A time-varying autoregressive model for groundwater depth prediction

•A TVAR model is introduced to predict groundwater depth.•The implementation of parameter estimation of the TVAR model is summarized.•The TVAR exhibits better prediction performance than the ARI and SARI models. The nonstationarity of hydrological variables makes the application of autoregressive (A...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of hydrology (Amsterdam) Ročník 613; s. 128394
Hlavní autori: Guo, Tianli, Song, Songbai, Yan, Yating
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2022
Predmet:
ISSN:0022-1694, 1879-2707
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A TVAR model is introduced to predict groundwater depth.•The implementation of parameter estimation of the TVAR model is summarized.•The TVAR exhibits better prediction performance than the ARI and SARI models. The nonstationarity of hydrological variables makes the application of autoregressive (AR) models challenging. Therefore, this study introduces a new time-varying AR (TVAR) model in the field of hydrology. Specifically, in this study, we focus the parameter estimation of the TVAR model and exploring the model’s performance for predicting groundwater depth. We demonstrate the application of the model to the monthly groundwater depth series obtained on the Guanzhong Plain, China. We summarize the process of parameter estimation of the TVAR model. First, the TVAR model is transformed into the time-invariance regression problem by expanding the time-varying coefficients into a set of Fourier or Legendre basis functions. Then, a fading memory recursive least squares (FMRLS) algorithm is used to estimate the parameters of the regression problem. In this process, the model order and dimension of the basis function are determined by minimizing our proposed improved Bayesian information criterion (IBIC) with a range of dimensions greater than 0. To further demonstrate the effectiveness of the parameter estimation method and the generalizable performance of the model, the method is applied to nonstationary series simulated in statistical experiments. The study results indicate that the TVAR model based on such a parameter estimation process exhibits better prediction performance, lower model complexity and more straight-forward application compared with the autoregressive integrated (ARI) and seasonal ARI (SARI) models. In conclusion, using the TVAR model as an alternative to the time-invariance ARI and SARI models results in a model that is more flexible and suitable for nonstationary groundwater depth prediction.
AbstractList •A TVAR model is introduced to predict groundwater depth.•The implementation of parameter estimation of the TVAR model is summarized.•The TVAR exhibits better prediction performance than the ARI and SARI models. The nonstationarity of hydrological variables makes the application of autoregressive (AR) models challenging. Therefore, this study introduces a new time-varying AR (TVAR) model in the field of hydrology. Specifically, in this study, we focus the parameter estimation of the TVAR model and exploring the model’s performance for predicting groundwater depth. We demonstrate the application of the model to the monthly groundwater depth series obtained on the Guanzhong Plain, China. We summarize the process of parameter estimation of the TVAR model. First, the TVAR model is transformed into the time-invariance regression problem by expanding the time-varying coefficients into a set of Fourier or Legendre basis functions. Then, a fading memory recursive least squares (FMRLS) algorithm is used to estimate the parameters of the regression problem. In this process, the model order and dimension of the basis function are determined by minimizing our proposed improved Bayesian information criterion (IBIC) with a range of dimensions greater than 0. To further demonstrate the effectiveness of the parameter estimation method and the generalizable performance of the model, the method is applied to nonstationary series simulated in statistical experiments. The study results indicate that the TVAR model based on such a parameter estimation process exhibits better prediction performance, lower model complexity and more straight-forward application compared with the autoregressive integrated (ARI) and seasonal ARI (SARI) models. In conclusion, using the TVAR model as an alternative to the time-invariance ARI and SARI models results in a model that is more flexible and suitable for nonstationary groundwater depth prediction.
The nonstationarity of hydrological variables makes the application of autoregressive (AR) models challenging. Therefore, this study introduces a new time-varying AR (TVAR) model in the field of hydrology. Specifically, in this study, we focus the parameter estimation of the TVAR model and exploring the model’s performance for predicting groundwater depth. We demonstrate the application of the model to the monthly groundwater depth series obtained on the Guanzhong Plain, China. We summarize the process of parameter estimation of the TVAR model. First, the TVAR model is transformed into the time-invariance regression problem by expanding the time-varying coefficients into a set of Fourier or Legendre basis functions. Then, a fading memory recursive least squares (FMRLS) algorithm is used to estimate the parameters of the regression problem. In this process, the model order and dimension of the basis function are determined by minimizing our proposed improved Bayesian information criterion (IBIC) with a range of dimensions greater than 0. To further demonstrate the effectiveness of the parameter estimation method and the generalizable performance of the model, the method is applied to nonstationary series simulated in statistical experiments. The study results indicate that the TVAR model based on such a parameter estimation process exhibits better prediction performance, lower model complexity and more straight-forward application compared with the autoregressive integrated (ARI) and seasonal ARI (SARI) models. In conclusion, using the TVAR model as an alternative to the time-invariance ARI and SARI models results in a model that is more flexible and suitable for nonstationary groundwater depth prediction.
ArticleNumber 128394
Author Song, Songbai
Yan, Yating
Guo, Tianli
Author_xml – sequence: 1
  givenname: Tianli
  surname: Guo
  fullname: Guo, Tianli
  email: guotianli@nwsuaf.edu.cn
  organization: College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
– sequence: 2
  givenname: Songbai
  surname: Song
  fullname: Song, Songbai
  email: ssb6533@nwafu.edu.cn
  organization: College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
– sequence: 3
  givenname: Yating
  surname: Yan
  fullname: Yan, Yating
  email: 2019050804@nwafu.edu.cn
  organization: College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
BookMark eNqFkD1PwzAQhi1UJNrCT0DKyJLgrySuGFBVPqVKLDBbjn1pHaVxsZ2i_ntShYmlt9xw7_NK98zQpHMdIHRLcEYwKe6brNkejXdtRjGlGaGCLfgFmhJRLlJa4nKCpni4pKRY8Cs0C6HBwzDGp-hpmUS7g_Sg_NF2m0T10XnYeAjBHiDZOQNtUjufbLzrO_OjIvjEwD5uk70HY3W0rrtGl7VqA9z87Tn6enn-XL2l64_X99VynWrGaUxZRTiBWhPO85yUJgddlEQIUdBKsJryqhQKUyWwNtWiNhpwURkmoMRMcw5sju7G3r133z2EKHc2aGhb1YHrg6RDGyuLguVDNB-j2rsQPNRy7-1ueFISLE_WZCP_rMmTNTlaG7iHf5y2UZ2ejF7Z9iz9ONIwWDhY8DJoC50eRHnQURpnzzT8ArgYjwI
CitedBy_id crossref_primary_10_3390_w15040801
crossref_primary_10_1016_j_gsd_2024_101213
crossref_primary_10_3390_w17162420
crossref_primary_10_1016_j_jhydrol_2024_131509
crossref_primary_10_1016_j_jhydrol_2022_128836
crossref_primary_10_1007_s11269_023_03566_1
Cites_doi 10.1109/TBME.2019.2906688
10.1007/s00477-016-1306-7
10.1016/j.specom.2019.03.002
10.1016/j.neucom.2015.04.128
10.1037/met0000085
10.1016/j.jhydrol.2014.11.065
10.1016/j.physa.2015.08.060
10.1016/j.neucom.2015.08.022
10.1371/journal.pcbi.1007566
10.1109/ACCESS.2019.2950798
10.1109/LSP.2008.2001559
10.1080/13504851.2020.1791793
10.1016/j.jneumeth.2016.12.018
10.1109/78.258089
10.1007/s00521-020-05330-7
10.1504/IJMIC.2010.032802
10.1016/j.dsp.2016.08.001
10.1016/j.jhydrol.2014.10.039
10.1029/2021WR030209
10.1109/TCST.2010.2052257
10.1007/s40313-018-0370-2
10.1111/jmcb.12402
10.1027/1015-5759/a000589
10.1111/gwat.12968
10.1016/j.sigpro.2011.04.021
10.1007/s11269-012-0194-y
10.1016/j.jeconom.2013.10.009
10.1016/j.scitotenv.2022.153030
10.1002/acs.3066
10.1111/jopy.12528
10.1016/j.neucom.2016.01.062
10.1016/0304-4076(92)90104-Y
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2022.128394
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2022_128394
S0022169422009647
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-3b141efc1445517d5ec67188862b83f24b78a02a80cdb9fdce06bd38e703c44e3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000970664200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Sep 28 11:49:32 EDT 2025
Tue Nov 18 21:04:15 EST 2025
Sat Nov 29 07:27:31 EST 2025
Fri Feb 23 02:38:42 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Groundwater depth prediction
Improved Bayesian information criterion
Basis functions
Fading memory recursive least squares algorithm
Time-varying autoregressive model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-3b141efc1445517d5ec67188862b83f24b78a02a80cdb9fdce06bd38e703c44e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718376635
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718376635
crossref_primary_10_1016_j_jhydrol_2022_128394
crossref_citationtrail_10_1016_j_jhydrol_2022_128394
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2022_128394
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tsatsanis, Giannakis (b0165) 1993; 41
Lanne, Luoto (b0085) 2017; 49
Li, Cui, Guo, Huang, Yang, Wei (b0110) 2018; 29
Kwiatkowski, Phillips, Schmidt, Shin (b0080) 1992; 54
Cui, Singh (b0025) 2016; 442
Guo, Song, Ma (b0055) 2021; 57
Huang, Hou, Chang, Huang, Chen (b0065) 2014; 519
Lee, Chon (b0090) 2011; 58
Shirmohammadi, Vafakhah, Moosavi, Moghaddamnia (b0145) 2013; 27
Cui, Singh (b0030) 2017; 31
Gutierrez, Salazar-Varas (b0060) 2011; 2011
Su, Zou, Jiang, Qian (b0150) 2021; 9
Mirhoseini, Tabatabaei (b0125) 2018; 29
Bringmann, Hamaker, Vigo, Aubert, Borsboom, Tuerlinckx (b0010) 2017; 22
Li, Luo, Li (b0105) 2016; 193
Wei, Billings, Liu (b0180) 2010; 9
Zhang, Xu, Qian (b0195) 2019; 16
Fuentealba, Illanes, Ortmeier (b0035) 2019; 7
Li, Lei, Cui, Guo, Wei (b0115) 2019; 66
Cui, Singh (b0020) 2015; 521
Sun, Ji, Ren, Xie, Yan (b0155) 2019; 12
Jiang, Qian, Pan, Chai (b0070) 2020; 34
Pascucci, Rubega, Plomp, Battaglia (b0140) 2020; 16
Casini, Richetin, Preti, Bringmann (b0015) 2020; 88
Guo, Guo, Billings, Wei (b0045) 2016; 173
Albers, Bringmann (b0005) 2020; 36
Sung, Lee (b0160) 2019; 8
Wang, Wei, Wang, Xu (b0175) 2021; 33
Li, Yuan, Yuan, Xu (b0120) 2021; 28
Giraitis, Kapetanios, Yates (b0040) 2014; 179
Li, Wei, Billings (b0095) 2011; 19
Guo, Song, Shi, Li (b0050) 2020; 58
Paleologu, Benesty, Ciochina (b0130) 2008; 15
Khorshidi, Karimi, Nematollahi (b0075) 2011; 91
Parchami, Amindavar, Zhu (b0135) 2019; 109
Wan, Xiao (b0170) 2016; 59
Xu, Li, Guo, Yang, Chan (b0185) 2017; 278
Li, Liu, Tan, Chan (b0100) 2016; 195
Zhang, Su, Zhang, Wu, Wang, Chu (b0190) 2022; 819
Cui (10.1016/j.jhydrol.2022.128394_b0030) 2017; 31
Guo (10.1016/j.jhydrol.2022.128394_b0045) 2016; 173
Zhang (10.1016/j.jhydrol.2022.128394_b0195) 2019; 16
Lee (10.1016/j.jhydrol.2022.128394_b0090) 2011; 58
Cui (10.1016/j.jhydrol.2022.128394_b0025) 2016; 442
Li (10.1016/j.jhydrol.2022.128394_b0105) 2016; 193
Guo (10.1016/j.jhydrol.2022.128394_b0055) 2021; 57
Bringmann (10.1016/j.jhydrol.2022.128394_b0010) 2017; 22
Cui (10.1016/j.jhydrol.2022.128394_b0020) 2015; 521
Zhang (10.1016/j.jhydrol.2022.128394_b0190) 2022; 819
Lanne (10.1016/j.jhydrol.2022.128394_b0085) 2017; 49
Paleologu (10.1016/j.jhydrol.2022.128394_b0130) 2008; 15
Kwiatkowski (10.1016/j.jhydrol.2022.128394_b0080) 1992; 54
Guo (10.1016/j.jhydrol.2022.128394_b0050) 2020; 58
Sun (10.1016/j.jhydrol.2022.128394_b0155) 2019; 12
Sung (10.1016/j.jhydrol.2022.128394_b0160) 2019; 8
Albers (10.1016/j.jhydrol.2022.128394_b0005) 2020; 36
Jiang (10.1016/j.jhydrol.2022.128394_b0070) 2020; 34
Mirhoseini (10.1016/j.jhydrol.2022.128394_b0125) 2018; 29
Wan (10.1016/j.jhydrol.2022.128394_b0170) 2016; 59
Gutierrez (10.1016/j.jhydrol.2022.128394_b0060) 2011; 2011
Li (10.1016/j.jhydrol.2022.128394_b0110) 2018; 29
Wang (10.1016/j.jhydrol.2022.128394_b0175) 2021; 33
Li (10.1016/j.jhydrol.2022.128394_b0095) 2011; 19
Li (10.1016/j.jhydrol.2022.128394_b0100) 2016; 195
Fuentealba (10.1016/j.jhydrol.2022.128394_b0035) 2019; 7
Li (10.1016/j.jhydrol.2022.128394_b0120) 2021; 28
Li (10.1016/j.jhydrol.2022.128394_b0115) 2019; 66
Khorshidi (10.1016/j.jhydrol.2022.128394_b0075) 2011; 91
Shirmohammadi (10.1016/j.jhydrol.2022.128394_b0145) 2013; 27
Giraitis (10.1016/j.jhydrol.2022.128394_b0040) 2014; 179
Parchami (10.1016/j.jhydrol.2022.128394_b0135) 2019; 109
Wei (10.1016/j.jhydrol.2022.128394_b0180) 2010; 9
Huang (10.1016/j.jhydrol.2022.128394_b0065) 2014; 519
Pascucci (10.1016/j.jhydrol.2022.128394_b0140) 2020; 16
Tsatsanis (10.1016/j.jhydrol.2022.128394_b0165) 1993; 41
Xu (10.1016/j.jhydrol.2022.128394_b0185) 2017; 278
Su (10.1016/j.jhydrol.2022.128394_b0150) 2021; 9
Casini (10.1016/j.jhydrol.2022.128394_b0015) 2020; 88
References_xml – volume: 54
  start-page: 159
  year: 1992
  end-page: 178
  ident: b0080
  article-title: Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?
  publication-title: Journal of Econometrics.
– volume: 195
  start-page: 96
  year: 2016
  end-page: 103
  ident: b0100
  article-title: High-resolution time-frequency analysis of EEG signals using multiscale radial basis functions
  publication-title: Neurocomputing.
– volume: 27
  start-page: 419
  year: 2013
  end-page: 432
  ident: b0145
  article-title: Application of Several Data-Driven Techniques for Predicting Groundwater Level
  publication-title: Water Resour. Manag.
– volume: 28
  start-page: 995
  year: 2021
  end-page: 999
  ident: b0120
  article-title: Algorithms comparison on intraday index return prediction: evidence from China
  publication-title: Applied Economics Letters.
– volume: 33
  start-page: 5525
  year: 2021
  end-page: 5541
  ident: b0175
  article-title: A novel time-varying modeling and signal processing approach for epileptic seizure detection and classification
  publication-title: Neural Comput. Appl.
– volume: 173
  start-page: 715
  year: 2016
  end-page: 723
  ident: b0045
  article-title: Ultra-Orthogonal Forward Regression Algorithms for the Identification of Non-Linear Dynamic Systems
  publication-title: Neurocomputing.
– volume: 16
  year: 2019
  ident: b0195
  article-title: Assessment of Groundwater Quality and Human Health Risk (HHR) Evaluation of Nitrate in the Central-Western Guanzhong Basin
  publication-title: China. Int. J. Env. Res. Pub. He.
– volume: 16
  start-page: e1007566
  year: 2020
  ident: b0140
  article-title: Modeling time-varying brain networks with a self-tuning optimized Kalman filter
  publication-title: PLoS Comput. Biol.
– volume: 2011
  start-page: 6585
  year: 2011
  end-page: 6588
  ident: b0060
  article-title: EEG signal classification using time-varying autoregressive models and common spatial patterns. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society
  publication-title: Annual International Conference.
– volume: 109
  start-page: 1
  year: 2019
  end-page: 14
  ident: b0135
  article-title: Speech reverberation suppression for time-varying environments using weighted prediction error method with time-varying autoregressive model
  publication-title: Speech Commun.
– volume: 9
  year: 2021
  ident: b0150
  article-title: Research on Adaptive Hybrid Energy Consumption Model Based on Data Driven under Variable Working Conditions. Frontiers in Energy
  publication-title: Research.
– volume: 442
  start-page: 91
  year: 2016
  end-page: 99
  ident: b0025
  article-title: Maximum entropy spectral analysis for streamflow forecasting
  publication-title: Physica A-Statistical Mechanices and Its Applications.
– volume: 91
  start-page: 2359
  year: 2011
  end-page: 2370
  ident: b0075
  article-title: New autoregressive (AR) order selection criteria based on the prediction error estimation
  publication-title: Signal Process.
– volume: 19
  start-page: 656
  year: 2011
  end-page: 663
  ident: b0095
  article-title: Identification of Time-Varying Systems Using Multi-Wavelet Basis Functions
  publication-title: IEEE T. Contr. Syst. T.
– volume: 58
  start-page: 790
  year: 2011
  end-page: 794
  ident: b0090
  article-title: Time-Varying Autoregressive Model-Based Multiple Modes Particle Filtering Algorithm for Respiratory Rate Extraction From Pulse Oximeter
  publication-title: IEEE T. Bio.-Med. Eng.
– volume: 59
  start-page: 1
  year: 2016
  end-page: 8
  ident: b0170
  article-title: Variational Bayesian learning for robust AR modeling with the presence of sparse impulse noise
  publication-title: Digtal Signal Processing.
– volume: 57
  year: 2021
  ident: b0055
  article-title: Point and Interval Forecasting of Groundwater Depth Using Nonlinear Models
  publication-title: Water Resour. Res.
– volume: 66
  start-page: 3509
  year: 2019
  end-page: 3525
  ident: b0115
  article-title: A Parametric Time-Frequency Conditional Granger Causality Method Using Ultra-Regularized Orthogonal Least Squares and Multiwavelets for Dynamic Connectivity Analysis in EEGs
  publication-title: IEEE T. Bio.-Med. Eng.
– volume: 41
  start-page: 3512
  year: 1993
  end-page: 3523
  ident: b0165
  article-title: TIME-VARYING SYSTEM-IDENTIFICATION AND MODEL VALIDATION USING WAVELETS
  publication-title: IEEE T. Signal Proces.
– volume: 521
  start-page: 1
  year: 2015
  end-page: 17
  ident: b0020
  article-title: Configurational entropy theory for streamflow forecasting
  publication-title: J. Hydrol.
– volume: 7
  start-page: 159754
  year: 2019
  end-page: 159772
  ident: b0035
  article-title: Cardiotocographic Signal Feature Extraction Through CEEMDAN and Time-Varying Autoregressive Spectral-Based Analysis for Fetal Welfare Assessment
  publication-title: IEEE Access
– volume: 88
  start-page: 806
  year: 2020
  end-page: 821
  ident: b0015
  article-title: Using the time-varying autoregressive model to study dynamic changes in situation perceptions and emotional reactions
  publication-title: J. Pers.
– volume: 12
  year: 2019
  ident: b0155
  article-title: Adaptive Forgetting Factor Recursive Least Square Algorithm for Online Identification of Equivalent Circuit Model Parameters of a Lithium-Ion Battery
  publication-title: Energies.
– volume: 8
  year: 2019
  ident: b0160
  article-title: Implementation of SOH Estimator in Automotive BMSs Using Recursive Least-Squares
  publication-title: Electronics.
– volume: 49
  start-page: 969
  year: 2017
  end-page: 995
  ident: b0085
  article-title: A New Time-Varying Parameter Autoregressive Model for US Inflation Expectations
  publication-title: Journal of money credit and banking.
– volume: 36
  start-page: 492
  year: 2020
  end-page: 499
  ident: b0005
  article-title: Inspecting Gradual and Abrupt Changes in Emotion Dynamics With the Time-Varying Change Point Autoregressive Model
  publication-title: European Journal of Psychological Assessment.
– volume: 15
  start-page: 597
  year: 2008
  end-page: 600
  ident: b0130
  article-title: A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification
  publication-title: IEEE Signal Proc. Let.
– volume: 9
  start-page: 215
  year: 2010
  ident: b0180
  article-title: Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multiwavelets
  publication-title: Int. J. Model. Ident. Control
– volume: 58
  start-page: 749
  year: 2020
  end-page: 758
  ident: b0050
  article-title: Groundwater Depth Forecasting Using Configurational Entropy Spectral Analyses with the Optimal Input
  publication-title: Groundwater.
– volume: 519
  start-page: 3204
  year: 2014
  end-page: 3213
  ident: b0065
  article-title: Copulas-based probabilistic characterization of the combination of dry and wet conditions in the Guanzhong Plain
  publication-title: China. J. Hydrol.
– volume: 29
  start-page: 2960
  year: 2018
  end-page: 2972
  ident: b0110
  article-title: Time-Varying System Identification Using an Ultra-Orthogonal Forward Regression and Multiwavelet Basis Functions With Applications to EEG
  publication-title: IEEE T. Neur. Net. Lear.
– volume: 819
  year: 2022
  ident: b0190
  article-title: Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin
  publication-title: China. Science of The Total Environment.
– volume: 22
  start-page: 409
  year: 2017
  end-page: 425
  ident: b0010
  article-title: Changing Dynamics: Time-Varying Autoregressive Models Using Generalized Additive Modeling
  publication-title: Psychol. Methods
– volume: 179
  start-page: 46
  year: 2014
  end-page: 65
  ident: b0040
  article-title: Inference on stochastic time-varying coefficient models
  publication-title: J. Econometrics.
– volume: 31
  start-page: 587
  year: 2017
  end-page: 608
  ident: b0030
  article-title: Application of minimum relative entropy theory for streamflow forecasting
  publication-title: Stoch. Env. Res. Risk A.
– volume: 278
  start-page: 46
  year: 2017
  end-page: 56
  ident: b0185
  article-title: Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions
  publication-title: J. Neurosci. Meth.
– volume: 193
  start-page: 106
  year: 2016
  end-page: 114
  ident: b0105
  article-title: A multiwavelet-based time-varying model identification approach for time-frequency analysis of EEG signals
  publication-title: Neurocomputing.
– volume: 29
  start-page: 136
  year: 2018
  end-page: 152
  ident: b0125
  article-title: Bi-loop Matrix Forgetting Factor-Based Coupled Recursive Least Squares Algorithm for Identification of Multivariable Plants
  publication-title: Journal of Control, Automation and Electrical Systems.
– volume: 34
  start-page: 15
  year: 2020
  end-page: 31
  ident: b0070
  article-title: The research of superheated steam temperature control based on generalized predictive control algorithm and adaptive forgetting factor
  publication-title: Int. J. Adapt. Control.
– volume: 66
  start-page: 3509
  issue: 12
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128394_b0115
  article-title: A Parametric Time-Frequency Conditional Granger Causality Method Using Ultra-Regularized Orthogonal Least Squares and Multiwavelets for Dynamic Connectivity Analysis in EEGs
  publication-title: IEEE T. Bio.-Med. Eng.
  doi: 10.1109/TBME.2019.2906688
– volume: 31
  start-page: 587
  issue: 3
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128394_b0030
  article-title: Application of minimum relative entropy theory for streamflow forecasting
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-016-1306-7
– volume: 8
  issue: 123711
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128394_b0160
  article-title: Implementation of SOH Estimator in Automotive BMSs Using Recursive Least-Squares
  publication-title: Electronics.
– volume: 109
  start-page: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128394_b0135
  article-title: Speech reverberation suppression for time-varying environments using weighted prediction error method with time-varying autoregressive model
  publication-title: Speech Commun.
  doi: 10.1016/j.specom.2019.03.002
– volume: 195
  start-page: 96
  issue: SI
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128394_b0100
  article-title: High-resolution time-frequency analysis of EEG signals using multiscale radial basis functions
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2015.04.128
– volume: 22
  start-page: 409
  issue: 3
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128394_b0010
  article-title: Changing Dynamics: Time-Varying Autoregressive Models Using Generalized Additive Modeling
  publication-title: Psychol. Methods
  doi: 10.1037/met0000085
– volume: 521
  start-page: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2022.128394_b0020
  article-title: Configurational entropy theory for streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.11.065
– volume: 442
  start-page: 91
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128394_b0025
  article-title: Maximum entropy spectral analysis for streamflow forecasting
  publication-title: Physica A-Statistical Mechanices and Its Applications.
  doi: 10.1016/j.physa.2015.08.060
– volume: 173
  start-page: 715
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128394_b0045
  article-title: Ultra-Orthogonal Forward Regression Algorithms for the Identification of Non-Linear Dynamic Systems
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2015.08.022
– volume: 16
  start-page: e1007566
  issue: 8
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128394_b0140
  article-title: Modeling time-varying brain networks with a self-tuning optimized Kalman filter
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1007566
– volume: 7
  start-page: 159754
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128394_b0035
  article-title: Cardiotocographic Signal Feature Extraction Through CEEMDAN and Time-Varying Autoregressive Spectral-Based Analysis for Fetal Welfare Assessment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950798
– volume: 15
  start-page: 597
  year: 2008
  ident: 10.1016/j.jhydrol.2022.128394_b0130
  article-title: A Robust Variable Forgetting Factor Recursive Least-Squares Algorithm for System Identification
  publication-title: IEEE Signal Proc. Let.
  doi: 10.1109/LSP.2008.2001559
– volume: 12
  issue: 224212
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128394_b0155
  article-title: Adaptive Forgetting Factor Recursive Least Square Algorithm for Online Identification of Equivalent Circuit Model Parameters of a Lithium-Ion Battery
  publication-title: Energies.
– volume: 28
  start-page: 995
  issue: 12
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128394_b0120
  article-title: Algorithms comparison on intraday index return prediction: evidence from China
  publication-title: Applied Economics Letters.
  doi: 10.1080/13504851.2020.1791793
– volume: 278
  start-page: 46
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128394_b0185
  article-title: Identification of time-varying neural dynamics from spike train data using multiwavelet basis functions
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2016.12.018
– volume: 41
  start-page: 3512
  issue: 12
  year: 1993
  ident: 10.1016/j.jhydrol.2022.128394_b0165
  article-title: TIME-VARYING SYSTEM-IDENTIFICATION AND MODEL VALIDATION USING WAVELETS
  publication-title: IEEE T. Signal Proces.
  doi: 10.1109/78.258089
– volume: 33
  start-page: 5525
  issue: 11
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128394_b0175
  article-title: A novel time-varying modeling and signal processing approach for epileptic seizure detection and classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05330-7
– volume: 9
  start-page: 215
  issue: 3
  year: 2010
  ident: 10.1016/j.jhydrol.2022.128394_b0180
  article-title: Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multiwavelets
  publication-title: Int. J. Model. Ident. Control
  doi: 10.1504/IJMIC.2010.032802
– volume: 59
  start-page: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128394_b0170
  article-title: Variational Bayesian learning for robust AR modeling with the presence of sparse impulse noise
  publication-title: Digtal Signal Processing.
  doi: 10.1016/j.dsp.2016.08.001
– volume: 16
  issue: 424621
  year: 2019
  ident: 10.1016/j.jhydrol.2022.128394_b0195
  article-title: Assessment of Groundwater Quality and Human Health Risk (HHR) Evaluation of Nitrate in the Central-Western Guanzhong Basin
  publication-title: China. Int. J. Env. Res. Pub. He.
– volume: 519
  start-page: 3204
  issue: D
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128394_b0065
  article-title: Copulas-based probabilistic characterization of the combination of dry and wet conditions in the Guanzhong Plain
  publication-title: China. J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.10.039
– volume: 57
  issue: 12
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128394_b0055
  article-title: Point and Interval Forecasting of Groundwater Depth Using Nonlinear Models
  publication-title: Water Resour. Res.
  doi: 10.1029/2021WR030209
– volume: 19
  start-page: 656
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128394_b0095
  article-title: Identification of Time-Varying Systems Using Multi-Wavelet Basis Functions
  publication-title: IEEE T. Contr. Syst. T.
  doi: 10.1109/TCST.2010.2052257
– volume: 29
  start-page: 136
  issue: 2
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128394_b0125
  article-title: Bi-loop Matrix Forgetting Factor-Based Coupled Recursive Least Squares Algorithm for Identification of Multivariable Plants
  publication-title: Journal of Control, Automation and Electrical Systems.
  doi: 10.1007/s40313-018-0370-2
– volume: 49
  start-page: 969
  issue: 5
  year: 2017
  ident: 10.1016/j.jhydrol.2022.128394_b0085
  article-title: A New Time-Varying Parameter Autoregressive Model for US Inflation Expectations
  publication-title: Journal of money credit and banking.
  doi: 10.1111/jmcb.12402
– volume: 58
  start-page: 790
  issue: 32
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128394_b0090
  article-title: Time-Varying Autoregressive Model-Based Multiple Modes Particle Filtering Algorithm for Respiratory Rate Extraction From Pulse Oximeter
  publication-title: IEEE T. Bio.-Med. Eng.
– volume: 36
  start-page: 492
  issue: 3SI
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128394_b0005
  article-title: Inspecting Gradual and Abrupt Changes in Emotion Dynamics With the Time-Varying Change Point Autoregressive Model
  publication-title: European Journal of Psychological Assessment.
  doi: 10.1027/1015-5759/a000589
– volume: 58
  start-page: 749
  issue: 5
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128394_b0050
  article-title: Groundwater Depth Forecasting Using Configurational Entropy Spectral Analyses with the Optimal Input
  publication-title: Groundwater.
  doi: 10.1111/gwat.12968
– volume: 91
  start-page: 2359
  issue: 10
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128394_b0075
  article-title: New autoregressive (AR) order selection criteria based on the prediction error estimation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2011.04.021
– volume: 27
  start-page: 419
  issue: 2
  year: 2013
  ident: 10.1016/j.jhydrol.2022.128394_b0145
  article-title: Application of Several Data-Driven Techniques for Predicting Groundwater Level
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-012-0194-y
– volume: 179
  start-page: 46
  issue: 1
  year: 2014
  ident: 10.1016/j.jhydrol.2022.128394_b0040
  article-title: Inference on stochastic time-varying coefficient models
  publication-title: J. Econometrics.
  doi: 10.1016/j.jeconom.2013.10.009
– volume: 2011
  start-page: 6585
  year: 2011
  ident: 10.1016/j.jhydrol.2022.128394_b0060
  article-title: EEG signal classification using time-varying autoregressive models and common spatial patterns. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society
  publication-title: Annual International Conference.
– volume: 819
  year: 2022
  ident: 10.1016/j.jhydrol.2022.128394_b0190
  article-title: Evaluation of the impacts of human activities on propagation from meteorological drought to hydrological drought in the Weihe River Basin
  publication-title: China. Science of The Total Environment.
  doi: 10.1016/j.scitotenv.2022.153030
– volume: 29
  start-page: 2960
  issue: 7
  year: 2018
  ident: 10.1016/j.jhydrol.2022.128394_b0110
  article-title: Time-Varying System Identification Using an Ultra-Orthogonal Forward Regression and Multiwavelet Basis Functions With Applications to EEG
  publication-title: IEEE T. Neur. Net. Lear.
– volume: 9
  issue: 738556
  year: 2021
  ident: 10.1016/j.jhydrol.2022.128394_b0150
  article-title: Research on Adaptive Hybrid Energy Consumption Model Based on Data Driven under Variable Working Conditions. Frontiers in Energy
  publication-title: Research.
– volume: 34
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128394_b0070
  article-title: The research of superheated steam temperature control based on generalized predictive control algorithm and adaptive forgetting factor
  publication-title: Int. J. Adapt. Control.
  doi: 10.1002/acs.3066
– volume: 88
  start-page: 806
  issue: 4
  year: 2020
  ident: 10.1016/j.jhydrol.2022.128394_b0015
  article-title: Using the time-varying autoregressive model to study dynamic changes in situation perceptions and emotional reactions
  publication-title: J. Pers.
  doi: 10.1111/jopy.12528
– volume: 193
  start-page: 106
  year: 2016
  ident: 10.1016/j.jhydrol.2022.128394_b0105
  article-title: A multiwavelet-based time-varying model identification approach for time-frequency analysis of EEG signals
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2016.01.062
– volume: 54
  start-page: 159
  issue: 1–3
  year: 1992
  ident: 10.1016/j.jhydrol.2022.128394_b0080
  article-title: Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?
  publication-title: Journal of Econometrics.
  doi: 10.1016/0304-4076(92)90104-Y
SSID ssj0000334
Score 2.4353528
Snippet •A TVAR model is introduced to predict groundwater depth.•The implementation of parameter estimation of the TVAR model is summarized.•The TVAR exhibits better...
The nonstationarity of hydrological variables makes the application of autoregressive (AR) models challenging. Therefore, this study introduces a new...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 128394
SubjectTerms algorithms
Basis functions
Bayesian theory
China
Fading memory recursive least squares algorithm
Groundwater depth prediction
Improved Bayesian information criterion
memory
model validation
prediction
Time-varying autoregressive model
water table
Title A time-varying autoregressive model for groundwater depth prediction
URI https://dx.doi.org/10.1016/j.jhydrol.2022.128394
https://www.proquest.com/docview/2718376635
Volume 613
WOSCitedRecordID wos000970664200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhgQviE8xvhQkXhNS24ntxwjGl6aJh4G6p8ixHbVVSasu7bb_fuePpB0FDZB4SVtLZyt3v57P5_tA6A0WKtNS0FjTDMeUahFzBT8ZS1k9VJQRF4z5_YgdH_PRSHwdDI66XJj1jDUNv7gQi_8qahgDYdvU2b8Qdz8pDMB3EDo8Qezw_CPBF65ffLyWS5fBJG2RAuNO1TZIyHW-cbGFNp-j0efS9whftGNbL0BPVC-pXZN1fKmXvmYT2KXFD1tjQVtA9c6Ej6u5B4BsZpPeeROifu1nJfvhU-96PZVtt3sG5wOcW7swtuAR28mK6TMEhrlvXpwYr1g5Ezb3jW1r3tynoe5oce9QmCZT_1qJXTmBjZR0U14rkG3vm7FdDtubnpyyW2gfs0yAjtsvPh-Ovmx2ZkJoVz3eEmwyut7-crHf2So_7drOFDm5j-4FgUSFl_0DNDDNQ3QntLMfXz5C74toGwPRdQxEDgMRYCDawkDkMBBtMPAYfftwePLuUxzaZcSKUNzGpBrSoakVHJHBDGY6MyoHy4PDmbXipMa0YlymWPJU6UrUWpk0rzThBpS-otSQJ2ivmTfmKYp0ZfJU6jSruaCg1QXQVYbXYOdkWGb6ANGOMaUKteRtS5NZ2QUNTsvAz9Lys_T8PEBJT7bwxVRuIuAd18tgEXpLrwSo3ET6upNSCRrTXoPJxsxXZyUGpsC2Cpb2s3-f_jm6u_k_vEB77XJlXqLbat1OzpavAvCuAO1Mk-k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+time-varying+autoregressive+model+for+groundwater+depth+prediction&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Guo%2C+Tianli&rft.au=Song%2C+Songbai&rft.au=Yan%2C+Yating&rft.date=2022-10-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=613&rft_id=info:doi/10.1016%2Fj.jhydrol.2022.128394&rft.externalDocID=S0022169422009647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon