Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles
Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their solid counterpart, due to increased surface area, low density, and sustained release, emerged as a promising delivery system for polyphenols. It...
Gespeichert in:
| Veröffentlicht in: | Food hydrocolloids Jg. 113; S. 106477 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.04.2021
|
| Schlagworte: | |
| ISSN: | 0268-005X, 1873-7137 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their solid counterpart, due to increased surface area, low density, and sustained release, emerged as a promising delivery system for polyphenols. It is necessary to improve the stability of zein particles for the encapsulation of bioactive components. The current work aims to prepare hollow zein particles by employing chitosan coating and explore the potential of the composite particles for the encapsulation and protection of resveratrol, a natural polyphenol. Hollow zein (HZ) and zein-chitosan (HZ-CH) particles were characterized in terms of size, surface charge, morphological structure, particle yield and antioxidant activity. Encapsulation of resveratrol in the zein matrix was studied by the help of fluorescence, infrared and X-ray diffraction techniques. The composite particles were also subjected to storage and in vitro digestion. Particle yield was greater than 90% when the concentrations of chitosan were greater than 0.02%. HZ-CH particles were positively charged and bigger in size as compare to HZ particles. Resveratrol entrapment caused an apparent increase in the size of the particles. The highest encapsulation efficiency and loading capacity of resveratrol were 91% and 14% in the hydrophobic zein shell of HZ-CH particles, respectively. The chitosan coating improved the storage and digestion stability of resveratrol-loaded hollow zein particles and the storage stability of encapsulated resveratrol and exhibited a sustained in vitro release of resveratrol. Therefore, the hollow zein composite particles could be used as an efficient delivery system for resveratrol in the development of functional foods.
Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles [Display omitted]
•Resveratrol-loaded hollow zein (RHZ) particles were coated with chitosan.•The highest encapsulation of resveratrol at 375 μg/mL with 0.03% chitosan.•Chitosan improved storage and digestive stability of RHZ particles.•Chitosan improved storage stability of encapsulated resveratrol.•RHZ-chitosan particles showed sustained release of resveratrol in vitro. |
|---|---|
| AbstractList | Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their solid counterpart, due to increased surface area, low density, and sustained release, emerged as a promising delivery system for polyphenols. It is necessary to improve the stability of zein particles for the encapsulation of bioactive components. The current work aims to prepare hollow zein particles by employing chitosan coating and explore the potential of the composite particles for the encapsulation and protection of resveratrol, a natural polyphenol. Hollow zein (HZ) and zein-chitosan (HZ-CH) particles were characterized in terms of size, surface charge, morphological structure, particle yield and antioxidant activity. Encapsulation of resveratrol in the zein matrix was studied by the help of fluorescence, infrared and X-ray diffraction techniques. The composite particles were also subjected to storage and in vitro digestion. Particle yield was greater than 90% when the concentrations of chitosan were greater than 0.02%. HZ-CH particles were positively charged and bigger in size as compare to HZ particles. Resveratrol entrapment caused an apparent increase in the size of the particles. The highest encapsulation efficiency and loading capacity of resveratrol were 91% and 14% in the hydrophobic zein shell of HZ-CH particles, respectively. The chitosan coating improved the storage and digestion stability of resveratrol-loaded hollow zein particles and the storage stability of encapsulated resveratrol and exhibited a sustained in vitro release of resveratrol. Therefore, the hollow zein composite particles could be used as an efficient delivery system for resveratrol in the development of functional foods.
Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles [Display omitted]
•Resveratrol-loaded hollow zein (RHZ) particles were coated with chitosan.•The highest encapsulation of resveratrol at 375 μg/mL with 0.03% chitosan.•Chitosan improved storage and digestive stability of RHZ particles.•Chitosan improved storage stability of encapsulated resveratrol.•RHZ-chitosan particles showed sustained release of resveratrol in vitro. Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their solid counterpart, due to increased surface area, low density, and sustained release, emerged as a promising delivery system for polyphenols. It is necessary to improve the stability of zein particles for the encapsulation of bioactive components. The current work aims to prepare hollow zein particles by employing chitosan coating and explore the potential of the composite particles for the encapsulation and protection of resveratrol, a natural polyphenol. Hollow zein (HZ) and zein-chitosan (HZ-CH) particles were characterized in terms of size, surface charge, morphological structure, particle yield and antioxidant activity. Encapsulation of resveratrol in the zein matrix was studied by the help of fluorescence, infrared and X-ray diffraction techniques. The composite particles were also subjected to storage and in vitro digestion. Particle yield was greater than 90% when the concentrations of chitosan were greater than 0.02%. HZ-CH particles were positively charged and bigger in size as compare to HZ particles. Resveratrol entrapment caused an apparent increase in the size of the particles. The highest encapsulation efficiency and loading capacity of resveratrol were 91% and 14% in the hydrophobic zein shell of HZ-CH particles, respectively. The chitosan coating improved the storage and digestion stability of resveratrol-loaded hollow zein particles and the storage stability of encapsulated resveratrol and exhibited a sustained in vitro release of resveratrol. Therefore, the hollow zein composite particles could be used as an efficient delivery system for resveratrol in the development of functional foods. |
| ArticleNumber | 106477 |
| Author | Khan, Muhammad Aslam Chen, Lingyun Liang, Li |
| Author_xml | – sequence: 1 givenname: Muhammad Aslam surname: Khan fullname: Khan, Muhammad Aslam organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 21412, China – sequence: 2 givenname: Lingyun orcidid: 0000-0002-5762-5031 surname: Chen fullname: Chen, Lingyun organization: Department of Agricultural, Food and Nutritional Science, University of Alberta, Alberta, Canada – sequence: 3 givenname: Li surname: Liang fullname: Liang, Li email: liliang@jiangnan.edu.cn organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 21412, China |
| BookMark | eNqFkM1r3DAQxUVIIJu0f0JBx1680Ydl2fRQSmg-IJBLArkJWR53Z5GlraTdsvnr683mlEtOM_N478H8LshpiAEI-cbZkjPeXK2XY4zDaj8sBRMHram1PiEL3mpZaS71KVkw0bQVY-rlnFzkvGaMa8b5gmzvp02KO5ggFIqB5hKT_QPztD16LHtqw0AT5B0kW1L0815mL8ZA-z0dbZ_Q2bczjnQVvY__6CtgqNwKS8w2UBenTcxYgG5sKug85C_kbLQ-w9f3eUmeb34_Xd9VD4-399e_Hiona1EqKWsnVKMaplXbMtWrtnFa1x1wLpzinW7A1UpIPatD1zJn-17p1nYDh14O8pJ8P_bOP_7dQi5mwuzAexsgbrMRStRCKt52s1UdrS7FnBOMZpNwsmlvODMHzGZt3jGbA2ZzxDznfnzIOSxvQEqy6D9N_zymYaawQ0gmO4TgYMAErpgh4icN_wFtgaDu |
| CitedBy_id | crossref_primary_10_1016_j_foodchem_2023_136967 crossref_primary_10_1016_j_foodhyd_2023_109508 crossref_primary_10_1016_j_ijbiomac_2025_145086 crossref_primary_10_1016_j_ijbiomac_2021_10_184 crossref_primary_10_1016_j_tifs_2021_12_025 crossref_primary_10_1016_j_fbio_2024_105399 crossref_primary_10_1016_j_jfoodeng_2025_112724 crossref_primary_10_3389_fphar_2023_1120251 crossref_primary_10_1016_j_lwt_2025_117508 crossref_primary_10_3390_foods11030376 crossref_primary_10_1016_j_colsurfa_2024_135680 crossref_primary_10_1016_j_foodres_2025_115845 crossref_primary_10_1016_j_foodchem_2024_140066 crossref_primary_10_1016_j_bioadv_2025_214238 crossref_primary_10_3390_molecules26020272 crossref_primary_10_1016_j_foodres_2025_116656 crossref_primary_10_1016_j_foodhyd_2024_110262 crossref_primary_10_3390_polym13111737 crossref_primary_10_3390_molecules26030660 crossref_primary_10_1016_j_foodchem_2024_141435 crossref_primary_10_1016_j_foodchem_2024_141753 crossref_primary_10_1016_j_foodres_2024_115561 crossref_primary_10_1016_j_tifs_2024_104571 crossref_primary_10_1016_j_ijbiomac_2023_126698 crossref_primary_10_1007_s40005_024_00666_x crossref_primary_10_1016_j_lwt_2024_116349 crossref_primary_10_3389_fnut_2021_806623 crossref_primary_10_1016_j_inoche_2024_113597 crossref_primary_10_1016_j_ijbiomac_2025_147191 crossref_primary_10_1016_j_fbio_2023_103160 crossref_primary_10_3390_foods11111625 crossref_primary_10_3390_antiox10091476 crossref_primary_10_1016_j_foodhyd_2025_111168 crossref_primary_10_3390_gels8020135 crossref_primary_10_1016_j_carbpol_2021_118441 crossref_primary_10_1016_j_bej_2023_108992 crossref_primary_10_1016_j_foodchem_2024_141746 crossref_primary_10_1016_j_foodchem_2024_141987 crossref_primary_10_1016_j_ijbiomac_2025_143227 crossref_primary_10_1016_j_ijbiomac_2022_09_175 crossref_primary_10_1016_j_fbio_2023_102943 crossref_primary_10_3390_pharmaceutics17010134 crossref_primary_10_1016_j_fbio_2024_105458 crossref_primary_10_1016_j_ijbiomac_2023_125059 crossref_primary_10_1016_j_colsurfa_2022_130766 crossref_primary_10_1016_j_ijbiomac_2023_123150 crossref_primary_10_1016_j_foodchem_2022_134604 crossref_primary_10_1016_j_ijbiomac_2021_05_216 crossref_primary_10_3390_polym13152533 crossref_primary_10_1016_j_jfoodeng_2024_112305 crossref_primary_10_1016_j_lwt_2021_112998 crossref_primary_10_3390_foods10050988 crossref_primary_10_3390_foods12132436 crossref_primary_10_1016_j_ijbiomac_2024_132264 crossref_primary_10_1016_j_foodhyd_2023_109492 crossref_primary_10_1016_j_foodres_2024_114413 crossref_primary_10_1016_j_foodhyd_2023_109011 crossref_primary_10_3390_foods13193111 crossref_primary_10_1016_j_indcrop_2022_115250 crossref_primary_10_1007_s11694_024_02725_1 crossref_primary_10_1016_j_reactfunctpolym_2022_105414 crossref_primary_10_3389_fnut_2025_1641620 crossref_primary_10_1016_j_foodhyd_2022_108368 crossref_primary_10_1111_1750_3841_17628 crossref_primary_10_1002_jsfa_13201 crossref_primary_10_1016_j_indcrop_2022_114521 crossref_primary_10_3390_molecules27010060 crossref_primary_10_1007_s10068_023_01489_6 crossref_primary_10_1016_j_colsurfb_2022_112529 crossref_primary_10_1016_j_foodres_2022_111713 crossref_primary_10_1016_j_foodhyd_2021_107331 crossref_primary_10_1039_D2FO03180A crossref_primary_10_1039_D3FO03065B crossref_primary_10_3390_antiox12030564 crossref_primary_10_1016_j_fbio_2024_105189 crossref_primary_10_1016_j_jfoodeng_2023_111520 crossref_primary_10_1016_j_colsurfa_2022_129829 crossref_primary_10_1016_j_foodchem_2023_135982 crossref_primary_10_1016_j_foodhyd_2025_111665 crossref_primary_10_1016_j_tifs_2024_104761 crossref_primary_10_1080_1539445X_2023_2172042 crossref_primary_10_1016_j_ijbiomac_2024_136739 crossref_primary_10_1016_j_fbio_2023_102927 crossref_primary_10_1016_j_lwt_2023_115057 crossref_primary_10_1016_j_colsurfb_2022_112685 crossref_primary_10_48130_fia_0025_0001 |
| Cites_doi | 10.1016/j.ifset.2009.07.002 10.1016/j.foodchem.2012.01.054 10.1016/j.foodchem.2018.11.025 10.1016/j.foodchem.2010.12.029 10.1016/j.ijbiomac.2017.07.087 10.1021/bm301207a 10.1016/j.foodhyd.2018.05.052 10.1111/1750-3841.12395 10.1016/j.foodchem.2015.03.009 10.1039/C9FO02164G 10.1016/j.foodhyd.2017.11.003 10.3390/nu8030131 10.1016/j.colsurfa.2017.01.019 10.1016/j.colsurfb.2019.01.045 10.1016/j.jfoodeng.2018.11.021 10.1016/j.biopha.2018.11.075 10.1016/j.foodhyd.2017.09.011 10.1016/j.carbpol.2014.12.084 10.1021/jf102959b 10.1016/j.carbpol.2020.116090 10.1016/j.foodhyd.2019.02.041 10.1002/(SICI)1099-0488(19970730)35:10<1593::AID-POLB11>3.0.CO;2-5 10.1016/j.foodhyd.2018.06.032 10.1016/j.colsurfb.2011.02.020 10.1016/j.foodhyd.2009.08.012 10.1016/j.jfoodeng.2018.09.007 10.1016/j.foodhyd.2018.06.052 10.1016/j.foodhyd.2016.05.016 10.1016/j.foodchem.2013.01.113 10.1016/j.foodchem.2013.07.058 10.1021/bm700728k 10.1021/acs.chemrev.5b00731 10.1016/j.jfoodeng.2017.10.002 10.1016/j.foodhyd.2016.03.016 10.1016/j.foodhyd.2019.04.042 10.1016/j.cis.2006.11.021 10.1039/c1jm11163a 10.1016/j.foodhyd.2018.08.002 10.1016/j.jcis.2015.10.022 10.1016/j.foodhyd.2019.04.048 10.1016/j.foodhyd.2014.11.023 10.1002/jps.23358 10.1016/j.foodhyd.2019.03.042 10.1016/j.foodchem.2015.03.128 10.1016/j.tifs.2018.07.015 10.1016/j.foodchem.2014.03.003 10.1016/j.foodchem.2007.05.032 10.1016/j.ijbiomac.2020.07.245 10.1016/j.biomaterials.2005.03.011 10.1016/j.foodhyd.2019.02.003 10.1016/j.foodhyd.2016.10.029 10.1016/j.jcis.2016.11.015 10.1039/c0sm00800a 10.1016/j.foodhyd.2014.11.001 10.1016/j.ijbiomac.2019.06.033 10.1016/j.ijbiomac.2018.07.139 10.1016/j.foodhyd.2018.02.037 10.1016/j.foodchem.2017.02.106 10.1016/j.tifs.2019.07.048 10.1016/j.foodhyd.2017.03.033 10.1021/jf2031346 10.1016/j.micromeso.2013.08.022 10.1016/j.foodchem.2018.04.055 10.1016/j.jfoodeng.2019.04.010 10.1016/j.foodchem.2013.09.088 10.1016/j.carbpol.2019.02.007 10.1016/j.cofs.2017.06.008 10.1016/j.foodhyd.2014.09.015 10.1016/j.foodhyd.2012.04.014 10.1016/j.foodres.2016.06.009 10.1016/j.foodhyd.2016.07.006 10.1016/j.ijbiomac.2018.05.107 10.1007/s00216-016-9604-y 10.1016/j.carbpol.2018.03.101 10.1021/jf204194z 10.1039/C4RA14270E 10.1016/j.colsurfa.2016.04.038 10.1016/j.foodchem.2014.06.082 10.1039/C9FO01998G 10.1021/acs.jafc.8b04571 10.1016/j.ijpharm.2009.10.011 10.1016/j.foodchem.2006.01.038 10.1016/j.carbpol.2018.05.033 10.1007/s10544-014-9926-5 10.1016/j.foodres.2018.03.035 10.1039/C8FO01172A 10.1016/j.foodhyd.2017.12.029 10.1039/C8FO01614C 10.1016/j.foodhyd.2019.04.010 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.foodhyd.2020.106477 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7137 |
| ExternalDocumentID | 10_1016_j_foodhyd_2020_106477 S0268005X20328514 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLY HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCE SDF SDG SES SEW SPC SPCBC SSA SSG SSZ T5K UHS UNMZH WH7 Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-334c256560758805b586c7749e112c51976ec45237c77d980cabb578a9d1eb3d3 |
| ISICitedReferencesCount | 98 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618065100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0268-005X |
| IngestDate | Thu Oct 02 06:45:07 EDT 2025 Sat Nov 29 07:18:09 EST 2025 Tue Nov 18 22:15:32 EST 2025 Fri Feb 23 02:48:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Zein Chitosan Digestion Resveratrol encapsulation Storage stability Hollow particle |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-334c256560758805b586c7749e112c51976ec45237c77d980cabb578a9d1eb3d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5762-5031 |
| PQID | 2524235189 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2524235189 crossref_primary_10_1016_j_foodhyd_2020_106477 crossref_citationtrail_10_1016_j_foodhyd_2020_106477 elsevier_sciencedirect_doi_10_1016_j_foodhyd_2020_106477 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Food hydrocolloids |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hwang, Kim, Shim, Moon (bib28) 2013; 182 Chuacharoen, Sabliov (bib11) 2016; 503 Hu, Huang, Gao, Huang, Xiao, McClements (bib25) 2015; 182 Sarkar, Horne, Singh (bib68) 2010; 24 Chang, Wang, Hu, Zhou, Xue, Luo (bib3) 2017; 70 Chen, Ma, Han, Wei, Guo, Yang (bib6) 2020; 164 Dai, Li, Wei, Sun, Mao, Gao (bib12) 2018; 77 Zappino, Cacciotti, Benucci, Nanni, Liburdi, Valentini (bib88) 2015; 45 Joye, Davidov-Pardo, Ludescher, McClements (bib31) 2015; 185 Li, Maldonado, Malmr, Rouf, Hua, Kokini (bib43) 2019; 96 Kasaai (bib32) 2018; 79 Hu, Wang, Fernandez, Luo (bib27) 2016; 61 Deng, Zhang, Li, Que, Kang, Liu (bib17) 2018; 75 Tai, He, Yuan, Meng, Gao, Yuan (bib76) 2017; 518 Teskač, Kristl (bib80) 2010; 390 Guzey, McClements (bib21) 2006; 128–130 Wei, Yu, Lin, Sun, Dai, Yang (bib84) 2019; 95 Huang, Dai, Cai, Zhong, Xiao, McClements (bib23) 2017; 64 Patel, Bouwens, Velikov (bib58) 2010; 58 Zhang, Fu, Xu, Niu, Li, Ba (bib89) 2019; 10 Liu, Jing, Han, Zhang, Tian (bib46) 2019; 93 Sessa, Balestrieri, Ferrari, Servillo, Castaldo, D'Onofrio (bib69) 2014; 147 Talarico, Arduini, Amine, Cacciotti, Moscone, Palleschi (bib77) 2016; 408 Xu, Shen, Xu, Yang (bib86) 2015; 17 Liu, Gao, Yi, Fan, Wu, Zhang (bib45) 2020; 11 Li, Wang, Liu, Zhu, Fan, Sun (bib47) 2019; 87 Liang, Zhou, He, An, Lin, Li (bib39) 2015; 5 Hatzidimitriou, Nenadis, Tsimidou (bib22) 2007; 105 Jo, Ban, Goh, Choi (bib29) 2019; 94 Chen, Subirade (bib7) 2005; 26 Liu, Fan, Gao, Zhang, Yi (bib44) 2018; 9 Patel, Hu, Tiwari, Velikov (bib60) 2010; 6 Pu, Li, Sun, Zhong, Ma (bib64) 2019; 211 Zhang, Khan, Cheng, Liang (bib90) 2019; 247 Liang, Yan, Wang, Zhou, Gao, Puligundla (bib38) 2017; 231 Xu, Jiang, Reddy, Yang (bib85) 2011; 21 Feng, Yue, Wusigale, Ni, Liang (bib19) 2018; 108 Luo, Teng, Wang (bib50) 2012; 60 Cheng, Fang, Wusigale, Chen, Liang (bib4) 2018; 81 Pujara, Jambhrunkar, Wong, McGuckin, Popat (bib63) 2017; 488 Ma, Yu, Yin, Tang, Yang (bib53) 2018; 66 Davidov-Pardo, McClements (bib16) 2015; 167 Luo, Wang, Teng, Chen, Sun, Wang (bib51) 2013; 139 Santos, Pereira, Pereira-Silva, Ferreira, Caldas, Magalhães (bib67) 2019; 91 Kim, Thomas (bib34) 2007; 101 Silva, Beldíková, Poejo, Abrunhosa, Serra, Duarte (bib74) 2019; 243 Soo, Thakur, Qu, Jambhrunkar, Parekh, Popat (bib75) 2016; 462 Ren, Hou, Liang, Zhang, Hu, Xu (bib65) 2019; 279 Jonassen, Kjøniksen, Hiorth (bib30) 2012; 13 Cho, Chun, Kim, Park (bib10) 2014; 79 Liang, Ren, Zhang, Hou, Chalamaiah, Ma (bib35) 2018; 221 Chen, Zheng, Julian, Xiao (bib9) 2014; 158 Liang, Tajmir-Riahi, Subirade (bib36) 2008; 9 Arasukumar, Prabakaran, Gunalan, Moovendhan (bib1) 2019; 135 Benucci, Lombardelli, Cacciotti, Liburdi, Nanni, Esti (bib2) 2016; 61 Vahedikia, Garavand, Tajeddin, Cacciotti, Jafari, Omidi (bib81) 2019; 177 Yao, Chen, Song, McClements, Hu (bib87) 2018; 79 Rocha, Coimbra, Nunes (bib66) 2017; 15 Hu, McClements (bib26) 2015; 44 Shao, Wang, Niu, Kang (bib71) 2018; 119 Davidov-Pardo, Joye, McClements (bib15) 2015; 45 Shao, Wu, Wu, Li, Chen, Yuan (bib72) 2018; 193 Chen, Han, Jian, Liao, Zhang, Gao (bib5) 2020; 236 Dai, Zhou, Wei, Gao, McClements (bib14) 2019; 93 Li, Jiang, Wu (bib42) 1997; 35 Wegiel, Mauer, Edgar, Taylor (bib83) 2013; 102 Huang, Huang, Gong, Xiao, McClements, Hu (bib24) 2016; 87 Patel, Heussen, Hazekamp, Drost, Velikov (bib59) 2012; 133 Luo, Zhang, Whent, Yu, Wang (bib52) 2011; 85 Tang, Yu, Ho, Huang, Tsai, Hsieh (bib78) 2013; 30 Sessa, Tsao, Liu, Ferrari, Donsì (bib70) 2011; 59 Muxika, Etxabide, Uranga, Guerrero, de la Caba (bib54) 2017; 105 Pannu, Bhatnagar (bib57) 2019; 109 Neves, Martins, Segundo, Reis (bib56) 2016; 8 Zhang, Niu, Luo, Ge, Yang, Yu (bib91) 2014; 142 Gülçin (bib20) 2010; 11 Luo, Teng, Li, Wang (bib49) 2015; 122 Li, Chen, Xu, Zhang, Wang, Zeng (bib40) 2018; 116 Li, Hwang, Chen, Park (bib41) 2016; 60 Wang, Feng, Bai, Zhang, Yin (bib82) 2016; 116 Tan, Li, Liu, Muriel Mundo, Zhou, Liu (bib79) 2020; 11 Pauluk, Padilha, Khalil, Mainardes (bib61) 2019; 94 Khan, Yue, Fang, Hu, Cheng, Bakry (bib33) 2019; 258 Pellá, Lima-Tenório, Tenório-Neto, Guilherme, Muniz, Rubira (bib62) 2018; 196 Neves, Lúcio, Martins, Lima, Reis (bib55) 2013; 8 Fan, Liu, Gao, Zhang, Yi (bib18) 2018; 261 Li, Xu, Sun, Wang, Wang, Zhu (bib48) 2018; 84 Shin, Kim (bib73) 2018; 84 Liang, Tremblay-Hébert, Subirade (bib37) 2011; 126 Dai, Wei, Sun, Mao, McClements, Gao (bib13) 2018; 85 Jo (10.1016/j.foodhyd.2020.106477_bib29) 2019; 94 Pujara (10.1016/j.foodhyd.2020.106477_bib63) 2017; 488 Soo (10.1016/j.foodhyd.2020.106477_bib75) 2016; 462 Zhang (10.1016/j.foodhyd.2020.106477_bib91) 2014; 142 Dai (10.1016/j.foodhyd.2020.106477_bib13) 2018; 85 Li (10.1016/j.foodhyd.2020.106477_bib47) 2019; 87 Shao (10.1016/j.foodhyd.2020.106477_bib72) 2018; 193 Benucci (10.1016/j.foodhyd.2020.106477_bib2) 2016; 61 Gülçin (10.1016/j.foodhyd.2020.106477_bib20) 2010; 11 Pellá (10.1016/j.foodhyd.2020.106477_bib62) 2018; 196 Zappino (10.1016/j.foodhyd.2020.106477_bib88) 2015; 45 Drug bank Ca (10.1016/j.foodhyd.2020.106477_bib92) Hu (10.1016/j.foodhyd.2020.106477_bib26) 2015; 44 Davidov-Pardo (10.1016/j.foodhyd.2020.106477_bib16) 2015; 167 Joye (10.1016/j.foodhyd.2020.106477_bib31) 2015; 185 Kim (10.1016/j.foodhyd.2020.106477_bib34) 2007; 101 Kasaai (10.1016/j.foodhyd.2020.106477_bib32) 2018; 79 Liu (10.1016/j.foodhyd.2020.106477_bib46) 2019; 93 Liu (10.1016/j.foodhyd.2020.106477_bib44) 2018; 9 Tan (10.1016/j.foodhyd.2020.106477_bib79) 2020; 11 Wang (10.1016/j.foodhyd.2020.106477_bib82) 2016; 116 Patel (10.1016/j.foodhyd.2020.106477_bib58) 2010; 58 Chen (10.1016/j.foodhyd.2020.106477_bib7) 2005; 26 Hu (10.1016/j.foodhyd.2020.106477_bib27) 2016; 61 Huang (10.1016/j.foodhyd.2020.106477_bib23) 2017; 64 Liang (10.1016/j.foodhyd.2020.106477_bib35) 2018; 221 Drug bank Ca (10.1016/j.foodhyd.2020.106477_bib93) Tang (10.1016/j.foodhyd.2020.106477_bib78) 2013; 30 Arasukumar (10.1016/j.foodhyd.2020.106477_bib1) 2019; 135 Ma (10.1016/j.foodhyd.2020.106477_bib53) 2018; 66 Zhang (10.1016/j.foodhyd.2020.106477_bib89) 2019; 10 Shao (10.1016/j.foodhyd.2020.106477_bib71) 2018; 119 Chen (10.1016/j.foodhyd.2020.106477_bib9) 2014; 158 Li (10.1016/j.foodhyd.2020.106477_bib42) 1997; 35 Pannu (10.1016/j.foodhyd.2020.106477_bib57) 2019; 109 Chuacharoen (10.1016/j.foodhyd.2020.106477_bib11) 2016; 503 Rocha (10.1016/j.foodhyd.2020.106477_bib66) 2017; 15 Hwang (10.1016/j.foodhyd.2020.106477_bib28) 2013; 182 Teskač (10.1016/j.foodhyd.2020.106477_bib80) 2010; 390 Wegiel (10.1016/j.foodhyd.2020.106477_bib83) 2013; 102 Davidov-Pardo (10.1016/j.foodhyd.2020.106477_bib15) 2015; 45 Feng (10.1016/j.foodhyd.2020.106477_bib19) 2018; 108 Santos (10.1016/j.foodhyd.2020.106477_bib67) 2019; 91 Luo (10.1016/j.foodhyd.2020.106477_bib49) 2015; 122 Liu (10.1016/j.foodhyd.2020.106477_bib45) 2020; 11 Sessa (10.1016/j.foodhyd.2020.106477_bib70) 2011; 59 Guzey (10.1016/j.foodhyd.2020.106477_bib21) 2006; 128–130 Liang (10.1016/j.foodhyd.2020.106477_bib37) 2011; 126 Patel (10.1016/j.foodhyd.2020.106477_bib60) 2010; 6 Tai (10.1016/j.foodhyd.2020.106477_bib76) 2017; 518 Drug bank Ca (10.1016/j.foodhyd.2020.106477_bib94) Liang (10.1016/j.foodhyd.2020.106477_bib36) 2008; 9 Fan (10.1016/j.foodhyd.2020.106477_bib18) 2018; 261 Luo (10.1016/j.foodhyd.2020.106477_bib51) 2013; 139 Huang (10.1016/j.foodhyd.2020.106477_bib24) 2016; 87 Khan (10.1016/j.foodhyd.2020.106477_bib33) 2019; 258 Talarico (10.1016/j.foodhyd.2020.106477_bib77) 2016; 408 Sessa (10.1016/j.foodhyd.2020.106477_bib69) 2014; 147 Wei (10.1016/j.foodhyd.2020.106477_bib84) 2019; 95 Cho (10.1016/j.foodhyd.2020.106477_bib10) 2014; 79 Sarkar (10.1016/j.foodhyd.2020.106477_bib68) 2010; 24 Silva (10.1016/j.foodhyd.2020.106477_bib74) 2019; 243 Li (10.1016/j.foodhyd.2020.106477_bib41) 2016; 60 Shin (10.1016/j.foodhyd.2020.106477_bib73) 2018; 84 Xu (10.1016/j.foodhyd.2020.106477_bib85) 2011; 21 Yao (10.1016/j.foodhyd.2020.106477_bib87) 2018; 79 Patel (10.1016/j.foodhyd.2020.106477_bib59) 2012; 133 Hatzidimitriou (10.1016/j.foodhyd.2020.106477_bib22) 2007; 105 Xu (10.1016/j.foodhyd.2020.106477_bib86) 2015; 17 Liang (10.1016/j.foodhyd.2020.106477_bib38) 2017; 231 Chang (10.1016/j.foodhyd.2020.106477_bib3) 2017; 70 Li (10.1016/j.foodhyd.2020.106477_bib48) 2018; 84 Chen (10.1016/j.foodhyd.2020.106477_bib5) 2020; 236 Ren (10.1016/j.foodhyd.2020.106477_bib65) 2019; 279 Liang (10.1016/j.foodhyd.2020.106477_bib39) 2015; 5 Pauluk (10.1016/j.foodhyd.2020.106477_bib61) 2019; 94 Chen (10.1016/j.foodhyd.2020.106477_bib6) 2020; 164 Li (10.1016/j.foodhyd.2020.106477_bib43) 2019; 96 Cheng (10.1016/j.foodhyd.2020.106477_bib4) 2018; 81 Dai (10.1016/j.foodhyd.2020.106477_bib14) 2019; 93 Jonassen (10.1016/j.foodhyd.2020.106477_bib30) 2012; 13 Vahedikia (10.1016/j.foodhyd.2020.106477_bib81) 2019; 177 Zhang (10.1016/j.foodhyd.2020.106477_bib90) 2019; 247 Deng (10.1016/j.foodhyd.2020.106477_bib17) 2018; 75 Hu (10.1016/j.foodhyd.2020.106477_bib25) 2015; 182 Li (10.1016/j.foodhyd.2020.106477_bib40) 2018; 116 Dai (10.1016/j.foodhyd.2020.106477_bib12) 2018; 77 Neves (10.1016/j.foodhyd.2020.106477_bib56) 2016; 8 Pu (10.1016/j.foodhyd.2020.106477_bib64) 2019; 211 Luo (10.1016/j.foodhyd.2020.106477_bib50) 2012; 60 Neves (10.1016/j.foodhyd.2020.106477_bib55) 2013; 8 Muxika (10.1016/j.foodhyd.2020.106477_bib54) 2017; 105 Luo (10.1016/j.foodhyd.2020.106477_bib52) 2011; 85 |
| References_xml | – volume: 45 start-page: 41 year: 2015 end-page: 47 ident: bib88 article-title: Bromelain immobilization on microbial and animal source chitosan films, plasticized with glycerol, for application in wine-like medium: Microstructural, mechanical and catalytic characterisations publication-title: Food Hydrocolloids – volume: 122 start-page: 221 year: 2015 end-page: 229 ident: bib49 article-title: Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake publication-title: Carbohydrate Polymers – volume: 8 start-page: 177 year: 2013 end-page: 187 ident: bib55 article-title: Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability publication-title: International Journal of Nanomedicine – volume: 221 start-page: 88 year: 2018 end-page: 94 ident: bib35 article-title: Effect of ultrasound on the preparation of resveratrol-loaded zein particles publication-title: Journal of Food Engineering – volume: 196 start-page: 233 year: 2018 end-page: 245 ident: bib62 article-title: Chitosan-based hydrogels: From preparation to biomedical applications publication-title: Carbohydrate Polymers – volume: 258 start-page: 45 year: 2019 end-page: 53 ident: bib33 article-title: Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol publication-title: Journal of Food Engineering – volume: 91 start-page: 483 year: 2019 end-page: 497 ident: bib67 article-title: Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns publication-title: Trends in Food Science & Technology – volume: 147 start-page: 42 year: 2014 end-page: 50 ident: bib69 article-title: Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems publication-title: Food Chemistry – volume: 128–130 start-page: 227 year: 2006 end-page: 248 ident: bib21 article-title: Formation, stability and properties of multilayer emulsions for application in the food industry publication-title: Advances in Colloid and Interface Science – volume: 390 start-page: 61 year: 2010 end-page: 69 ident: bib80 article-title: The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol publication-title: International Journal of Pharmaceutics – volume: 10 start-page: 635 year: 2019 end-page: 645 ident: bib89 article-title: One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis publication-title: Food and Function – volume: 81 start-page: 242 year: 2018 end-page: 252 ident: bib4 article-title: Complexation of trans- and cis-resveratrol with bovine serum albumin, β-lactoglobulin or α-lactalbumin publication-title: Food Hydrocolloids – volume: 518 start-page: 218 year: 2017 end-page: 231 ident: bib76 article-title: A comparison of physicochemical and functional properties of icaritin-loaded liposomes based on different surfactants publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 61 start-page: 191 year: 2016 end-page: 200 ident: bib2 article-title: Chitosan beads from microbial and animal sources as enzyme supports for wine application publication-title: Food Hydrocolloids – volume: 60 start-page: 836 year: 2012 end-page: 843 ident: bib50 article-title: Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3 publication-title: Journal of Agricultural and Food Chemistry – volume: 261 start-page: 283 year: 2018 end-page: 291 ident: bib18 article-title: Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate publication-title: Food Chemistry – volume: 182 start-page: 275 year: 2015 end-page: 281 ident: bib25 article-title: Core-shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein-pectin nanoparticles publication-title: Food Chemistry – volume: 126 start-page: 821 year: 2011 end-page: 826 ident: bib37 article-title: Characterisation of the β-lactoglobulin/α-tocopherol complex and its impact on α-tocopherol stability publication-title: Food Chemistry – volume: 26 start-page: 6041 year: 2005 end-page: 6053 ident: bib7 article-title: Chitosan/β-lactoglobulin core-shell nanoparticles as nutraceutical carriers publication-title: Biomaterials – volume: 35 start-page: 1593 year: 1997 end-page: 1599 ident: bib42 article-title: Fluorescence and light-scattering studies on the formation of stable colloidal nanoparticles made of sodium sulfonated polystyrene ionomers publication-title: Journal of Polymer Science Part B: Polymer Physics – volume: 108 start-page: 161 year: 2018 end-page: 171 ident: bib19 article-title: Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol publication-title: Food Research International – volume: 9 start-page: 4781 year: 2018 end-page: 4790 ident: bib44 article-title: Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin publication-title: Food and Function – volume: 84 start-page: 146 year: 2018 end-page: 153 ident: bib73 article-title: Observation of chitosan coated lipid nanoparticles with different lipid compositions under simulated in vitro digestion system publication-title: Food Hydrocolloids – volume: 93 start-page: 432 year: 2019 end-page: 442 ident: bib46 article-title: Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties publication-title: Food Hydrocolloids – volume: 24 start-page: 142 year: 2010 end-page: 151 ident: bib68 article-title: Interactions of milk protein-stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model publication-title: Food Hydrocolloids – volume: 193 start-page: 144 year: 2018 end-page: 152 ident: bib72 article-title: Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity publication-title: Carbohydrate Polymers – volume: 8 start-page: 1 year: 2016 end-page: 14 ident: bib56 article-title: Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals publication-title: Nutrients – volume: 11 start-page: 1525 year: 2020 end-page: 1536 ident: bib45 article-title: α-Lactalbumin and chitosan core-shell nanoparticles: Resveratrol loading, protection, and antioxidant activity publication-title: Food and Function – volume: 139 start-page: 224 year: 2013 end-page: 230 ident: bib51 article-title: Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability publication-title: Food Chemistry – volume: 11 start-page: 210 year: 2010 end-page: 218 ident: bib20 article-title: Antioxidant properties of resveratrol: A structure-activity insight publication-title: Innovative Food Science & Emerging Technologies – volume: 61 start-page: 821 year: 2016 end-page: 831 ident: bib27 article-title: Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin publication-title: Food Hydrocolloids – volume: 135 start-page: 1237 year: 2019 end-page: 1245 ident: bib1 article-title: Chemical composition, structural features, surface morphology and bioactivities of chitosan derivatives from lobster (Thenus unimaculatus) shells publication-title: International Journal of Biological Macromolecules – volume: 167 start-page: 205 year: 2015 end-page: 212 ident: bib16 article-title: Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification publication-title: Food Chemistry – volume: 30 start-page: 33 year: 2013 end-page: 41 ident: bib78 article-title: Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide publication-title: Food Hydrocolloids – volume: 101 start-page: 308 year: 2007 end-page: 313 ident: bib34 article-title: Antioxidative activity of chitosans with varying molecular weights publication-title: Food Chemistry – volume: 177 start-page: 25 year: 2019 end-page: 32 ident: bib81 article-title: Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes publication-title: Colloids and Surfaces B: Biointerfaces – volume: 133 start-page: 423 year: 2012 end-page: 429 ident: bib59 article-title: Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium publication-title: Food Chemistry – volume: 87 start-page: 1 year: 2016 end-page: 9 ident: bib24 article-title: Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles publication-title: Food Research International – volume: 488 start-page: 303 year: 2017 end-page: 308 ident: bib63 article-title: Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate publication-title: Journal of Colloid and Interface Science – volume: 59 start-page: 12352 year: 2011 end-page: 12360 ident: bib70 article-title: Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion publication-title: Journal of Agricultural and Food Chemistry – volume: 96 start-page: 93 year: 2019 end-page: 101 ident: bib43 article-title: Development of hollow kafirin-based nanoparticles fabricated through layer-by-layer assembly as delivery vehicles for curcumin publication-title: Food Hydrocolloids – volume: 236 start-page: 116090 year: 2020 ident: bib5 article-title: Fabrication, characterization, physicochemical stability of zein-chitosan nanocomplex for co-encapsulating curcumin and resveratrol publication-title: Carbohydrate Polymers – volume: 85 start-page: 75 year: 2018 end-page: 85 ident: bib13 article-title: Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin publication-title: Food Hydrocolloids – volume: 105 start-page: 1504 year: 2007 end-page: 1511 ident: bib22 article-title: Changes in the catechin and epicatechin content of grape seeds on storage under different water activity (aw) conditions publication-title: Food Chemistry – volume: 87 start-page: 342 year: 2019 end-page: 351 ident: bib47 article-title: Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin publication-title: Food Hydrocolloids – volume: 185 start-page: 261 year: 2015 end-page: 267 ident: bib31 article-title: Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins publication-title: Food Chemistry – volume: 66 start-page: 12783 year: 2018 end-page: 12793 ident: bib53 article-title: Cellular uptake and intracellular antioxidant activity of zein/chitosan nanoparticles incorporated with quercetin publication-title: Journal of Agricultural and Food Chemistry – volume: 58 start-page: 12497 year: 2010 end-page: 12503 ident: bib58 article-title: Sodium caseinate stabilized zein colloidal particles publication-title: Journal of Agricultural and Food Chemistry – volume: 231 start-page: 19 year: 2017 end-page: 24 ident: bib38 article-title: Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems publication-title: Food Chemistry – volume: 44 start-page: 101 year: 2015 end-page: 108 ident: bib26 article-title: Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles publication-title: Food Hydrocolloids – volume: 64 start-page: 157 year: 2017 end-page: 165 ident: bib23 article-title: Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities publication-title: Food Hydrocolloids – volume: 9 start-page: 50 year: 2008 end-page: 56 ident: bib36 article-title: Interaction of β-Lactoglobulin with resveratrol and its biological implications publication-title: Biomacromolecules – volume: 247 start-page: 9 year: 2019 end-page: 18 ident: bib90 article-title: Co-encapsulation of α-tocopherol and resveratrol within zein nanoparticles: Impact on antioxidant activity and stability publication-title: Journal of Food Engineering – volume: 182 start-page: 81 year: 2013 end-page: 86 ident: bib28 article-title: Adsorption of BSA on monodispersed hollow silica nanospheres publication-title: Microporous and Mesoporous Materials – volume: 116 start-page: 10983 year: 2016 end-page: 11060 ident: bib82 article-title: Synthesis, properties, and applications of hollow micro-/nanostructures publication-title: Chemical Reviews – volume: 85 start-page: 145 year: 2011 end-page: 152 ident: bib52 article-title: Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study publication-title: Colloids and Surfaces B: Biointerfaces – volume: 79 start-page: 262 year: 2018 end-page: 272 ident: bib87 article-title: Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions publication-title: Food Hydrocolloids – volume: 5 start-page: 13891 year: 2015 end-page: 13900 ident: bib39 article-title: Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin publication-title: RSC Advances – volume: 15 start-page: 61 year: 2017 end-page: 69 ident: bib66 article-title: Applications of chitosan and their derivatives in beverages: A critical review publication-title: Current Opinion in Food Science – volume: 503 start-page: 11 year: 2016 end-page: 18 ident: bib11 article-title: Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects – volume: 164 start-page: 2215 year: 2020 end-page: 2223 ident: bib6 article-title: Effect of chitosan molecular weight on zein-chitosan nanocomplexes: Formation, characterization, and the delivery of quercetagetin publication-title: International Journal of Biological Macromolecules – volume: 408 start-page: 7299 year: 2016 end-page: 7309 ident: bib77 article-title: Screen-printed electrode modified with carbon black and chitosan: A novel platform for acetylcholinesterase biosensor development publication-title: Analytical and Bioanalytical Chemistry – volume: 60 start-page: 138 year: 2016 end-page: 147 ident: bib41 article-title: Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility publication-title: Food Hydrocolloids – volume: 45 start-page: 309 year: 2015 end-page: 316 ident: bib15 article-title: Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization publication-title: Food Hydrocolloids – volume: 279 start-page: 223 year: 2019 end-page: 230 ident: bib65 article-title: Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation publication-title: Food Chemistry – volume: 84 start-page: 379 year: 2018 end-page: 388 ident: bib48 article-title: Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation publication-title: Food Hydrocolloids – volume: 17 year: 2015 ident: bib86 article-title: Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study publication-title: Biomedical Microdevices – volume: 6 start-page: 6192 year: 2010 end-page: 6199 ident: bib60 article-title: Synthesis and characterisation of zein-curcumin colloidal particles publication-title: Soft Matter – volume: 102 start-page: 171 year: 2013 end-page: 184 ident: bib83 article-title: Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-impact of different polymers publication-title: Journal of Pharmaceutical Sciences – volume: 116 start-page: 1232 year: 2018 end-page: 1239 ident: bib40 article-title: The formation of zein-chitosan complex coacervated particles: Relationship to encapsulation and controlled release properties publication-title: International Journal of Biological Macromolecules – volume: 105 start-page: 1358 year: 2017 end-page: 1368 ident: bib54 article-title: Chitosan as a bioactive polymer: Processing, properties and applications publication-title: International Journal of Biological Macromolecules – volume: 158 start-page: 466 year: 2014 end-page: 472 ident: bib9 article-title: Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin : Preparation, characterization, and functional performance publication-title: Food Chemistry – volume: 211 start-page: 161 year: 2019 end-page: 172 ident: bib64 article-title: An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles publication-title: Carbohydrate Polymers – volume: 75 start-page: 72 year: 2018 end-page: 80 ident: bib17 article-title: Characterization of gelatin/zein nanofibers by hybrid electrospinning publication-title: Food Hydrocolloids – volume: 79 start-page: 184 year: 2018 end-page: 197 ident: bib32 article-title: Zein and zein -based nano-materials for food and nutrition applications: A review publication-title: Trends in Food Science & Technology – volume: 11 start-page: 187 year: 2020 end-page: 199 ident: bib79 article-title: Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles publication-title: Food and Function – volume: 462 start-page: 368 year: 2016 end-page: 374 ident: bib75 article-title: Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach publication-title: Journal of Colloid and Interface Science – volume: 95 start-page: 336 year: 2019 end-page: 348 ident: bib84 article-title: Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion publication-title: Food Hydrocolloids – volume: 70 start-page: 143 year: 2017 end-page: 151 ident: bib3 article-title: Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin publication-title: Food Hydrocolloids – volume: 142 start-page: 269 year: 2014 end-page: 275 ident: bib91 article-title: Fabrication, characterization and antimicrobial activities of thymolloaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers publication-title: Food Chemistry – volume: 77 start-page: 617 year: 2018 end-page: 628 ident: bib12 article-title: Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and in vitro release of curcumin publication-title: Food Hydrocolloids – volume: 21 start-page: 18227 year: 2011 end-page: 18235 ident: bib85 article-title: Hollow nanoparticles from zein for potential medical applications publication-title: Journal of Materials Chemistry – volume: 109 start-page: 2237 year: 2019 end-page: 2251 ident: bib57 article-title: Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases publication-title: Biomedicine & Pharmacotherapy – volume: 93 start-page: 342 year: 2019 end-page: 350 ident: bib14 article-title: Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method publication-title: Food Hydrocolloids – volume: 79 start-page: 568 year: 2014 end-page: 576 ident: bib10 article-title: Preparation of chitosan-TPP microspheres as resveratrol carriers publication-title: Journal of Food Science – volume: 13 start-page: 3747 year: 2012 end-page: 3756 ident: bib30 article-title: Stability of chitosan nanoparticles cross-linked with tripolyphosphate publication-title: Biomacromolecules – volume: 243 start-page: 89 year: 2019 end-page: 100 ident: bib74 article-title: Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions publication-title: Journal of Food Engineering – volume: 94 start-page: 411 year: 2019 end-page: 417 ident: bib61 article-title: Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity publication-title: Food Hydrocolloids – volume: 94 start-page: 603 year: 2019 end-page: 612 ident: bib29 article-title: Influence of chitosan-coating on the stability and digestion of emulsions stabilized by waxy maize starch crystals publication-title: Food Hydrocolloids – volume: 119 start-page: 53 year: 2018 end-page: 59 ident: bib71 article-title: Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification publication-title: International Journal of Biological Macromolecules – volume: 11 start-page: 210 issue: 1 year: 2010 ident: 10.1016/j.foodhyd.2020.106477_bib20 article-title: Antioxidant properties of resveratrol: A structure-activity insight publication-title: Innovative Food Science & Emerging Technologies doi: 10.1016/j.ifset.2009.07.002 – volume: 133 start-page: 423 issue: 2 year: 2012 ident: 10.1016/j.foodhyd.2020.106477_bib59 article-title: Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium publication-title: Food Chemistry doi: 10.1016/j.foodchem.2012.01.054 – volume: 279 start-page: 223 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib65 article-title: Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.11.025 – volume: 126 start-page: 821 issue: 3 year: 2011 ident: 10.1016/j.foodhyd.2020.106477_bib37 article-title: Characterisation of the β-lactoglobulin/α-tocopherol complex and its impact on α-tocopherol stability publication-title: Food Chemistry doi: 10.1016/j.foodchem.2010.12.029 – volume: 105 start-page: 1358 year: 2017 ident: 10.1016/j.foodhyd.2020.106477_bib54 article-title: Chitosan as a bioactive polymer: Processing, properties and applications publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2017.07.087 – volume: 13 start-page: 3747 issue: 11 year: 2012 ident: 10.1016/j.foodhyd.2020.106477_bib30 article-title: Stability of chitosan nanoparticles cross-linked with tripolyphosphate publication-title: Biomacromolecules doi: 10.1021/bm301207a – volume: 84 start-page: 146 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib73 article-title: Observation of chitosan coated lipid nanoparticles with different lipid compositions under simulated in vitro digestion system publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.05.052 – volume: 79 start-page: 568 issue: 4 year: 2014 ident: 10.1016/j.foodhyd.2020.106477_bib10 article-title: Preparation of chitosan-TPP microspheres as resveratrol carriers publication-title: Journal of Food Science doi: 10.1111/1750-3841.12395 – volume: 182 start-page: 275 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib25 article-title: Core-shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein-pectin nanoparticles publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.03.009 – volume: 11 start-page: 187 issue: 1 year: 2020 ident: 10.1016/j.foodhyd.2020.106477_bib79 article-title: Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles publication-title: Food and Function doi: 10.1039/C9FO02164G – volume: 77 start-page: 617 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib12 article-title: Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and in vitro release of curcumin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.11.003 – volume: 8 start-page: 1 issue: 3 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib56 article-title: Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals publication-title: Nutrients doi: 10.3390/nu8030131 – volume: 518 start-page: 218 issue: 17 year: 2017 ident: 10.1016/j.foodhyd.2020.106477_bib76 article-title: A comparison of physicochemical and functional properties of icaritin-loaded liposomes based on different surfactants publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2017.01.019 – volume: 177 start-page: 25 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib81 article-title: Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2019.01.045 – volume: 247 start-page: 9 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib90 article-title: Co-encapsulation of α-tocopherol and resveratrol within zein nanoparticles: Impact on antioxidant activity and stability publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2018.11.021 – volume: 109 start-page: 2237 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib57 article-title: Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases publication-title: Biomedicine & Pharmacotherapy doi: 10.1016/j.biopha.2018.11.075 – volume: 75 start-page: 72 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib17 article-title: Characterization of gelatin/zein nanofibers by hybrid electrospinning publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.09.011 – volume: 122 start-page: 221 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib49 article-title: Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2014.12.084 – volume: 58 start-page: 12497 issue: 23 year: 2010 ident: 10.1016/j.foodhyd.2020.106477_bib58 article-title: Sodium caseinate stabilized zein colloidal particles publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf102959b – ident: 10.1016/j.foodhyd.2020.106477_bib93 – volume: 236 start-page: 116090 year: 2020 ident: 10.1016/j.foodhyd.2020.106477_bib5 article-title: Fabrication, characterization, physicochemical stability of zein-chitosan nanocomplex for co-encapsulating curcumin and resveratrol publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2020.116090 – volume: 93 start-page: 342 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib14 article-title: Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.02.041 – volume: 35 start-page: 1593 issue: 10 year: 1997 ident: 10.1016/j.foodhyd.2020.106477_bib42 article-title: Fluorescence and light-scattering studies on the formation of stable colloidal nanoparticles made of sodium sulfonated polystyrene ionomers publication-title: Journal of Polymer Science Part B: Polymer Physics doi: 10.1002/(SICI)1099-0488(19970730)35:10<1593::AID-POLB11>3.0.CO;2-5 – volume: 84 start-page: 379 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib48 article-title: Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.06.032 – volume: 85 start-page: 145 issue: 2 year: 2011 ident: 10.1016/j.foodhyd.2020.106477_bib52 article-title: Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2011.02.020 – volume: 24 start-page: 142 issue: 2–3 year: 2010 ident: 10.1016/j.foodhyd.2020.106477_bib68 article-title: Interactions of milk protein-stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2009.08.012 – volume: 243 start-page: 89 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib74 article-title: Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2018.09.007 – volume: 85 start-page: 75 issue: 17 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib13 article-title: Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.06.052 – volume: 61 start-page: 191 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib2 article-title: Chitosan beads from microbial and animal sources as enzyme supports for wine application publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.05.016 – ident: 10.1016/j.foodhyd.2020.106477_bib94 – volume: 139 start-page: 224 issue: 1–4 year: 2013 ident: 10.1016/j.foodhyd.2020.106477_bib51 article-title: Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.01.113 – volume: 142 start-page: 269 year: 2014 ident: 10.1016/j.foodhyd.2020.106477_bib91 article-title: Fabrication, characterization and antimicrobial activities of thymolloaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.07.058 – volume: 9 start-page: 50 issue: 1 year: 2008 ident: 10.1016/j.foodhyd.2020.106477_bib36 article-title: Interaction of β-Lactoglobulin with resveratrol and its biological implications publication-title: Biomacromolecules doi: 10.1021/bm700728k – volume: 116 start-page: 10983 issue: 18 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib82 article-title: Synthesis, properties, and applications of hollow micro-/nanostructures publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.5b00731 – volume: 221 start-page: 88 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib35 article-title: Effect of ultrasound on the preparation of resveratrol-loaded zein particles publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2017.10.002 – volume: 60 start-page: 138 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib41 article-title: Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.03.016 – volume: 96 start-page: 93 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib43 article-title: Development of hollow kafirin-based nanoparticles fabricated through layer-by-layer assembly as delivery vehicles for curcumin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.04.042 – volume: 128–130 start-page: 227 year: 2006 ident: 10.1016/j.foodhyd.2020.106477_bib21 article-title: Formation, stability and properties of multilayer emulsions for application in the food industry publication-title: Advances in Colloid and Interface Science doi: 10.1016/j.cis.2006.11.021 – volume: 21 start-page: 18227 issue: 45 year: 2011 ident: 10.1016/j.foodhyd.2020.106477_bib85 article-title: Hollow nanoparticles from zein for potential medical applications publication-title: Journal of Materials Chemistry doi: 10.1039/c1jm11163a – volume: 87 start-page: 342 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib47 article-title: Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.08.002 – volume: 462 start-page: 368 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib75 article-title: Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2015.10.022 – volume: 95 start-page: 336 issue: 17 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib84 article-title: Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.04.048 – volume: 45 start-page: 309 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib15 article-title: Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.11.023 – volume: 102 start-page: 171 issue: 1 year: 2013 ident: 10.1016/j.foodhyd.2020.106477_bib83 article-title: Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-impact of different polymers publication-title: Journal of Pharmaceutical Sciences doi: 10.1002/jps.23358 – volume: 94 start-page: 411 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib61 article-title: Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.03.042 – volume: 185 start-page: 261 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib31 article-title: Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins publication-title: Food Chemistry doi: 10.1016/j.foodchem.2015.03.128 – volume: 79 start-page: 184 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib32 article-title: Zein and zein -based nano-materials for food and nutrition applications: A review publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2018.07.015 – volume: 158 start-page: 466 year: 2014 ident: 10.1016/j.foodhyd.2020.106477_bib9 article-title: Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin : Preparation, characterization, and functional performance publication-title: Food Chemistry doi: 10.1016/j.foodchem.2014.03.003 – volume: 105 start-page: 1504 issue: 4 year: 2007 ident: 10.1016/j.foodhyd.2020.106477_bib22 article-title: Changes in the catechin and epicatechin content of grape seeds on storage under different water activity (aw) conditions publication-title: Food Chemistry doi: 10.1016/j.foodchem.2007.05.032 – volume: 164 start-page: 2215 year: 2020 ident: 10.1016/j.foodhyd.2020.106477_bib6 article-title: Effect of chitosan molecular weight on zein-chitosan nanocomplexes: Formation, characterization, and the delivery of quercetagetin publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2020.07.245 – volume: 26 start-page: 6041 issue: 30 year: 2005 ident: 10.1016/j.foodhyd.2020.106477_bib7 article-title: Chitosan/β-lactoglobulin core-shell nanoparticles as nutraceutical carriers publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.03.011 – volume: 93 start-page: 432 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib46 article-title: Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.02.003 – volume: 64 start-page: 157 year: 2017 ident: 10.1016/j.foodhyd.2020.106477_bib23 article-title: Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.10.029 – volume: 488 start-page: 303 year: 2017 ident: 10.1016/j.foodhyd.2020.106477_bib63 article-title: Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2016.11.015 – volume: 6 start-page: 6192 issue: 24 year: 2010 ident: 10.1016/j.foodhyd.2020.106477_bib60 article-title: Synthesis and characterisation of zein-curcumin colloidal particles publication-title: Soft Matter doi: 10.1039/c0sm00800a – volume: 45 start-page: 41 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib88 article-title: Bromelain immobilization on microbial and animal source chitosan films, plasticized with glycerol, for application in wine-like medium: Microstructural, mechanical and catalytic characterisations publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.11.001 – volume: 135 start-page: 1237 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib1 article-title: Chemical composition, structural features, surface morphology and bioactivities of chitosan derivatives from lobster (Thenus unimaculatus) shells publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2019.06.033 – volume: 119 start-page: 53 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib71 article-title: Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.07.139 – volume: 81 start-page: 242 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib4 article-title: Complexation of trans- and cis-resveratrol with bovine serum albumin, β-lactoglobulin or α-lactalbumin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2018.02.037 – volume: 231 start-page: 19 year: 2017 ident: 10.1016/j.foodhyd.2020.106477_bib38 article-title: Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems publication-title: Food Chemistry doi: 10.1016/j.foodchem.2017.02.106 – volume: 91 start-page: 483 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib67 article-title: Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns publication-title: Trends in Food Science & Technology doi: 10.1016/j.tifs.2019.07.048 – volume: 70 start-page: 143 year: 2017 ident: 10.1016/j.foodhyd.2020.106477_bib3 article-title: Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.03.033 – volume: 59 start-page: 12352 issue: 23 year: 2011 ident: 10.1016/j.foodhyd.2020.106477_bib70 article-title: Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf2031346 – ident: 10.1016/j.foodhyd.2020.106477_bib92 – volume: 182 start-page: 81 year: 2013 ident: 10.1016/j.foodhyd.2020.106477_bib28 article-title: Adsorption of BSA on monodispersed hollow silica nanospheres publication-title: Microporous and Mesoporous Materials doi: 10.1016/j.micromeso.2013.08.022 – volume: 261 start-page: 283 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib18 article-title: Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate publication-title: Food Chemistry doi: 10.1016/j.foodchem.2018.04.055 – volume: 258 start-page: 45 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib33 article-title: Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2019.04.010 – volume: 147 start-page: 42 year: 2014 ident: 10.1016/j.foodhyd.2020.106477_bib69 article-title: Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems publication-title: Food Chemistry doi: 10.1016/j.foodchem.2013.09.088 – volume: 211 start-page: 161 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib64 article-title: An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.02.007 – volume: 15 start-page: 61 year: 2017 ident: 10.1016/j.foodhyd.2020.106477_bib66 article-title: Applications of chitosan and their derivatives in beverages: A critical review publication-title: Current Opinion in Food Science doi: 10.1016/j.cofs.2017.06.008 – volume: 44 start-page: 101 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib26 article-title: Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2014.09.015 – volume: 30 start-page: 33 issue: 1 year: 2013 ident: 10.1016/j.foodhyd.2020.106477_bib78 article-title: Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2012.04.014 – volume: 87 start-page: 1 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib24 article-title: Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles publication-title: Food Research International doi: 10.1016/j.foodres.2016.06.009 – volume: 61 start-page: 821 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib27 article-title: Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2016.07.006 – volume: 116 start-page: 1232 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib40 article-title: The formation of zein-chitosan complex coacervated particles: Relationship to encapsulation and controlled release properties publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2018.05.107 – volume: 408 start-page: 7299 issue: 26 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib77 article-title: Screen-printed electrode modified with carbon black and chitosan: A novel platform for acetylcholinesterase biosensor development publication-title: Analytical and Bioanalytical Chemistry doi: 10.1007/s00216-016-9604-y – volume: 193 start-page: 144 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib72 article-title: Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.03.101 – volume: 60 start-page: 836 issue: 3 year: 2012 ident: 10.1016/j.foodhyd.2020.106477_bib50 article-title: Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3 publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/jf204194z – volume: 8 start-page: 177 year: 2013 ident: 10.1016/j.foodhyd.2020.106477_bib55 article-title: Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability publication-title: International Journal of Nanomedicine – volume: 5 start-page: 13891 issue: 18 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib39 article-title: Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin publication-title: RSC Advances doi: 10.1039/C4RA14270E – volume: 503 start-page: 11 year: 2016 ident: 10.1016/j.foodhyd.2020.106477_bib11 article-title: Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects doi: 10.1016/j.colsurfa.2016.04.038 – volume: 167 start-page: 205 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib16 article-title: Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification publication-title: Food Chemistry doi: 10.1016/j.foodchem.2014.06.082 – volume: 11 start-page: 1525 issue: 2 year: 2020 ident: 10.1016/j.foodhyd.2020.106477_bib45 article-title: α-Lactalbumin and chitosan core-shell nanoparticles: Resveratrol loading, protection, and antioxidant activity publication-title: Food and Function doi: 10.1039/C9FO01998G – volume: 66 start-page: 12783 issue: 48 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib53 article-title: Cellular uptake and intracellular antioxidant activity of zein/chitosan nanoparticles incorporated with quercetin publication-title: Journal of Agricultural and Food Chemistry doi: 10.1021/acs.jafc.8b04571 – volume: 390 start-page: 61 issue: 1 year: 2010 ident: 10.1016/j.foodhyd.2020.106477_bib80 article-title: The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol publication-title: International Journal of Pharmaceutics doi: 10.1016/j.ijpharm.2009.10.011 – volume: 101 start-page: 308 issue: 1 year: 2007 ident: 10.1016/j.foodhyd.2020.106477_bib34 article-title: Antioxidative activity of chitosans with varying molecular weights publication-title: Food Chemistry doi: 10.1016/j.foodchem.2006.01.038 – volume: 196 start-page: 233 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib62 article-title: Chitosan-based hydrogels: From preparation to biomedical applications publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.05.033 – volume: 17 issue: 1 year: 2015 ident: 10.1016/j.foodhyd.2020.106477_bib86 article-title: Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study publication-title: Biomedical Microdevices doi: 10.1007/s10544-014-9926-5 – volume: 108 start-page: 161 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib19 article-title: Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol publication-title: Food Research International doi: 10.1016/j.foodres.2018.03.035 – volume: 9 start-page: 4781 issue: 9 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib44 article-title: Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin publication-title: Food and Function doi: 10.1039/C8FO01172A – volume: 79 start-page: 262 year: 2018 ident: 10.1016/j.foodhyd.2020.106477_bib87 article-title: Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2017.12.029 – volume: 10 start-page: 635 issue: 2 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib89 article-title: One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis publication-title: Food and Function doi: 10.1039/C8FO01614C – volume: 94 start-page: 603 year: 2019 ident: 10.1016/j.foodhyd.2020.106477_bib29 article-title: Influence of chitosan-coating on the stability and digestion of emulsions stabilized by waxy maize starch crystals publication-title: Food Hydrocolloids doi: 10.1016/j.foodhyd.2019.04.010 |
| SSID | ssj0017011 |
| Score | 2.6073787 |
| Snippet | Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 106477 |
| SubjectTerms | antioxidant activity Chitosan Digestion encapsulation fluorescence Hollow particle hydrocolloids hydrophobicity polyphenols resveratrol Resveratrol encapsulation storage quality Storage stability surface area X-ray diffraction Zein |
| Title | Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles |
| URI | https://dx.doi.org/10.1016/j.foodhyd.2020.106477 https://www.proquest.com/docview/2524235189 |
| Volume | 113 |
| WOSCitedRecordID | wos000618065100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-7137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017011 issn: 0268-005X databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOiJ_axkBG4jZlJHaT2Mdp2rQhmDgMqbfIcRyaqU2qtinrJP533ovzq9Ng7MAlqqzasvK-PH_v-fMzIR_ThLkqYb7DhOYQoKSYaJLcwYttGVb8Cnx72UR4cSFGI_ltMPjVnIVZTcI8F9fXcvZfTQ1tYGw8OvsAc7eDQgP8BqPDE8wOz38yvE0TVFk_TGag-hF1OcACKx2srbcEQfYKyymjSn2OvLmCAVDRVMXzOo1X8UiASfHz4MZkuYM7DsVCWd06ar3MwazR1fU57ikWSh6vE1gasXeWdPtFY5tu_VqO1XSqEgDHRE07hYF1gRAe_1iXnVQoq1PaX7J-ioJ5PWWL9WQsEA587qMNt-vxnuP08NBreKdPt-mFq8MUZg-Th5ieYWvz_80a2rfWtlZx2IjZrqJ6mAiHiewwj8g2C30JTnH76Pxk9Lndhgrd6gLndv7dEbBPd87nT-Tm1jJfcZfL5-RZHXTQI2usF2Rg8pfkaa8U5StS9mBDs5zWsKEtbCjAhvZgQ1vY0HhNe7ChRUotbOgGbGgLG9rC5jX5fnpyeXzm1FdyOJoP2dLhfKgZxgDANMHz-7EvAg0RhDTA2zUegg6MHvqMh9CaSOFqFcewKCiZeCbmCX9DtvIiNzuEGuaKGMgnj4FFmkAr4UtjZKwYD3gQuLtk2LzLSNf16vHalEn0V1vuksO228wWbLmvg2gMFdWs07LJCAB4X9cPjWEj8Mq41aZyU5SLiPkYp_iekHsPnc9b8qT7hvbJ1nJemnfksV4ts8X8fY3Q3_Edtn4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+storage+stability+and+resveratrol+retention+by+fabrication+of+hollow+zein-chitosan+composite+particles&rft.jtitle=Food+hydrocolloids&rft.au=Khan%2C+Muhammad+Aslam&rft.au=Chen%2C+Lingyun&rft.au=Liang%2C+Li&rft.date=2021-04-01&rft.issn=0268-005X&rft.volume=113&rft.spage=106477&rft_id=info:doi/10.1016%2Fj.foodhyd.2020.106477&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodhyd_2020_106477 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon |