Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles

Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their solid counterpart, due to increased surface area, low density, and sustained release, emerged as a promising delivery system for polyphenols. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food hydrocolloids Jg. 113; S. 106477
Hauptverfasser: Khan, Muhammad Aslam, Chen, Lingyun, Liang, Li
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2021
Schlagworte:
ISSN:0268-005X, 1873-7137
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their solid counterpart, due to increased surface area, low density, and sustained release, emerged as a promising delivery system for polyphenols. It is necessary to improve the stability of zein particles for the encapsulation of bioactive components. The current work aims to prepare hollow zein particles by employing chitosan coating and explore the potential of the composite particles for the encapsulation and protection of resveratrol, a natural polyphenol. Hollow zein (HZ) and zein-chitosan (HZ-CH) particles were characterized in terms of size, surface charge, morphological structure, particle yield and antioxidant activity. Encapsulation of resveratrol in the zein matrix was studied by the help of fluorescence, infrared and X-ray diffraction techniques. The composite particles were also subjected to storage and in vitro digestion. Particle yield was greater than 90% when the concentrations of chitosan were greater than 0.02%. HZ-CH particles were positively charged and bigger in size as compare to HZ particles. Resveratrol entrapment caused an apparent increase in the size of the particles. The highest encapsulation efficiency and loading capacity of resveratrol were 91% and 14% in the hydrophobic zein shell of HZ-CH particles, respectively. The chitosan coating improved the storage and digestion stability of resveratrol-loaded hollow zein particles and the storage stability of encapsulated resveratrol and exhibited a sustained in vitro release of resveratrol. Therefore, the hollow zein composite particles could be used as an efficient delivery system for resveratrol in the development of functional foods. Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles [Display omitted] •Resveratrol-loaded hollow zein (RHZ) particles were coated with chitosan.•The highest encapsulation of resveratrol at 375 μg/mL with 0.03% chitosan.•Chitosan improved storage and digestive stability of RHZ particles.•Chitosan improved storage stability of encapsulated resveratrol.•RHZ-chitosan particles showed sustained release of resveratrol in vitro.
AbstractList Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their solid counterpart, due to increased surface area, low density, and sustained release, emerged as a promising delivery system for polyphenols. It is necessary to improve the stability of zein particles for the encapsulation of bioactive components. The current work aims to prepare hollow zein particles by employing chitosan coating and explore the potential of the composite particles for the encapsulation and protection of resveratrol, a natural polyphenol. Hollow zein (HZ) and zein-chitosan (HZ-CH) particles were characterized in terms of size, surface charge, morphological structure, particle yield and antioxidant activity. Encapsulation of resveratrol in the zein matrix was studied by the help of fluorescence, infrared and X-ray diffraction techniques. The composite particles were also subjected to storage and in vitro digestion. Particle yield was greater than 90% when the concentrations of chitosan were greater than 0.02%. HZ-CH particles were positively charged and bigger in size as compare to HZ particles. Resveratrol entrapment caused an apparent increase in the size of the particles. The highest encapsulation efficiency and loading capacity of resveratrol were 91% and 14% in the hydrophobic zein shell of HZ-CH particles, respectively. The chitosan coating improved the storage and digestion stability of resveratrol-loaded hollow zein particles and the storage stability of encapsulated resveratrol and exhibited a sustained in vitro release of resveratrol. Therefore, the hollow zein composite particles could be used as an efficient delivery system for resveratrol in the development of functional foods. Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles [Display omitted] •Resveratrol-loaded hollow zein (RHZ) particles were coated with chitosan.•The highest encapsulation of resveratrol at 375 μg/mL with 0.03% chitosan.•Chitosan improved storage and digestive stability of RHZ particles.•Chitosan improved storage stability of encapsulated resveratrol.•RHZ-chitosan particles showed sustained release of resveratrol in vitro.
Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their solid counterpart, due to increased surface area, low density, and sustained release, emerged as a promising delivery system for polyphenols. It is necessary to improve the stability of zein particles for the encapsulation of bioactive components. The current work aims to prepare hollow zein particles by employing chitosan coating and explore the potential of the composite particles for the encapsulation and protection of resveratrol, a natural polyphenol. Hollow zein (HZ) and zein-chitosan (HZ-CH) particles were characterized in terms of size, surface charge, morphological structure, particle yield and antioxidant activity. Encapsulation of resveratrol in the zein matrix was studied by the help of fluorescence, infrared and X-ray diffraction techniques. The composite particles were also subjected to storage and in vitro digestion. Particle yield was greater than 90% when the concentrations of chitosan were greater than 0.02%. HZ-CH particles were positively charged and bigger in size as compare to HZ particles. Resveratrol entrapment caused an apparent increase in the size of the particles. The highest encapsulation efficiency and loading capacity of resveratrol were 91% and 14% in the hydrophobic zein shell of HZ-CH particles, respectively. The chitosan coating improved the storage and digestion stability of resveratrol-loaded hollow zein particles and the storage stability of encapsulated resveratrol and exhibited a sustained in vitro release of resveratrol. Therefore, the hollow zein composite particles could be used as an efficient delivery system for resveratrol in the development of functional foods.
ArticleNumber 106477
Author Khan, Muhammad Aslam
Chen, Lingyun
Liang, Li
Author_xml – sequence: 1
  givenname: Muhammad Aslam
  surname: Khan
  fullname: Khan, Muhammad Aslam
  organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 21412, China
– sequence: 2
  givenname: Lingyun
  orcidid: 0000-0002-5762-5031
  surname: Chen
  fullname: Chen, Lingyun
  organization: Department of Agricultural, Food and Nutritional Science, University of Alberta, Alberta, Canada
– sequence: 3
  givenname: Li
  surname: Liang
  fullname: Liang, Li
  email: liliang@jiangnan.edu.cn
  organization: State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 21412, China
BookMark eNqFkM1r3DAQxUVIIJu0f0JBx1680Ydl2fRQSmg-IJBLArkJWR53Z5GlraTdsvnr683mlEtOM_N478H8LshpiAEI-cbZkjPeXK2XY4zDaj8sBRMHram1PiEL3mpZaS71KVkw0bQVY-rlnFzkvGaMa8b5gmzvp02KO5ggFIqB5hKT_QPztD16LHtqw0AT5B0kW1L0815mL8ZA-z0dbZ_Q2bczjnQVvY__6CtgqNwKS8w2UBenTcxYgG5sKug85C_kbLQ-w9f3eUmeb34_Xd9VD4-399e_Hiona1EqKWsnVKMaplXbMtWrtnFa1x1wLpzinW7A1UpIPatD1zJn-17p1nYDh14O8pJ8P_bOP_7dQi5mwuzAexsgbrMRStRCKt52s1UdrS7FnBOMZpNwsmlvODMHzGZt3jGbA2ZzxDznfnzIOSxvQEqy6D9N_zymYaawQ0gmO4TgYMAErpgh4icN_wFtgaDu
CitedBy_id crossref_primary_10_1016_j_foodchem_2023_136967
crossref_primary_10_1016_j_foodhyd_2023_109508
crossref_primary_10_1016_j_ijbiomac_2025_145086
crossref_primary_10_1016_j_ijbiomac_2021_10_184
crossref_primary_10_1016_j_tifs_2021_12_025
crossref_primary_10_1016_j_fbio_2024_105399
crossref_primary_10_1016_j_jfoodeng_2025_112724
crossref_primary_10_3389_fphar_2023_1120251
crossref_primary_10_1016_j_lwt_2025_117508
crossref_primary_10_3390_foods11030376
crossref_primary_10_1016_j_colsurfa_2024_135680
crossref_primary_10_1016_j_foodres_2025_115845
crossref_primary_10_1016_j_foodchem_2024_140066
crossref_primary_10_1016_j_bioadv_2025_214238
crossref_primary_10_3390_molecules26020272
crossref_primary_10_1016_j_foodres_2025_116656
crossref_primary_10_1016_j_foodhyd_2024_110262
crossref_primary_10_3390_polym13111737
crossref_primary_10_3390_molecules26030660
crossref_primary_10_1016_j_foodchem_2024_141435
crossref_primary_10_1016_j_foodchem_2024_141753
crossref_primary_10_1016_j_foodres_2024_115561
crossref_primary_10_1016_j_tifs_2024_104571
crossref_primary_10_1016_j_ijbiomac_2023_126698
crossref_primary_10_1007_s40005_024_00666_x
crossref_primary_10_1016_j_lwt_2024_116349
crossref_primary_10_3389_fnut_2021_806623
crossref_primary_10_1016_j_inoche_2024_113597
crossref_primary_10_1016_j_ijbiomac_2025_147191
crossref_primary_10_1016_j_fbio_2023_103160
crossref_primary_10_3390_foods11111625
crossref_primary_10_3390_antiox10091476
crossref_primary_10_1016_j_foodhyd_2025_111168
crossref_primary_10_3390_gels8020135
crossref_primary_10_1016_j_carbpol_2021_118441
crossref_primary_10_1016_j_bej_2023_108992
crossref_primary_10_1016_j_foodchem_2024_141746
crossref_primary_10_1016_j_foodchem_2024_141987
crossref_primary_10_1016_j_ijbiomac_2025_143227
crossref_primary_10_1016_j_ijbiomac_2022_09_175
crossref_primary_10_1016_j_fbio_2023_102943
crossref_primary_10_3390_pharmaceutics17010134
crossref_primary_10_1016_j_fbio_2024_105458
crossref_primary_10_1016_j_ijbiomac_2023_125059
crossref_primary_10_1016_j_colsurfa_2022_130766
crossref_primary_10_1016_j_ijbiomac_2023_123150
crossref_primary_10_1016_j_foodchem_2022_134604
crossref_primary_10_1016_j_ijbiomac_2021_05_216
crossref_primary_10_3390_polym13152533
crossref_primary_10_1016_j_jfoodeng_2024_112305
crossref_primary_10_1016_j_lwt_2021_112998
crossref_primary_10_3390_foods10050988
crossref_primary_10_3390_foods12132436
crossref_primary_10_1016_j_ijbiomac_2024_132264
crossref_primary_10_1016_j_foodhyd_2023_109492
crossref_primary_10_1016_j_foodres_2024_114413
crossref_primary_10_1016_j_foodhyd_2023_109011
crossref_primary_10_3390_foods13193111
crossref_primary_10_1016_j_indcrop_2022_115250
crossref_primary_10_1007_s11694_024_02725_1
crossref_primary_10_1016_j_reactfunctpolym_2022_105414
crossref_primary_10_3389_fnut_2025_1641620
crossref_primary_10_1016_j_foodhyd_2022_108368
crossref_primary_10_1111_1750_3841_17628
crossref_primary_10_1002_jsfa_13201
crossref_primary_10_1016_j_indcrop_2022_114521
crossref_primary_10_3390_molecules27010060
crossref_primary_10_1007_s10068_023_01489_6
crossref_primary_10_1016_j_colsurfb_2022_112529
crossref_primary_10_1016_j_foodres_2022_111713
crossref_primary_10_1016_j_foodhyd_2021_107331
crossref_primary_10_1039_D2FO03180A
crossref_primary_10_1039_D3FO03065B
crossref_primary_10_3390_antiox12030564
crossref_primary_10_1016_j_fbio_2024_105189
crossref_primary_10_1016_j_jfoodeng_2023_111520
crossref_primary_10_1016_j_colsurfa_2022_129829
crossref_primary_10_1016_j_foodchem_2023_135982
crossref_primary_10_1016_j_foodhyd_2025_111665
crossref_primary_10_1016_j_tifs_2024_104761
crossref_primary_10_1080_1539445X_2023_2172042
crossref_primary_10_1016_j_ijbiomac_2024_136739
crossref_primary_10_1016_j_fbio_2023_102927
crossref_primary_10_1016_j_lwt_2023_115057
crossref_primary_10_1016_j_colsurfb_2022_112685
crossref_primary_10_48130_fia_0025_0001
Cites_doi 10.1016/j.ifset.2009.07.002
10.1016/j.foodchem.2012.01.054
10.1016/j.foodchem.2018.11.025
10.1016/j.foodchem.2010.12.029
10.1016/j.ijbiomac.2017.07.087
10.1021/bm301207a
10.1016/j.foodhyd.2018.05.052
10.1111/1750-3841.12395
10.1016/j.foodchem.2015.03.009
10.1039/C9FO02164G
10.1016/j.foodhyd.2017.11.003
10.3390/nu8030131
10.1016/j.colsurfa.2017.01.019
10.1016/j.colsurfb.2019.01.045
10.1016/j.jfoodeng.2018.11.021
10.1016/j.biopha.2018.11.075
10.1016/j.foodhyd.2017.09.011
10.1016/j.carbpol.2014.12.084
10.1021/jf102959b
10.1016/j.carbpol.2020.116090
10.1016/j.foodhyd.2019.02.041
10.1002/(SICI)1099-0488(19970730)35:10<1593::AID-POLB11>3.0.CO;2-5
10.1016/j.foodhyd.2018.06.032
10.1016/j.colsurfb.2011.02.020
10.1016/j.foodhyd.2009.08.012
10.1016/j.jfoodeng.2018.09.007
10.1016/j.foodhyd.2018.06.052
10.1016/j.foodhyd.2016.05.016
10.1016/j.foodchem.2013.01.113
10.1016/j.foodchem.2013.07.058
10.1021/bm700728k
10.1021/acs.chemrev.5b00731
10.1016/j.jfoodeng.2017.10.002
10.1016/j.foodhyd.2016.03.016
10.1016/j.foodhyd.2019.04.042
10.1016/j.cis.2006.11.021
10.1039/c1jm11163a
10.1016/j.foodhyd.2018.08.002
10.1016/j.jcis.2015.10.022
10.1016/j.foodhyd.2019.04.048
10.1016/j.foodhyd.2014.11.023
10.1002/jps.23358
10.1016/j.foodhyd.2019.03.042
10.1016/j.foodchem.2015.03.128
10.1016/j.tifs.2018.07.015
10.1016/j.foodchem.2014.03.003
10.1016/j.foodchem.2007.05.032
10.1016/j.ijbiomac.2020.07.245
10.1016/j.biomaterials.2005.03.011
10.1016/j.foodhyd.2019.02.003
10.1016/j.foodhyd.2016.10.029
10.1016/j.jcis.2016.11.015
10.1039/c0sm00800a
10.1016/j.foodhyd.2014.11.001
10.1016/j.ijbiomac.2019.06.033
10.1016/j.ijbiomac.2018.07.139
10.1016/j.foodhyd.2018.02.037
10.1016/j.foodchem.2017.02.106
10.1016/j.tifs.2019.07.048
10.1016/j.foodhyd.2017.03.033
10.1021/jf2031346
10.1016/j.micromeso.2013.08.022
10.1016/j.foodchem.2018.04.055
10.1016/j.jfoodeng.2019.04.010
10.1016/j.foodchem.2013.09.088
10.1016/j.carbpol.2019.02.007
10.1016/j.cofs.2017.06.008
10.1016/j.foodhyd.2014.09.015
10.1016/j.foodhyd.2012.04.014
10.1016/j.foodres.2016.06.009
10.1016/j.foodhyd.2016.07.006
10.1016/j.ijbiomac.2018.05.107
10.1007/s00216-016-9604-y
10.1016/j.carbpol.2018.03.101
10.1021/jf204194z
10.1039/C4RA14270E
10.1016/j.colsurfa.2016.04.038
10.1016/j.foodchem.2014.06.082
10.1039/C9FO01998G
10.1021/acs.jafc.8b04571
10.1016/j.ijpharm.2009.10.011
10.1016/j.foodchem.2006.01.038
10.1016/j.carbpol.2018.05.033
10.1007/s10544-014-9926-5
10.1016/j.foodres.2018.03.035
10.1039/C8FO01172A
10.1016/j.foodhyd.2017.12.029
10.1039/C8FO01614C
10.1016/j.foodhyd.2019.04.010
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foodhyd.2020.106477
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7137
ExternalDocumentID 10_1016_j_foodhyd_2020_106477
S0268005X20328514
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLY
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCE
SDF
SDG
SES
SEW
SPC
SPCBC
SSA
SSG
SSZ
T5K
UHS
UNMZH
WH7
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-334c256560758805b586c7749e112c51976ec45237c77d980cabb578a9d1eb3d3
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618065100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0268-005X
IngestDate Thu Oct 02 06:45:07 EDT 2025
Sat Nov 29 07:18:09 EST 2025
Tue Nov 18 22:15:32 EST 2025
Fri Feb 23 02:48:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Zein
Chitosan
Digestion
Resveratrol encapsulation
Storage stability
Hollow particle
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-334c256560758805b586c7749e112c51976ec45237c77d980cabb578a9d1eb3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5762-5031
PQID 2524235189
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2524235189
crossref_primary_10_1016_j_foodhyd_2020_106477
crossref_citationtrail_10_1016_j_foodhyd_2020_106477
elsevier_sciencedirect_doi_10_1016_j_foodhyd_2020_106477
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Food hydrocolloids
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hwang, Kim, Shim, Moon (bib28) 2013; 182
Chuacharoen, Sabliov (bib11) 2016; 503
Hu, Huang, Gao, Huang, Xiao, McClements (bib25) 2015; 182
Sarkar, Horne, Singh (bib68) 2010; 24
Chang, Wang, Hu, Zhou, Xue, Luo (bib3) 2017; 70
Chen, Ma, Han, Wei, Guo, Yang (bib6) 2020; 164
Dai, Li, Wei, Sun, Mao, Gao (bib12) 2018; 77
Zappino, Cacciotti, Benucci, Nanni, Liburdi, Valentini (bib88) 2015; 45
Joye, Davidov-Pardo, Ludescher, McClements (bib31) 2015; 185
Li, Maldonado, Malmr, Rouf, Hua, Kokini (bib43) 2019; 96
Kasaai (bib32) 2018; 79
Hu, Wang, Fernandez, Luo (bib27) 2016; 61
Deng, Zhang, Li, Que, Kang, Liu (bib17) 2018; 75
Tai, He, Yuan, Meng, Gao, Yuan (bib76) 2017; 518
Teskač, Kristl (bib80) 2010; 390
Guzey, McClements (bib21) 2006; 128–130
Wei, Yu, Lin, Sun, Dai, Yang (bib84) 2019; 95
Huang, Dai, Cai, Zhong, Xiao, McClements (bib23) 2017; 64
Patel, Bouwens, Velikov (bib58) 2010; 58
Zhang, Fu, Xu, Niu, Li, Ba (bib89) 2019; 10
Liu, Jing, Han, Zhang, Tian (bib46) 2019; 93
Sessa, Balestrieri, Ferrari, Servillo, Castaldo, D'Onofrio (bib69) 2014; 147
Talarico, Arduini, Amine, Cacciotti, Moscone, Palleschi (bib77) 2016; 408
Xu, Shen, Xu, Yang (bib86) 2015; 17
Liu, Gao, Yi, Fan, Wu, Zhang (bib45) 2020; 11
Li, Wang, Liu, Zhu, Fan, Sun (bib47) 2019; 87
Liang, Zhou, He, An, Lin, Li (bib39) 2015; 5
Hatzidimitriou, Nenadis, Tsimidou (bib22) 2007; 105
Jo, Ban, Goh, Choi (bib29) 2019; 94
Chen, Subirade (bib7) 2005; 26
Liu, Fan, Gao, Zhang, Yi (bib44) 2018; 9
Patel, Hu, Tiwari, Velikov (bib60) 2010; 6
Pu, Li, Sun, Zhong, Ma (bib64) 2019; 211
Zhang, Khan, Cheng, Liang (bib90) 2019; 247
Liang, Yan, Wang, Zhou, Gao, Puligundla (bib38) 2017; 231
Xu, Jiang, Reddy, Yang (bib85) 2011; 21
Feng, Yue, Wusigale, Ni, Liang (bib19) 2018; 108
Luo, Teng, Wang (bib50) 2012; 60
Cheng, Fang, Wusigale, Chen, Liang (bib4) 2018; 81
Pujara, Jambhrunkar, Wong, McGuckin, Popat (bib63) 2017; 488
Ma, Yu, Yin, Tang, Yang (bib53) 2018; 66
Davidov-Pardo, McClements (bib16) 2015; 167
Luo, Wang, Teng, Chen, Sun, Wang (bib51) 2013; 139
Santos, Pereira, Pereira-Silva, Ferreira, Caldas, Magalhães (bib67) 2019; 91
Kim, Thomas (bib34) 2007; 101
Silva, Beldíková, Poejo, Abrunhosa, Serra, Duarte (bib74) 2019; 243
Soo, Thakur, Qu, Jambhrunkar, Parekh, Popat (bib75) 2016; 462
Ren, Hou, Liang, Zhang, Hu, Xu (bib65) 2019; 279
Jonassen, Kjøniksen, Hiorth (bib30) 2012; 13
Cho, Chun, Kim, Park (bib10) 2014; 79
Liang, Ren, Zhang, Hou, Chalamaiah, Ma (bib35) 2018; 221
Chen, Zheng, Julian, Xiao (bib9) 2014; 158
Liang, Tajmir-Riahi, Subirade (bib36) 2008; 9
Arasukumar, Prabakaran, Gunalan, Moovendhan (bib1) 2019; 135
Benucci, Lombardelli, Cacciotti, Liburdi, Nanni, Esti (bib2) 2016; 61
Vahedikia, Garavand, Tajeddin, Cacciotti, Jafari, Omidi (bib81) 2019; 177
Yao, Chen, Song, McClements, Hu (bib87) 2018; 79
Rocha, Coimbra, Nunes (bib66) 2017; 15
Hu, McClements (bib26) 2015; 44
Shao, Wang, Niu, Kang (bib71) 2018; 119
Davidov-Pardo, Joye, McClements (bib15) 2015; 45
Shao, Wu, Wu, Li, Chen, Yuan (bib72) 2018; 193
Chen, Han, Jian, Liao, Zhang, Gao (bib5) 2020; 236
Dai, Zhou, Wei, Gao, McClements (bib14) 2019; 93
Li, Jiang, Wu (bib42) 1997; 35
Wegiel, Mauer, Edgar, Taylor (bib83) 2013; 102
Huang, Huang, Gong, Xiao, McClements, Hu (bib24) 2016; 87
Patel, Heussen, Hazekamp, Drost, Velikov (bib59) 2012; 133
Luo, Zhang, Whent, Yu, Wang (bib52) 2011; 85
Tang, Yu, Ho, Huang, Tsai, Hsieh (bib78) 2013; 30
Sessa, Tsao, Liu, Ferrari, Donsì (bib70) 2011; 59
Muxika, Etxabide, Uranga, Guerrero, de la Caba (bib54) 2017; 105
Pannu, Bhatnagar (bib57) 2019; 109
Neves, Martins, Segundo, Reis (bib56) 2016; 8
Zhang, Niu, Luo, Ge, Yang, Yu (bib91) 2014; 142
Gülçin (bib20) 2010; 11
Luo, Teng, Li, Wang (bib49) 2015; 122
Li, Chen, Xu, Zhang, Wang, Zeng (bib40) 2018; 116
Li, Hwang, Chen, Park (bib41) 2016; 60
Wang, Feng, Bai, Zhang, Yin (bib82) 2016; 116
Tan, Li, Liu, Muriel Mundo, Zhou, Liu (bib79) 2020; 11
Pauluk, Padilha, Khalil, Mainardes (bib61) 2019; 94
Khan, Yue, Fang, Hu, Cheng, Bakry (bib33) 2019; 258
Pellá, Lima-Tenório, Tenório-Neto, Guilherme, Muniz, Rubira (bib62) 2018; 196
Neves, Lúcio, Martins, Lima, Reis (bib55) 2013; 8
Fan, Liu, Gao, Zhang, Yi (bib18) 2018; 261
Li, Xu, Sun, Wang, Wang, Zhu (bib48) 2018; 84
Shin, Kim (bib73) 2018; 84
Liang, Tremblay-Hébert, Subirade (bib37) 2011; 126
Dai, Wei, Sun, Mao, McClements, Gao (bib13) 2018; 85
Jo (10.1016/j.foodhyd.2020.106477_bib29) 2019; 94
Pujara (10.1016/j.foodhyd.2020.106477_bib63) 2017; 488
Soo (10.1016/j.foodhyd.2020.106477_bib75) 2016; 462
Zhang (10.1016/j.foodhyd.2020.106477_bib91) 2014; 142
Dai (10.1016/j.foodhyd.2020.106477_bib13) 2018; 85
Li (10.1016/j.foodhyd.2020.106477_bib47) 2019; 87
Shao (10.1016/j.foodhyd.2020.106477_bib72) 2018; 193
Benucci (10.1016/j.foodhyd.2020.106477_bib2) 2016; 61
Gülçin (10.1016/j.foodhyd.2020.106477_bib20) 2010; 11
Pellá (10.1016/j.foodhyd.2020.106477_bib62) 2018; 196
Zappino (10.1016/j.foodhyd.2020.106477_bib88) 2015; 45
Drug bank Ca (10.1016/j.foodhyd.2020.106477_bib92)
Hu (10.1016/j.foodhyd.2020.106477_bib26) 2015; 44
Davidov-Pardo (10.1016/j.foodhyd.2020.106477_bib16) 2015; 167
Joye (10.1016/j.foodhyd.2020.106477_bib31) 2015; 185
Kim (10.1016/j.foodhyd.2020.106477_bib34) 2007; 101
Kasaai (10.1016/j.foodhyd.2020.106477_bib32) 2018; 79
Liu (10.1016/j.foodhyd.2020.106477_bib46) 2019; 93
Liu (10.1016/j.foodhyd.2020.106477_bib44) 2018; 9
Tan (10.1016/j.foodhyd.2020.106477_bib79) 2020; 11
Wang (10.1016/j.foodhyd.2020.106477_bib82) 2016; 116
Patel (10.1016/j.foodhyd.2020.106477_bib58) 2010; 58
Chen (10.1016/j.foodhyd.2020.106477_bib7) 2005; 26
Hu (10.1016/j.foodhyd.2020.106477_bib27) 2016; 61
Huang (10.1016/j.foodhyd.2020.106477_bib23) 2017; 64
Liang (10.1016/j.foodhyd.2020.106477_bib35) 2018; 221
Drug bank Ca (10.1016/j.foodhyd.2020.106477_bib93)
Tang (10.1016/j.foodhyd.2020.106477_bib78) 2013; 30
Arasukumar (10.1016/j.foodhyd.2020.106477_bib1) 2019; 135
Ma (10.1016/j.foodhyd.2020.106477_bib53) 2018; 66
Zhang (10.1016/j.foodhyd.2020.106477_bib89) 2019; 10
Shao (10.1016/j.foodhyd.2020.106477_bib71) 2018; 119
Chen (10.1016/j.foodhyd.2020.106477_bib9) 2014; 158
Li (10.1016/j.foodhyd.2020.106477_bib42) 1997; 35
Pannu (10.1016/j.foodhyd.2020.106477_bib57) 2019; 109
Chuacharoen (10.1016/j.foodhyd.2020.106477_bib11) 2016; 503
Rocha (10.1016/j.foodhyd.2020.106477_bib66) 2017; 15
Hwang (10.1016/j.foodhyd.2020.106477_bib28) 2013; 182
Teskač (10.1016/j.foodhyd.2020.106477_bib80) 2010; 390
Wegiel (10.1016/j.foodhyd.2020.106477_bib83) 2013; 102
Davidov-Pardo (10.1016/j.foodhyd.2020.106477_bib15) 2015; 45
Feng (10.1016/j.foodhyd.2020.106477_bib19) 2018; 108
Santos (10.1016/j.foodhyd.2020.106477_bib67) 2019; 91
Luo (10.1016/j.foodhyd.2020.106477_bib49) 2015; 122
Liu (10.1016/j.foodhyd.2020.106477_bib45) 2020; 11
Sessa (10.1016/j.foodhyd.2020.106477_bib70) 2011; 59
Guzey (10.1016/j.foodhyd.2020.106477_bib21) 2006; 128–130
Liang (10.1016/j.foodhyd.2020.106477_bib37) 2011; 126
Patel (10.1016/j.foodhyd.2020.106477_bib60) 2010; 6
Tai (10.1016/j.foodhyd.2020.106477_bib76) 2017; 518
Drug bank Ca (10.1016/j.foodhyd.2020.106477_bib94)
Liang (10.1016/j.foodhyd.2020.106477_bib36) 2008; 9
Fan (10.1016/j.foodhyd.2020.106477_bib18) 2018; 261
Luo (10.1016/j.foodhyd.2020.106477_bib51) 2013; 139
Huang (10.1016/j.foodhyd.2020.106477_bib24) 2016; 87
Khan (10.1016/j.foodhyd.2020.106477_bib33) 2019; 258
Talarico (10.1016/j.foodhyd.2020.106477_bib77) 2016; 408
Sessa (10.1016/j.foodhyd.2020.106477_bib69) 2014; 147
Wei (10.1016/j.foodhyd.2020.106477_bib84) 2019; 95
Cho (10.1016/j.foodhyd.2020.106477_bib10) 2014; 79
Sarkar (10.1016/j.foodhyd.2020.106477_bib68) 2010; 24
Silva (10.1016/j.foodhyd.2020.106477_bib74) 2019; 243
Li (10.1016/j.foodhyd.2020.106477_bib41) 2016; 60
Shin (10.1016/j.foodhyd.2020.106477_bib73) 2018; 84
Xu (10.1016/j.foodhyd.2020.106477_bib85) 2011; 21
Yao (10.1016/j.foodhyd.2020.106477_bib87) 2018; 79
Patel (10.1016/j.foodhyd.2020.106477_bib59) 2012; 133
Hatzidimitriou (10.1016/j.foodhyd.2020.106477_bib22) 2007; 105
Xu (10.1016/j.foodhyd.2020.106477_bib86) 2015; 17
Liang (10.1016/j.foodhyd.2020.106477_bib38) 2017; 231
Chang (10.1016/j.foodhyd.2020.106477_bib3) 2017; 70
Li (10.1016/j.foodhyd.2020.106477_bib48) 2018; 84
Chen (10.1016/j.foodhyd.2020.106477_bib5) 2020; 236
Ren (10.1016/j.foodhyd.2020.106477_bib65) 2019; 279
Liang (10.1016/j.foodhyd.2020.106477_bib39) 2015; 5
Pauluk (10.1016/j.foodhyd.2020.106477_bib61) 2019; 94
Chen (10.1016/j.foodhyd.2020.106477_bib6) 2020; 164
Li (10.1016/j.foodhyd.2020.106477_bib43) 2019; 96
Cheng (10.1016/j.foodhyd.2020.106477_bib4) 2018; 81
Dai (10.1016/j.foodhyd.2020.106477_bib14) 2019; 93
Jonassen (10.1016/j.foodhyd.2020.106477_bib30) 2012; 13
Vahedikia (10.1016/j.foodhyd.2020.106477_bib81) 2019; 177
Zhang (10.1016/j.foodhyd.2020.106477_bib90) 2019; 247
Deng (10.1016/j.foodhyd.2020.106477_bib17) 2018; 75
Hu (10.1016/j.foodhyd.2020.106477_bib25) 2015; 182
Li (10.1016/j.foodhyd.2020.106477_bib40) 2018; 116
Dai (10.1016/j.foodhyd.2020.106477_bib12) 2018; 77
Neves (10.1016/j.foodhyd.2020.106477_bib56) 2016; 8
Pu (10.1016/j.foodhyd.2020.106477_bib64) 2019; 211
Luo (10.1016/j.foodhyd.2020.106477_bib50) 2012; 60
Neves (10.1016/j.foodhyd.2020.106477_bib55) 2013; 8
Muxika (10.1016/j.foodhyd.2020.106477_bib54) 2017; 105
Luo (10.1016/j.foodhyd.2020.106477_bib52) 2011; 85
References_xml – volume: 45
  start-page: 41
  year: 2015
  end-page: 47
  ident: bib88
  article-title: Bromelain immobilization on microbial and animal source chitosan films, plasticized with glycerol, for application in wine-like medium: Microstructural, mechanical and catalytic characterisations
  publication-title: Food Hydrocolloids
– volume: 122
  start-page: 221
  year: 2015
  end-page: 229
  ident: bib49
  article-title: Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake
  publication-title: Carbohydrate Polymers
– volume: 8
  start-page: 177
  year: 2013
  end-page: 187
  ident: bib55
  article-title: Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability
  publication-title: International Journal of Nanomedicine
– volume: 221
  start-page: 88
  year: 2018
  end-page: 94
  ident: bib35
  article-title: Effect of ultrasound on the preparation of resveratrol-loaded zein particles
  publication-title: Journal of Food Engineering
– volume: 196
  start-page: 233
  year: 2018
  end-page: 245
  ident: bib62
  article-title: Chitosan-based hydrogels: From preparation to biomedical applications
  publication-title: Carbohydrate Polymers
– volume: 258
  start-page: 45
  year: 2019
  end-page: 53
  ident: bib33
  article-title: Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol
  publication-title: Journal of Food Engineering
– volume: 91
  start-page: 483
  year: 2019
  end-page: 497
  ident: bib67
  article-title: Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns
  publication-title: Trends in Food Science & Technology
– volume: 147
  start-page: 42
  year: 2014
  end-page: 50
  ident: bib69
  article-title: Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems
  publication-title: Food Chemistry
– volume: 128–130
  start-page: 227
  year: 2006
  end-page: 248
  ident: bib21
  article-title: Formation, stability and properties of multilayer emulsions for application in the food industry
  publication-title: Advances in Colloid and Interface Science
– volume: 390
  start-page: 61
  year: 2010
  end-page: 69
  ident: bib80
  article-title: The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol
  publication-title: International Journal of Pharmaceutics
– volume: 10
  start-page: 635
  year: 2019
  end-page: 645
  ident: bib89
  article-title: One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis
  publication-title: Food and Function
– volume: 81
  start-page: 242
  year: 2018
  end-page: 252
  ident: bib4
  article-title: Complexation of trans- and cis-resveratrol with bovine serum albumin, β-lactoglobulin or α-lactalbumin
  publication-title: Food Hydrocolloids
– volume: 518
  start-page: 218
  year: 2017
  end-page: 231
  ident: bib76
  article-title: A comparison of physicochemical and functional properties of icaritin-loaded liposomes based on different surfactants
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 61
  start-page: 191
  year: 2016
  end-page: 200
  ident: bib2
  article-title: Chitosan beads from microbial and animal sources as enzyme supports for wine application
  publication-title: Food Hydrocolloids
– volume: 60
  start-page: 836
  year: 2012
  end-page: 843
  ident: bib50
  article-title: Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 261
  start-page: 283
  year: 2018
  end-page: 291
  ident: bib18
  article-title: Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate
  publication-title: Food Chemistry
– volume: 182
  start-page: 275
  year: 2015
  end-page: 281
  ident: bib25
  article-title: Core-shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein-pectin nanoparticles
  publication-title: Food Chemistry
– volume: 126
  start-page: 821
  year: 2011
  end-page: 826
  ident: bib37
  article-title: Characterisation of the β-lactoglobulin/α-tocopherol complex and its impact on α-tocopherol stability
  publication-title: Food Chemistry
– volume: 26
  start-page: 6041
  year: 2005
  end-page: 6053
  ident: bib7
  article-title: Chitosan/β-lactoglobulin core-shell nanoparticles as nutraceutical carriers
  publication-title: Biomaterials
– volume: 35
  start-page: 1593
  year: 1997
  end-page: 1599
  ident: bib42
  article-title: Fluorescence and light-scattering studies on the formation of stable colloidal nanoparticles made of sodium sulfonated polystyrene ionomers
  publication-title: Journal of Polymer Science Part B: Polymer Physics
– volume: 108
  start-page: 161
  year: 2018
  end-page: 171
  ident: bib19
  article-title: Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol
  publication-title: Food Research International
– volume: 9
  start-page: 4781
  year: 2018
  end-page: 4790
  ident: bib44
  article-title: Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin
  publication-title: Food and Function
– volume: 84
  start-page: 146
  year: 2018
  end-page: 153
  ident: bib73
  article-title: Observation of chitosan coated lipid nanoparticles with different lipid compositions under simulated in vitro digestion system
  publication-title: Food Hydrocolloids
– volume: 93
  start-page: 432
  year: 2019
  end-page: 442
  ident: bib46
  article-title: Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties
  publication-title: Food Hydrocolloids
– volume: 24
  start-page: 142
  year: 2010
  end-page: 151
  ident: bib68
  article-title: Interactions of milk protein-stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model
  publication-title: Food Hydrocolloids
– volume: 193
  start-page: 144
  year: 2018
  end-page: 152
  ident: bib72
  article-title: Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity
  publication-title: Carbohydrate Polymers
– volume: 8
  start-page: 1
  year: 2016
  end-page: 14
  ident: bib56
  article-title: Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals
  publication-title: Nutrients
– volume: 11
  start-page: 1525
  year: 2020
  end-page: 1536
  ident: bib45
  article-title: α-Lactalbumin and chitosan core-shell nanoparticles: Resveratrol loading, protection, and antioxidant activity
  publication-title: Food and Function
– volume: 139
  start-page: 224
  year: 2013
  end-page: 230
  ident: bib51
  article-title: Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability
  publication-title: Food Chemistry
– volume: 11
  start-page: 210
  year: 2010
  end-page: 218
  ident: bib20
  article-title: Antioxidant properties of resveratrol: A structure-activity insight
  publication-title: Innovative Food Science & Emerging Technologies
– volume: 61
  start-page: 821
  year: 2016
  end-page: 831
  ident: bib27
  article-title: Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin
  publication-title: Food Hydrocolloids
– volume: 135
  start-page: 1237
  year: 2019
  end-page: 1245
  ident: bib1
  article-title: Chemical composition, structural features, surface morphology and bioactivities of chitosan derivatives from lobster (Thenus unimaculatus) shells
  publication-title: International Journal of Biological Macromolecules
– volume: 167
  start-page: 205
  year: 2015
  end-page: 212
  ident: bib16
  article-title: Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification
  publication-title: Food Chemistry
– volume: 30
  start-page: 33
  year: 2013
  end-page: 41
  ident: bib78
  article-title: Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide
  publication-title: Food Hydrocolloids
– volume: 101
  start-page: 308
  year: 2007
  end-page: 313
  ident: bib34
  article-title: Antioxidative activity of chitosans with varying molecular weights
  publication-title: Food Chemistry
– volume: 177
  start-page: 25
  year: 2019
  end-page: 32
  ident: bib81
  article-title: Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes
  publication-title: Colloids and Surfaces B: Biointerfaces
– volume: 133
  start-page: 423
  year: 2012
  end-page: 429
  ident: bib59
  article-title: Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium
  publication-title: Food Chemistry
– volume: 87
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib24
  article-title: Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles
  publication-title: Food Research International
– volume: 488
  start-page: 303
  year: 2017
  end-page: 308
  ident: bib63
  article-title: Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate
  publication-title: Journal of Colloid and Interface Science
– volume: 59
  start-page: 12352
  year: 2011
  end-page: 12360
  ident: bib70
  article-title: Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 96
  start-page: 93
  year: 2019
  end-page: 101
  ident: bib43
  article-title: Development of hollow kafirin-based nanoparticles fabricated through layer-by-layer assembly as delivery vehicles for curcumin
  publication-title: Food Hydrocolloids
– volume: 236
  start-page: 116090
  year: 2020
  ident: bib5
  article-title: Fabrication, characterization, physicochemical stability of zein-chitosan nanocomplex for co-encapsulating curcumin and resveratrol
  publication-title: Carbohydrate Polymers
– volume: 85
  start-page: 75
  year: 2018
  end-page: 85
  ident: bib13
  article-title: Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin
  publication-title: Food Hydrocolloids
– volume: 105
  start-page: 1504
  year: 2007
  end-page: 1511
  ident: bib22
  article-title: Changes in the catechin and epicatechin content of grape seeds on storage under different water activity (aw) conditions
  publication-title: Food Chemistry
– volume: 87
  start-page: 342
  year: 2019
  end-page: 351
  ident: bib47
  article-title: Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin
  publication-title: Food Hydrocolloids
– volume: 185
  start-page: 261
  year: 2015
  end-page: 267
  ident: bib31
  article-title: Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins
  publication-title: Food Chemistry
– volume: 66
  start-page: 12783
  year: 2018
  end-page: 12793
  ident: bib53
  article-title: Cellular uptake and intracellular antioxidant activity of zein/chitosan nanoparticles incorporated with quercetin
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 58
  start-page: 12497
  year: 2010
  end-page: 12503
  ident: bib58
  article-title: Sodium caseinate stabilized zein colloidal particles
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 231
  start-page: 19
  year: 2017
  end-page: 24
  ident: bib38
  article-title: Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems
  publication-title: Food Chemistry
– volume: 44
  start-page: 101
  year: 2015
  end-page: 108
  ident: bib26
  article-title: Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles
  publication-title: Food Hydrocolloids
– volume: 64
  start-page: 157
  year: 2017
  end-page: 165
  ident: bib23
  article-title: Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities
  publication-title: Food Hydrocolloids
– volume: 9
  start-page: 50
  year: 2008
  end-page: 56
  ident: bib36
  article-title: Interaction of β-Lactoglobulin with resveratrol and its biological implications
  publication-title: Biomacromolecules
– volume: 247
  start-page: 9
  year: 2019
  end-page: 18
  ident: bib90
  article-title: Co-encapsulation of α-tocopherol and resveratrol within zein nanoparticles: Impact on antioxidant activity and stability
  publication-title: Journal of Food Engineering
– volume: 182
  start-page: 81
  year: 2013
  end-page: 86
  ident: bib28
  article-title: Adsorption of BSA on monodispersed hollow silica nanospheres
  publication-title: Microporous and Mesoporous Materials
– volume: 116
  start-page: 10983
  year: 2016
  end-page: 11060
  ident: bib82
  article-title: Synthesis, properties, and applications of hollow micro-/nanostructures
  publication-title: Chemical Reviews
– volume: 85
  start-page: 145
  year: 2011
  end-page: 152
  ident: bib52
  article-title: Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study
  publication-title: Colloids and Surfaces B: Biointerfaces
– volume: 79
  start-page: 262
  year: 2018
  end-page: 272
  ident: bib87
  article-title: Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions
  publication-title: Food Hydrocolloids
– volume: 5
  start-page: 13891
  year: 2015
  end-page: 13900
  ident: bib39
  article-title: Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin
  publication-title: RSC Advances
– volume: 15
  start-page: 61
  year: 2017
  end-page: 69
  ident: bib66
  article-title: Applications of chitosan and their derivatives in beverages: A critical review
  publication-title: Current Opinion in Food Science
– volume: 503
  start-page: 11
  year: 2016
  end-page: 18
  ident: bib11
  article-title: Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
– volume: 164
  start-page: 2215
  year: 2020
  end-page: 2223
  ident: bib6
  article-title: Effect of chitosan molecular weight on zein-chitosan nanocomplexes: Formation, characterization, and the delivery of quercetagetin
  publication-title: International Journal of Biological Macromolecules
– volume: 408
  start-page: 7299
  year: 2016
  end-page: 7309
  ident: bib77
  article-title: Screen-printed electrode modified with carbon black and chitosan: A novel platform for acetylcholinesterase biosensor development
  publication-title: Analytical and Bioanalytical Chemistry
– volume: 60
  start-page: 138
  year: 2016
  end-page: 147
  ident: bib41
  article-title: Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility
  publication-title: Food Hydrocolloids
– volume: 45
  start-page: 309
  year: 2015
  end-page: 316
  ident: bib15
  article-title: Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization
  publication-title: Food Hydrocolloids
– volume: 279
  start-page: 223
  year: 2019
  end-page: 230
  ident: bib65
  article-title: Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation
  publication-title: Food Chemistry
– volume: 84
  start-page: 379
  year: 2018
  end-page: 388
  ident: bib48
  article-title: Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation
  publication-title: Food Hydrocolloids
– volume: 17
  year: 2015
  ident: bib86
  article-title: Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study
  publication-title: Biomedical Microdevices
– volume: 6
  start-page: 6192
  year: 2010
  end-page: 6199
  ident: bib60
  article-title: Synthesis and characterisation of zein-curcumin colloidal particles
  publication-title: Soft Matter
– volume: 102
  start-page: 171
  year: 2013
  end-page: 184
  ident: bib83
  article-title: Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-impact of different polymers
  publication-title: Journal of Pharmaceutical Sciences
– volume: 116
  start-page: 1232
  year: 2018
  end-page: 1239
  ident: bib40
  article-title: The formation of zein-chitosan complex coacervated particles: Relationship to encapsulation and controlled release properties
  publication-title: International Journal of Biological Macromolecules
– volume: 105
  start-page: 1358
  year: 2017
  end-page: 1368
  ident: bib54
  article-title: Chitosan as a bioactive polymer: Processing, properties and applications
  publication-title: International Journal of Biological Macromolecules
– volume: 158
  start-page: 466
  year: 2014
  end-page: 472
  ident: bib9
  article-title: Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin : Preparation, characterization, and functional performance
  publication-title: Food Chemistry
– volume: 211
  start-page: 161
  year: 2019
  end-page: 172
  ident: bib64
  article-title: An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles
  publication-title: Carbohydrate Polymers
– volume: 75
  start-page: 72
  year: 2018
  end-page: 80
  ident: bib17
  article-title: Characterization of gelatin/zein nanofibers by hybrid electrospinning
  publication-title: Food Hydrocolloids
– volume: 79
  start-page: 184
  year: 2018
  end-page: 197
  ident: bib32
  article-title: Zein and zein -based nano-materials for food and nutrition applications: A review
  publication-title: Trends in Food Science & Technology
– volume: 11
  start-page: 187
  year: 2020
  end-page: 199
  ident: bib79
  article-title: Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles
  publication-title: Food and Function
– volume: 462
  start-page: 368
  year: 2016
  end-page: 374
  ident: bib75
  article-title: Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach
  publication-title: Journal of Colloid and Interface Science
– volume: 95
  start-page: 336
  year: 2019
  end-page: 348
  ident: bib84
  article-title: Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion
  publication-title: Food Hydrocolloids
– volume: 70
  start-page: 143
  year: 2017
  end-page: 151
  ident: bib3
  article-title: Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin
  publication-title: Food Hydrocolloids
– volume: 142
  start-page: 269
  year: 2014
  end-page: 275
  ident: bib91
  article-title: Fabrication, characterization and antimicrobial activities of thymolloaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers
  publication-title: Food Chemistry
– volume: 77
  start-page: 617
  year: 2018
  end-page: 628
  ident: bib12
  article-title: Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and in vitro release of curcumin
  publication-title: Food Hydrocolloids
– volume: 21
  start-page: 18227
  year: 2011
  end-page: 18235
  ident: bib85
  article-title: Hollow nanoparticles from zein for potential medical applications
  publication-title: Journal of Materials Chemistry
– volume: 109
  start-page: 2237
  year: 2019
  end-page: 2251
  ident: bib57
  article-title: Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases
  publication-title: Biomedicine & Pharmacotherapy
– volume: 93
  start-page: 342
  year: 2019
  end-page: 350
  ident: bib14
  article-title: Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method
  publication-title: Food Hydrocolloids
– volume: 79
  start-page: 568
  year: 2014
  end-page: 576
  ident: bib10
  article-title: Preparation of chitosan-TPP microspheres as resveratrol carriers
  publication-title: Journal of Food Science
– volume: 13
  start-page: 3747
  year: 2012
  end-page: 3756
  ident: bib30
  article-title: Stability of chitosan nanoparticles cross-linked with tripolyphosphate
  publication-title: Biomacromolecules
– volume: 243
  start-page: 89
  year: 2019
  end-page: 100
  ident: bib74
  article-title: Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions
  publication-title: Journal of Food Engineering
– volume: 94
  start-page: 411
  year: 2019
  end-page: 417
  ident: bib61
  article-title: Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity
  publication-title: Food Hydrocolloids
– volume: 94
  start-page: 603
  year: 2019
  end-page: 612
  ident: bib29
  article-title: Influence of chitosan-coating on the stability and digestion of emulsions stabilized by waxy maize starch crystals
  publication-title: Food Hydrocolloids
– volume: 119
  start-page: 53
  year: 2018
  end-page: 59
  ident: bib71
  article-title: Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification
  publication-title: International Journal of Biological Macromolecules
– volume: 11
  start-page: 210
  issue: 1
  year: 2010
  ident: 10.1016/j.foodhyd.2020.106477_bib20
  article-title: Antioxidant properties of resveratrol: A structure-activity insight
  publication-title: Innovative Food Science & Emerging Technologies
  doi: 10.1016/j.ifset.2009.07.002
– volume: 133
  start-page: 423
  issue: 2
  year: 2012
  ident: 10.1016/j.foodhyd.2020.106477_bib59
  article-title: Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2012.01.054
– volume: 279
  start-page: 223
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib65
  article-title: Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.11.025
– volume: 126
  start-page: 821
  issue: 3
  year: 2011
  ident: 10.1016/j.foodhyd.2020.106477_bib37
  article-title: Characterisation of the β-lactoglobulin/α-tocopherol complex and its impact on α-tocopherol stability
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2010.12.029
– volume: 105
  start-page: 1358
  year: 2017
  ident: 10.1016/j.foodhyd.2020.106477_bib54
  article-title: Chitosan as a bioactive polymer: Processing, properties and applications
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2017.07.087
– volume: 13
  start-page: 3747
  issue: 11
  year: 2012
  ident: 10.1016/j.foodhyd.2020.106477_bib30
  article-title: Stability of chitosan nanoparticles cross-linked with tripolyphosphate
  publication-title: Biomacromolecules
  doi: 10.1021/bm301207a
– volume: 84
  start-page: 146
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib73
  article-title: Observation of chitosan coated lipid nanoparticles with different lipid compositions under simulated in vitro digestion system
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.05.052
– volume: 79
  start-page: 568
  issue: 4
  year: 2014
  ident: 10.1016/j.foodhyd.2020.106477_bib10
  article-title: Preparation of chitosan-TPP microspheres as resveratrol carriers
  publication-title: Journal of Food Science
  doi: 10.1111/1750-3841.12395
– volume: 182
  start-page: 275
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib25
  article-title: Core-shell biopolymer nanoparticle delivery systems: Synthesis and characterization of curcumin fortified zein-pectin nanoparticles
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2015.03.009
– volume: 11
  start-page: 187
  issue: 1
  year: 2020
  ident: 10.1016/j.foodhyd.2020.106477_bib79
  article-title: Chitosan reduces vitamin D bioaccessibility in food emulsions by binding to mixed micelles
  publication-title: Food and Function
  doi: 10.1039/C9FO02164G
– volume: 77
  start-page: 617
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib12
  article-title: Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and in vitro release of curcumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2017.11.003
– volume: 8
  start-page: 1
  issue: 3
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib56
  article-title: Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals
  publication-title: Nutrients
  doi: 10.3390/nu8030131
– volume: 518
  start-page: 218
  issue: 17
  year: 2017
  ident: 10.1016/j.foodhyd.2020.106477_bib76
  article-title: A comparison of physicochemical and functional properties of icaritin-loaded liposomes based on different surfactants
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2017.01.019
– volume: 177
  start-page: 25
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib81
  article-title: Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2019.01.045
– volume: 247
  start-page: 9
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib90
  article-title: Co-encapsulation of α-tocopherol and resveratrol within zein nanoparticles: Impact on antioxidant activity and stability
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2018.11.021
– volume: 109
  start-page: 2237
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib57
  article-title: Resveratrol: From enhanced biosynthesis and bioavailability to multitargeting chronic diseases
  publication-title: Biomedicine & Pharmacotherapy
  doi: 10.1016/j.biopha.2018.11.075
– volume: 75
  start-page: 72
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib17
  article-title: Characterization of gelatin/zein nanofibers by hybrid electrospinning
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2017.09.011
– volume: 122
  start-page: 221
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib49
  article-title: Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2014.12.084
– volume: 58
  start-page: 12497
  issue: 23
  year: 2010
  ident: 10.1016/j.foodhyd.2020.106477_bib58
  article-title: Sodium caseinate stabilized zein colloidal particles
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf102959b
– ident: 10.1016/j.foodhyd.2020.106477_bib93
– volume: 236
  start-page: 116090
  year: 2020
  ident: 10.1016/j.foodhyd.2020.106477_bib5
  article-title: Fabrication, characterization, physicochemical stability of zein-chitosan nanocomplex for co-encapsulating curcumin and resveratrol
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2020.116090
– volume: 93
  start-page: 342
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib14
  article-title: Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.02.041
– volume: 35
  start-page: 1593
  issue: 10
  year: 1997
  ident: 10.1016/j.foodhyd.2020.106477_bib42
  article-title: Fluorescence and light-scattering studies on the formation of stable colloidal nanoparticles made of sodium sulfonated polystyrene ionomers
  publication-title: Journal of Polymer Science Part B: Polymer Physics
  doi: 10.1002/(SICI)1099-0488(19970730)35:10<1593::AID-POLB11>3.0.CO;2-5
– volume: 84
  start-page: 379
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib48
  article-title: Stability, bioactivity, and bioaccessibility of fucoxanthin in zein-caseinate composite nanoparticles fabricated at neutral pH by antisolvent precipitation
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.06.032
– volume: 85
  start-page: 145
  issue: 2
  year: 2011
  ident: 10.1016/j.foodhyd.2020.106477_bib52
  article-title: Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2011.02.020
– volume: 24
  start-page: 142
  issue: 2–3
  year: 2010
  ident: 10.1016/j.foodhyd.2020.106477_bib68
  article-title: Interactions of milk protein-stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2009.08.012
– volume: 243
  start-page: 89
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib74
  article-title: Evaluating the effect of chitosan layer on bioaccessibility and cellular uptake of curcumin nanoemulsions
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2018.09.007
– volume: 85
  start-page: 75
  issue: 17
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib13
  article-title: Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.06.052
– volume: 61
  start-page: 191
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib2
  article-title: Chitosan beads from microbial and animal sources as enzyme supports for wine application
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.05.016
– ident: 10.1016/j.foodhyd.2020.106477_bib94
– volume: 139
  start-page: 224
  issue: 1–4
  year: 2013
  ident: 10.1016/j.foodhyd.2020.106477_bib51
  article-title: Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.01.113
– volume: 142
  start-page: 269
  year: 2014
  ident: 10.1016/j.foodhyd.2020.106477_bib91
  article-title: Fabrication, characterization and antimicrobial activities of thymolloaded zein nanoparticles stabilized by sodium caseinate-chitosan hydrochloride double layers
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.07.058
– volume: 9
  start-page: 50
  issue: 1
  year: 2008
  ident: 10.1016/j.foodhyd.2020.106477_bib36
  article-title: Interaction of β-Lactoglobulin with resveratrol and its biological implications
  publication-title: Biomacromolecules
  doi: 10.1021/bm700728k
– volume: 116
  start-page: 10983
  issue: 18
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib82
  article-title: Synthesis, properties, and applications of hollow micro-/nanostructures
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.5b00731
– volume: 221
  start-page: 88
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib35
  article-title: Effect of ultrasound on the preparation of resveratrol-loaded zein particles
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2017.10.002
– volume: 60
  start-page: 138
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib41
  article-title: Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.03.016
– volume: 96
  start-page: 93
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib43
  article-title: Development of hollow kafirin-based nanoparticles fabricated through layer-by-layer assembly as delivery vehicles for curcumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.04.042
– volume: 128–130
  start-page: 227
  year: 2006
  ident: 10.1016/j.foodhyd.2020.106477_bib21
  article-title: Formation, stability and properties of multilayer emulsions for application in the food industry
  publication-title: Advances in Colloid and Interface Science
  doi: 10.1016/j.cis.2006.11.021
– volume: 21
  start-page: 18227
  issue: 45
  year: 2011
  ident: 10.1016/j.foodhyd.2020.106477_bib85
  article-title: Hollow nanoparticles from zein for potential medical applications
  publication-title: Journal of Materials Chemistry
  doi: 10.1039/c1jm11163a
– volume: 87
  start-page: 342
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib47
  article-title: Fabrication of stable zein nanoparticles coated with soluble soybean polysaccharide for encapsulation of quercetin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.08.002
– volume: 462
  start-page: 368
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib75
  article-title: Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2015.10.022
– volume: 95
  start-page: 336
  issue: 17
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib84
  article-title: Fabrication and characterization of resveratrol loaded zein-propylene glycol alginate-rhamnolipid composite nanoparticles: Physicochemical stability, formation mechanism and in vitro digestion
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.04.048
– volume: 45
  start-page: 309
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib15
  article-title: Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.11.023
– volume: 102
  start-page: 171
  issue: 1
  year: 2013
  ident: 10.1016/j.foodhyd.2020.106477_bib83
  article-title: Crystallization of amorphous solid dispersions of resveratrol during preparation and storage-impact of different polymers
  publication-title: Journal of Pharmaceutical Sciences
  doi: 10.1002/jps.23358
– volume: 94
  start-page: 411
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib61
  article-title: Chitosan-coated zein nanoparticles for oral delivery of resveratrol: Formation, characterization, stability, mucoadhesive properties and antioxidant activity
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.03.042
– volume: 185
  start-page: 261
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib31
  article-title: Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2015.03.128
– volume: 79
  start-page: 184
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib32
  article-title: Zein and zein -based nano-materials for food and nutrition applications: A review
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2018.07.015
– volume: 158
  start-page: 466
  year: 2014
  ident: 10.1016/j.foodhyd.2020.106477_bib9
  article-title: Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin : Preparation, characterization, and functional performance
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.03.003
– volume: 105
  start-page: 1504
  issue: 4
  year: 2007
  ident: 10.1016/j.foodhyd.2020.106477_bib22
  article-title: Changes in the catechin and epicatechin content of grape seeds on storage under different water activity (aw) conditions
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2007.05.032
– volume: 164
  start-page: 2215
  year: 2020
  ident: 10.1016/j.foodhyd.2020.106477_bib6
  article-title: Effect of chitosan molecular weight on zein-chitosan nanocomplexes: Formation, characterization, and the delivery of quercetagetin
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2020.07.245
– volume: 26
  start-page: 6041
  issue: 30
  year: 2005
  ident: 10.1016/j.foodhyd.2020.106477_bib7
  article-title: Chitosan/β-lactoglobulin core-shell nanoparticles as nutraceutical carriers
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.03.011
– volume: 93
  start-page: 432
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib46
  article-title: Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.02.003
– volume: 64
  start-page: 157
  year: 2017
  ident: 10.1016/j.foodhyd.2020.106477_bib23
  article-title: Resveratrol encapsulation in core-shell biopolymer nanoparticles: Impact on antioxidant and anticancer activities
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.10.029
– volume: 488
  start-page: 303
  year: 2017
  ident: 10.1016/j.foodhyd.2020.106477_bib63
  article-title: Enhanced colloidal stability, solubility and rapid dissolution of resveratrol by nanocomplexation with soy protein isolate
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2016.11.015
– volume: 6
  start-page: 6192
  issue: 24
  year: 2010
  ident: 10.1016/j.foodhyd.2020.106477_bib60
  article-title: Synthesis and characterisation of zein-curcumin colloidal particles
  publication-title: Soft Matter
  doi: 10.1039/c0sm00800a
– volume: 45
  start-page: 41
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib88
  article-title: Bromelain immobilization on microbial and animal source chitosan films, plasticized with glycerol, for application in wine-like medium: Microstructural, mechanical and catalytic characterisations
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.11.001
– volume: 135
  start-page: 1237
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib1
  article-title: Chemical composition, structural features, surface morphology and bioactivities of chitosan derivatives from lobster (Thenus unimaculatus) shells
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2019.06.033
– volume: 119
  start-page: 53
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib71
  article-title: Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2018.07.139
– volume: 81
  start-page: 242
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib4
  article-title: Complexation of trans- and cis-resveratrol with bovine serum albumin, β-lactoglobulin or α-lactalbumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2018.02.037
– volume: 231
  start-page: 19
  year: 2017
  ident: 10.1016/j.foodhyd.2020.106477_bib38
  article-title: Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2017.02.106
– volume: 91
  start-page: 483
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib67
  article-title: Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns
  publication-title: Trends in Food Science & Technology
  doi: 10.1016/j.tifs.2019.07.048
– volume: 70
  start-page: 143
  year: 2017
  ident: 10.1016/j.foodhyd.2020.106477_bib3
  article-title: Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2017.03.033
– volume: 59
  start-page: 12352
  issue: 23
  year: 2011
  ident: 10.1016/j.foodhyd.2020.106477_bib70
  article-title: Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf2031346
– ident: 10.1016/j.foodhyd.2020.106477_bib92
– volume: 182
  start-page: 81
  year: 2013
  ident: 10.1016/j.foodhyd.2020.106477_bib28
  article-title: Adsorption of BSA on monodispersed hollow silica nanospheres
  publication-title: Microporous and Mesoporous Materials
  doi: 10.1016/j.micromeso.2013.08.022
– volume: 261
  start-page: 283
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib18
  article-title: Improved chemical stability and cellular antioxidant activity of resveratrol in zein nanoparticle with bovine serum albumin-caffeic acid conjugate
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2018.04.055
– volume: 258
  start-page: 45
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib33
  article-title: Alginate/chitosan-coated zein nanoparticles for the delivery of resveratrol
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2019.04.010
– volume: 147
  start-page: 42
  year: 2014
  ident: 10.1016/j.foodhyd.2020.106477_bib69
  article-title: Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2013.09.088
– volume: 211
  start-page: 161
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib64
  article-title: An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2019.02.007
– volume: 15
  start-page: 61
  year: 2017
  ident: 10.1016/j.foodhyd.2020.106477_bib66
  article-title: Applications of chitosan and their derivatives in beverages: A critical review
  publication-title: Current Opinion in Food Science
  doi: 10.1016/j.cofs.2017.06.008
– volume: 44
  start-page: 101
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib26
  article-title: Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: Zein-alginate core/shell nanoparticles
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2014.09.015
– volume: 30
  start-page: 33
  issue: 1
  year: 2013
  ident: 10.1016/j.foodhyd.2020.106477_bib78
  article-title: Characterization of tea catechins-loaded nanoparticles prepared from chitosan and an edible polypeptide
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2012.04.014
– volume: 87
  start-page: 1
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib24
  article-title: Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2016.06.009
– volume: 61
  start-page: 821
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib27
  article-title: Development of tannic acid cross-linked hollow zein nanoparticles as potential oral delivery vehicles for curcumin
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2016.07.006
– volume: 116
  start-page: 1232
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib40
  article-title: The formation of zein-chitosan complex coacervated particles: Relationship to encapsulation and controlled release properties
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2018.05.107
– volume: 408
  start-page: 7299
  issue: 26
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib77
  article-title: Screen-printed electrode modified with carbon black and chitosan: A novel platform for acetylcholinesterase biosensor development
  publication-title: Analytical and Bioanalytical Chemistry
  doi: 10.1007/s00216-016-9604-y
– volume: 193
  start-page: 144
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib72
  article-title: Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.03.101
– volume: 60
  start-page: 836
  issue: 3
  year: 2012
  ident: 10.1016/j.foodhyd.2020.106477_bib50
  article-title: Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/jf204194z
– volume: 8
  start-page: 177
  year: 2013
  ident: 10.1016/j.foodhyd.2020.106477_bib55
  article-title: Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability
  publication-title: International Journal of Nanomedicine
– volume: 5
  start-page: 13891
  issue: 18
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib39
  article-title: Fabrication of zein/quaternized chitosan nanoparticles for the encapsulation and protection of curcumin
  publication-title: RSC Advances
  doi: 10.1039/C4RA14270E
– volume: 503
  start-page: 11
  year: 2016
  ident: 10.1016/j.foodhyd.2020.106477_bib11
  article-title: Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants
  publication-title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
  doi: 10.1016/j.colsurfa.2016.04.038
– volume: 167
  start-page: 205
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib16
  article-title: Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2014.06.082
– volume: 11
  start-page: 1525
  issue: 2
  year: 2020
  ident: 10.1016/j.foodhyd.2020.106477_bib45
  article-title: α-Lactalbumin and chitosan core-shell nanoparticles: Resveratrol loading, protection, and antioxidant activity
  publication-title: Food and Function
  doi: 10.1039/C9FO01998G
– volume: 66
  start-page: 12783
  issue: 48
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib53
  article-title: Cellular uptake and intracellular antioxidant activity of zein/chitosan nanoparticles incorporated with quercetin
  publication-title: Journal of Agricultural and Food Chemistry
  doi: 10.1021/acs.jafc.8b04571
– volume: 390
  start-page: 61
  issue: 1
  year: 2010
  ident: 10.1016/j.foodhyd.2020.106477_bib80
  article-title: The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol
  publication-title: International Journal of Pharmaceutics
  doi: 10.1016/j.ijpharm.2009.10.011
– volume: 101
  start-page: 308
  issue: 1
  year: 2007
  ident: 10.1016/j.foodhyd.2020.106477_bib34
  article-title: Antioxidative activity of chitosans with varying molecular weights
  publication-title: Food Chemistry
  doi: 10.1016/j.foodchem.2006.01.038
– volume: 196
  start-page: 233
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib62
  article-title: Chitosan-based hydrogels: From preparation to biomedical applications
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.05.033
– volume: 17
  issue: 1
  year: 2015
  ident: 10.1016/j.foodhyd.2020.106477_bib86
  article-title: Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: In vivo and drug loading study
  publication-title: Biomedical Microdevices
  doi: 10.1007/s10544-014-9926-5
– volume: 108
  start-page: 161
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib19
  article-title: Preparation and characterization of emulsion-filled gel beads for the encapsulation and protection of resveratrol and α-tocopherol
  publication-title: Food Research International
  doi: 10.1016/j.foodres.2018.03.035
– volume: 9
  start-page: 4781
  issue: 9
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib44
  article-title: Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin
  publication-title: Food and Function
  doi: 10.1039/C8FO01172A
– volume: 79
  start-page: 262
  year: 2018
  ident: 10.1016/j.foodhyd.2020.106477_bib87
  article-title: Tailoring zein nanoparticle functionality using biopolymer coatings: Impact on curcumin bioaccessibility and antioxidant capacity under simulated gastrointestinal conditions
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2017.12.029
– volume: 10
  start-page: 635
  issue: 2
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib89
  article-title: One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of propolis
  publication-title: Food and Function
  doi: 10.1039/C8FO01614C
– volume: 94
  start-page: 603
  year: 2019
  ident: 10.1016/j.foodhyd.2020.106477_bib29
  article-title: Influence of chitosan-coating on the stability and digestion of emulsions stabilized by waxy maize starch crystals
  publication-title: Food Hydrocolloids
  doi: 10.1016/j.foodhyd.2019.04.010
SSID ssj0017011
Score 2.6073787
Snippet Solid and hollow particles based on zein have been prepared for the encapsulation of bioactive components. Hollow particles have many advantages over their...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106477
SubjectTerms antioxidant activity
Chitosan
Digestion
encapsulation
fluorescence
Hollow particle
hydrocolloids
hydrophobicity
polyphenols
resveratrol
Resveratrol encapsulation
storage quality
Storage stability
surface area
X-ray diffraction
Zein
Title Improvement in storage stability and resveratrol retention by fabrication of hollow zein-chitosan composite particles
URI https://dx.doi.org/10.1016/j.foodhyd.2020.106477
https://www.proquest.com/docview/2524235189
Volume 113
WOSCitedRecordID wos000618065100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-7137
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017011
  issn: 0268-005X
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKxgEOiJ_axkBG4jZlJHaT2Mdp2rQhmDgMqbfIcRyaqU2qtinrJP533ovzq9Ng7MAlqqzasvK-PH_v-fMzIR_ThLkqYb7DhOYQoKSYaJLcwYttGVb8Cnx72UR4cSFGI_ltMPjVnIVZTcI8F9fXcvZfTQ1tYGw8OvsAc7eDQgP8BqPDE8wOz38yvE0TVFk_TGag-hF1OcACKx2srbcEQfYKyymjSn2OvLmCAVDRVMXzOo1X8UiASfHz4MZkuYM7DsVCWd06ar3MwazR1fU57ikWSh6vE1gasXeWdPtFY5tu_VqO1XSqEgDHRE07hYF1gRAe_1iXnVQoq1PaX7J-ioJ5PWWL9WQsEA587qMNt-vxnuP08NBreKdPt-mFq8MUZg-Th5ieYWvz_80a2rfWtlZx2IjZrqJ6mAiHiewwj8g2C30JTnH76Pxk9Lndhgrd6gLndv7dEbBPd87nT-Tm1jJfcZfL5-RZHXTQI2usF2Rg8pfkaa8U5StS9mBDs5zWsKEtbCjAhvZgQ1vY0HhNe7ChRUotbOgGbGgLG9rC5jX5fnpyeXzm1FdyOJoP2dLhfKgZxgDANMHz-7EvAg0RhDTA2zUegg6MHvqMh9CaSOFqFcewKCiZeCbmCX9DtvIiNzuEGuaKGMgnj4FFmkAr4UtjZKwYD3gQuLtk2LzLSNf16vHalEn0V1vuksO228wWbLmvg2gMFdWs07LJCAB4X9cPjWEj8Mq41aZyU5SLiPkYp_iekHsPnc9b8qT7hvbJ1nJemnfksV4ts8X8fY3Q3_Edtn4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+in+storage+stability+and+resveratrol+retention+by+fabrication+of+hollow+zein-chitosan+composite+particles&rft.jtitle=Food+hydrocolloids&rft.au=Khan%2C+Muhammad+Aslam&rft.au=Chen%2C+Lingyun&rft.au=Liang%2C+Li&rft.date=2021-04-01&rft.issn=0268-005X&rft.volume=113&rft.spage=106477&rft_id=info:doi/10.1016%2Fj.foodhyd.2020.106477&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_foodhyd_2020_106477
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0268-005X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0268-005X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0268-005X&client=summon