implicit finite volume simulation of 2d shallow water flows in flexible meshes
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.08.050
– volume: 88
  start-page: 585
  issue: 03
  year: 1978
  ident: 10.1016/j.jhydrol.2019.124508_b0040
  article-title: Structural similarity in radial correlations and spectra of longitudinal velocity fluctuations in pipe flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112078002293
– volume: 13
  start-page: 4
  issue: 6
  year: 2003
  ident: 10.1016/j.jhydrol.2019.124508_b0160
  article-title: High-resolution lidar topography of the Puget Lowland, Washington
  publication-title: GSA Today
  doi: 10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2
– volume: 216
  start-page: 124
  issue: 1–2
  year: 1999
  ident: 10.1016/j.jhydrol.2019.124508_b0150
  article-title: The importance of spatial resolution in hydraulic models for floodplain environments
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(99)00002-5
– volume: 580
  year: 2020
  ident: 10.1016/j.jhydrol.2019.124508_b0070
  article-title: Is local flood hazard assessment in urban areas significantly influenced by the physical complexity of the hydrodynamic inundation model?
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124231
– volume: 123
  start-page: 173
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0195
  article-title: Numerical simulation of floods from multiple sources using an adaptive anisotropic unstructured mesh method
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.11.011
– volume: 16
  start-page: 673
  issue: 7
  year: 1989
  ident: 10.1016/j.jhydrol.2019.124508_b0185
  article-title: On the use of spectral methods for the determination of fractal dimension
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL016i007p00673
– volume: 513
  start-page: 142
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124508_b0060
  article-title: Experimental validation of a 2d overland flow model using high resolution water depth and velocity data
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.03.052
– volume: 25
  start-page: 1086
  issue: 10
  year: 2010
  ident: 10.1016/j.jhydrol.2019.124508_b0325
  article-title: Impact of dem accuracy and resolution on topographic indices
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2010.03.014
– volume: 27
  start-page: 554
  issue: 4
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124508_b0080
  article-title: A storm event watershed model for surface runoff based on 2d fully dynamic wave equations
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9237
– volume: 74
  start-page: 7295
  issue: 11
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0230
  article-title: GPU implementation of the 2d shallow water equations for the simulation of rainfall/runoff events
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4215-z
– ident: 10.1016/j.jhydrol.2019.124508_b0115
– volume: 554
  start-page: 521
  year: 2006
  ident: 10.1016/j.jhydrol.2019.124508_b0130
  article-title: Large-scale and very-large-scale motions in turbulent pipe flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006008871
– volume: 21
  start-page: 401
  issue: 4
  year: 1989
  ident: 10.1016/j.jhydrol.2019.124508_b0005
  article-title: Circular sampling for fourier analysis of digital terrain data
  publication-title: Math. Geol.
  doi: 10.1007/BF00897325
– volume: 241
  start-page: 243
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0010
  article-title: Influence of dem resolution on drainage network extraction: a multifractal analysis
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.03.040
– volume: 66
  start-page: 51
  issue: 1
  year: 1978
  ident: 10.1016/j.jhydrol.2019.124508_b0155
  article-title: On the use of windows for harmonic analysis with the discrete fourier transform
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1978.10837
– volume: 45
  start-page: 2
  issue: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2019.124508_b0350
  article-title: An integrated media, integrated processes watershed model
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.11.018
– volume: 448
  start-page: 39
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124508_b0045
  article-title: Influence of mesh structure on 2d full shallow water equations and SCS curve number simulation of rainfall/runoff events
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.04.006
– volume: 77
  start-page: 181
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0095
  article-title: Flood mapping using lidar dem. limitations of the 1-d modeling highlighted by the 2-d approach
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1606-0
– volume: 30
  start-page: 4870
  issue: 25
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124508_b0135
  article-title: How does dem resolution affect microtopographic characteristics, hydrologic connectivity, and modelling of hydrologic processes?
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10967
– volume: 564
  start-page: 357
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124508_b0180
  article-title: An implicit friction source term treatment for overland flow simulation using shallow water flow model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.07.027
– volume: 176
  start-page: 117
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124508_b0175
  article-title: Efficient surface water flow simulation on static cartesian grid with local refinement according to key topographic features
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.03.024
– volume: 540
  start-page: 1022
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124508_b0330
  article-title: Evaluating dem conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.07.018
– start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0025
  article-title: The influence of grid shape and grid size on hydraulic river modelling performance
  publication-title: Environ. Fluid Mech.
– volume: 33
  start-page: 160
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0120
  article-title: Effect of rainfall uncertainty on the performance of physically based rainfall-runoff models
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13319
– volume: 540
  start-page: 331
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124508_b0020
  article-title: A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.06.040
– volume: 20
  start-page: 1123
  issue: 5
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124508_b0265
  article-title: OpenMP and CUDA simulations of sella zerbino dam break on unstructured rids
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-016-9580-5
– volume: 40
  start-page: 105
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0250
  article-title: Fully-hydrodynamics watershed model for flash-flood hazard analysis
  publication-title: Proceeding of the Italian Conference on Integrated River Basin Management (ICIRBM - Guardia 2019) held in Guardia Piemontese (CS)
– volume: 54
  start-page: 38
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124508_b0310
  article-title: Defining optimal dem resolutions and point densities for modelling hydrologically sensitive areas in agricultural catchments dominated by microtopography
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 376
  start-page: 139
  year: 1998
  ident: 10.1016/j.jhydrol.2019.124508_b0210
  article-title: Turbulent velocity fluctuations need not be gaussian
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112098002432
– volume: 35
  start-page: 297
  issue: 4
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124508_b0355
  article-title: Terrestrial surface-area increment: the effects of topography, dem resolution, and algorithm
  publication-title: Phys. Geogr.
  doi: 10.1080/02723646.2014.886923
– volume: 19
  start-page: 74
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0140
  article-title: Direct rainfall flood modelling: the good, the bad and the ugly
  publication-title: Austral. J. Water Resour.
– volume: 12
  start-page: 1203
  issue: 5
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0200
  article-title: Full 2d hydrodynamic modelling of rainfall-induced flash floods
  publication-title: J. Mountain Sci.
  doi: 10.1007/s11629-015-3466-1
– volume: 55
  start-page: 7717
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0065
  article-title: Hydraulic characterization of river networks based on flow patterns simulated by 2-d shallow water modeling: scaling properties, multifractal interpretation and perspectives for channel heads detection
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR024083
– volume: 14
  start-page: 122
  issue: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2019.124508_b0075
  article-title: Comparative analysis of overland flow models using finite volume schemes
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2011.077
– volume: 68
  start-page: 42
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124508_b0215
  article-title: Mesh type tradeoffs in 2d hydrodynamic modeling of flooding with a godunov-based flow solver
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2014.02.013
– volume: 486
  start-page: 71
  year: 2013
  ident: 10.1016/j.jhydrol.2019.124508_b0315
  article-title: The uncertainty of local flow parameters during inundation flow over complex topographies with elevation errors
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.01.042
– volume: 16
  start-page: 375
  issue: 2
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124508_b0295
  article-title: A model for overland flow and associated processes within the hydroinformatics modelling system
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2013.173
– volume: 57
  start-page: 60
  year: 2014
  ident: 10.1016/j.jhydrol.2019.124508_b0320
  article-title: Gpu-enhanced finite volume shallow water solver for fast flood simulations
  publication-title: Environ. Modell. Software
  doi: 10.1016/j.envsoft.2014.02.003
– volume: 74
  start-page: 7307
  issue: 11
  year: 2015
  ident: 10.1016/j.jhydrol.2019.124508_b0235
  article-title: Shallow water simulation of overland flows in idealised catchments
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4744-5
– volume: 132
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0340
  article-title: A full-scale fluvial flood modelling framework based on a high-performance integrated hydrodynamic modelling system (HiPIMS)
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.103392
– volume: 117
  start-page: 87
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124508_b0335
  article-title: A new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.05.004
– volume: 54
  start-page: 138
  issue: 2–3
  year: 1999
  ident: 10.1016/j.jhydrol.2019.124508_b0015
  article-title: Processing of laser scanner data-algorithms and applications
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/S0924-2716(99)00008-8
– volume: 556
  start-page: 674
  year: 2018
  ident: 10.1016/j.jhydrol.2019.124508_b0030
  article-title: The validity of flow approximations when simulating catchment-integrated flash floods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.11.033
– volume: 21
  start-page: 04016038
  issue: 11
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124508_b0105
  article-title: 2d zero-inertia model for solution of overland flow problems in flexible meshes
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001428
– volume: 573
  start-page: 13
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0285
  article-title: Urban and overland flow modeling with dynamic adaptive mesh and implicit diffusive wave equation solver
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.03.061
– volume: 53
  start-page: 3730
  issue: 5
  year: 2017
  ident: 10.1016/j.jhydrol.2019.124508_b0345
  article-title: An efficient and stable hydrodynamic model with novel source term discretization schemes for overland flow and flood simulations
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR020055
– volume: 11
  start-page: 417
  issue: 2
  year: 1999
  ident: 10.1016/j.jhydrol.2019.124508_b0220
  article-title: Very large-scale motion in the outer layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.869889
– volume: 30
  start-page: 1019
  issue: 4
  year: 1994
  ident: 10.1016/j.jhydrol.2019.124508_b0370
  article-title: Digital elevation model grid size, landscape representation, and hydrologic simulations
  publication-title: Water Resour. Res.
  doi: 10.1029/93WR03553
– volume: 43
  start-page: 357
  issue: 2
  year: 1981
  ident: 10.1016/j.jhydrol.2019.124508_b0275
  article-title: Approximate riemann solvers, parameter vectors, and difference schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90128-5
– volume: 19
  start-page: 1727
  issue: 9
  year: 2005
  ident: 10.1016/j.jhydrol.2019.124508_b0145
  article-title: The use of digital elevation models in the identification and characterization of catchments over different grid scales
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.5632
– volume: 2016
  year: 2016
  ident: 10.1016/j.jhydrol.2019.124508_b0365
  article-title: Impact of dem resolution and spatial scale: analysis of influence factors and parameters on physically based distributed model
  publication-title: Adv. Meteorol.
  doi: 10.1155/2016/8582041
– ident: 10.1016/j.jhydrol.2019.124508_b0270
– volume: 26
  start-page: 501
  issue: 6
  year: 1978
  ident: 10.1016/j.jhydrol.2019.124508_b0125
  article-title: Some novel windows and a concise tutorial comparison of window families
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1978.1163153
– volume: 33
  start-page: 1403
  issue: 10
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0360
  article-title: The effects of topographic depressions on multiscale overland flow connectivity: a high-resolution spatiotemporal pattern analysis approach based on connectivity statistics
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13409
– volume: 576
  start-page: 443
  year: 2019
  ident: 10.1016/j.jhydrol.2019.124508_b0240
  article-title: Extracting quantitative data from non-conventional information for the hydraulic reconstruction of past urban flood events. a case study
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.031
SSID ssj0000334
Score 2.4759185
Snippet •Rigorous approach for the a priori design of computational grids.•Identification of characteristic scales based on 2-D Fourier analysis.•“A-priori” design of...
The increasing availability of high-resolution terrain data fostered the development of two-dimensional hydrodynamic-based surface runoff models at basin...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124508
SubjectTerms basins
Computational grid
digital elevation models
Direct rainfall method
hazard characterization
Hydrodynamic-based rainfall runoff modelling
hydrograph
hydrologic models
landscapes
Overland flow model
porous media
runoff
Spatial scales
Spectral analysis
watersheds
Title A spectral analysis approach for the a priori generation of computational grids in the 2-D hydrodynamic-based runoff simulations at a basin scale
URI https://dx.doi.org/10.1016/j.jhydrol.2019.124508
https://www.proquest.com/docview/2400522838
Volume 582
WOSCitedRecordID wos000517663700062&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFgkuiKcoLy0St8ghsb2292hBW-BQ9VCk3Kx9gqPGjhynKvwLfh1_h9ldr920QOmBi5XY2ZGT-bLz7XrmG4TewCqCcBrpQGdSBnHEZMCJ4IGiJEx1LGAJndlmE-nRUTaf0-PR6KevhTk7TasqOz-nq__qajgHzjalszdwd28UTsBrcDocwe1w_CfH52NbPdlYEYBOccQrh_dJhWy8asq6KU0HZdX0tFHYHg9-f_BLU7p0WTMiDN6Pv36TMN-6HvaBiX9y3GyqWuvxulxufFYda8E8XIWBa0DAdq7RwH-tMSsABSQ3XxrBBmnQ2e9MHCjTgr52NH-pKsBs_8SkBlLLS5cKfQyRXZv-INuXq-91l9GyNDX3bAgCLRPC5QgfMt6UyvVd6jc_YKXbZ39dKEaYJa5Psp_QiWtn1E3JQGCIlY64Gi3cxsVisnDf2CT60cnw-W117ktRs89l9Glyi6IzUxgzhTNzC-2GKaEw3e7mH_fnnwaSEEWxF7I39z8Ul7397f38iTZdIhCWFZ3cR_c6d-LcwfABGqnqIbpzqDoh9EfoR449HLGHI_ZwxABHDODCDDs44gGOuNZ4C47YwhGXlR0BcMRX4YgdHPEFOGLWgnkLR2zh-Bh9Ptg_efch6NqABCKKwzaIE7NqoZowSTlMHzFlHN4ziE5cz6QOp5IykSoZh3GkExKKcKZjNo3EjLOZmkZP0E5VV-opwjGQXZ2kCSdGgyoRPJumKpVTzShhTIo9FPtfuRCdRr5p1XJa_NXLe2jSD1s5kZjrBmTehUXHdB2DLQCa1w197V1eQCQwj_dYperNujDZ4MSoWWXPbno_z9Hd4d_1Au20zUa9RLfFWVuum1cddn8B3oPgvg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spectral+analysis+approach+for+the+a+priori+generation+of+computational+grids+in+the+2-D+hydrodynamic-based+runoff+simulations+at+a+basin+scale&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Ferraro%2C+Domenico&rft.au=Costabile%2C+Pierfranco&rft.au=Costanzo%2C+Carmelina&rft.au=Petaccia%2C+Gabriella&rft.date=2020-03-01&rft.issn=0022-1694&rft.volume=582&rft.spage=124508&rft_id=info:doi/10.1016%2Fj.jhydrol.2019.124508&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2019_124508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon