A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network

Carbon trading is one of the important mechanisms used to reduce carbon dioxide emissions. The increasing interest in the carbon trading market has heightened the need to decrease the prediction error of the carbon price. In this paper, a new hybrid model for carbon price forecasting is proposed, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production Jg. 243; S. 118671
Hauptverfasser: Sun, Wei, Huang, Chenchen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 10.01.2020
Schlagworte:
ISSN:0959-6526, 1879-1786
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Carbon trading is one of the important mechanisms used to reduce carbon dioxide emissions. The increasing interest in the carbon trading market has heightened the need to decrease the prediction error of the carbon price. In this paper, a new hybrid model for carbon price forecasting is proposed, and the secondary decomposition algorithm is innovatively introduced into carbon price forecasting. First, time series data were decomposed into several intrinsic modal functions by empirical mode decomposition (EMD). Second, the first intrinsic mode function (IMF1) was further decomposed by variational mode decomposition (VMD). Then, the model input was determined by partial autocorrelation analysis (PACF). Finally, the back propagation (BP) neural network model optimized by genetic algorithm (GA) was utilized for prediction. In the empirical analysis of the Hubei market, the proposed model outperforms other comparative models. The mean absolute percentage error (MAPE), goodness of fit (R2) and root mean square error (RMSE) of the model are 1.7577%, 0.9929 and 0.5441, respectively. In the complementary cases of the Beijing and Shanghai carbon markets, the model also performs best. The results suggest that the proposed model is effective and robust and could predict carbon prices more accurately. [Display omitted] •The secondary decomposition algorithm is suitable for carbon price prediction.•The decomposition algorithm significantly improves the prediction accuracy.•Combination of empirical and variational mode decomposition is effective.•This method could be applied to different carbon markets.
AbstractList Carbon trading is one of the important mechanisms used to reduce carbon dioxide emissions. The increasing interest in the carbon trading market has heightened the need to decrease the prediction error of the carbon price. In this paper, a new hybrid model for carbon price forecasting is proposed, and the secondary decomposition algorithm is innovatively introduced into carbon price forecasting. First, time series data were decomposed into several intrinsic modal functions by empirical mode decomposition (EMD). Second, the first intrinsic mode function (IMF1) was further decomposed by variational mode decomposition (VMD). Then, the model input was determined by partial autocorrelation analysis (PACF). Finally, the back propagation (BP) neural network model optimized by genetic algorithm (GA) was utilized for prediction. In the empirical analysis of the Hubei market, the proposed model outperforms other comparative models. The mean absolute percentage error (MAPE), goodness of fit (R2) and root mean square error (RMSE) of the model are 1.7577%, 0.9929 and 0.5441, respectively. In the complementary cases of the Beijing and Shanghai carbon markets, the model also performs best. The results suggest that the proposed model is effective and robust and could predict carbon prices more accurately.
Carbon trading is one of the important mechanisms used to reduce carbon dioxide emissions. The increasing interest in the carbon trading market has heightened the need to decrease the prediction error of the carbon price. In this paper, a new hybrid model for carbon price forecasting is proposed, and the secondary decomposition algorithm is innovatively introduced into carbon price forecasting. First, time series data were decomposed into several intrinsic modal functions by empirical mode decomposition (EMD). Second, the first intrinsic mode function (IMF1) was further decomposed by variational mode decomposition (VMD). Then, the model input was determined by partial autocorrelation analysis (PACF). Finally, the back propagation (BP) neural network model optimized by genetic algorithm (GA) was utilized for prediction. In the empirical analysis of the Hubei market, the proposed model outperforms other comparative models. The mean absolute percentage error (MAPE), goodness of fit (R2) and root mean square error (RMSE) of the model are 1.7577%, 0.9929 and 0.5441, respectively. In the complementary cases of the Beijing and Shanghai carbon markets, the model also performs best. The results suggest that the proposed model is effective and robust and could predict carbon prices more accurately. [Display omitted] •The secondary decomposition algorithm is suitable for carbon price prediction.•The decomposition algorithm significantly improves the prediction accuracy.•Combination of empirical and variational mode decomposition is effective.•This method could be applied to different carbon markets.
ArticleNumber 118671
Author Sun, Wei
Huang, Chenchen
Author_xml – sequence: 1
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
– sequence: 2
  givenname: Chenchen
  surname: Huang
  fullname: Huang, Chenchen
  email: 973118497@qq.com
BookMark eNqFkUFv1DAQhS1UJLalP6FSjlyyeOzETsQBVRUFpEpc6NlyxpPibRIH2wuFX193t6deevF4Ru89jb45ZSdLWIixC-Bb4KA-7rY7nGiNYSs49FuATml4wzbQ6b4G3akTtuF929eqFeodO01pxzlorpsNe7is0MYhLNUaPVJ5yXnMvgzm4GiqBpvIVaVNhGFxNv6rXPnNa0j-ILPTXYg-_5oruxThmv3s_xfLYPG-xIXV3tmDcKF9tFMp-W-I9-_Z29FOic6f6xm7vf7y8-pbffPj6_ery5saZSNyLUGMUqCUVg7a9oCDEOBGTSi7XlKvLY1t1yllG6UbJ_SAysHYNuhAQsvlGftwzC2r_N5Tymb2CWma7EJhn4yQsgUhO9UU6aejFGNIKdJo0OfD7jlaPxng5om32Zln3uaJtznyLu72hbsQnQuvV32fjz4qFP54iiahpwXLHSJhNi74VxIeAZa8ok4
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_117623
crossref_primary_10_1016_j_energy_2025_136679
crossref_primary_10_1016_j_jclepro_2023_137791
crossref_primary_10_1016_j_inffus_2025_103720
crossref_primary_10_3390_ijerph20021503
crossref_primary_10_1016_j_jclepro_2024_144124
crossref_primary_10_1016_j_asoc_2025_113274
crossref_primary_10_1016_j_chaos_2023_113692
crossref_primary_10_1016_j_jenvman_2024_120967
crossref_primary_10_1155_2022_5488053
crossref_primary_10_1016_j_ribaf_2025_103063
crossref_primary_10_3390_electronics10091048
crossref_primary_10_1016_j_energy_2022_124167
crossref_primary_10_1016_j_eswa_2024_123171
crossref_primary_10_1007_s11356_021_16960_2
crossref_primary_10_1016_j_jclepro_2020_124519
crossref_primary_10_1007_s10479_023_05401_7
crossref_primary_10_1016_j_fecs_2025_100368
crossref_primary_10_1016_j_frl_2022_102809
crossref_primary_10_3390_su17125249
crossref_primary_10_1016_j_jclepro_2021_128024
crossref_primary_10_3389_fevo_2024_1362541
crossref_primary_10_1016_j_jclepro_2019_119386
crossref_primary_10_1016_j_cosrev_2020_100356
crossref_primary_10_1016_j_eneco_2022_106361
crossref_primary_10_1371_journal_pone_0322548
crossref_primary_10_1016_j_egyr_2020_08_010
crossref_primary_10_1016_j_jenvman_2024_121253
crossref_primary_10_1038_s41598_024_51524_7
crossref_primary_10_3390_su14138177
crossref_primary_10_1016_j_procs_2022_01_139
crossref_primary_10_3390_agriculture13091671
crossref_primary_10_1007_s12206_023_1225_8
crossref_primary_10_1016_j_energy_2024_132338
crossref_primary_10_1080_17583004_2023_2275576
crossref_primary_10_1108_JFM_03_2024_0027
crossref_primary_10_1155_2021_3052041
crossref_primary_10_3390_math12101428
crossref_primary_10_1016_j_eswa_2021_116267
crossref_primary_10_1016_j_egyr_2021_11_270
crossref_primary_10_1007_s10479_022_04858_2
crossref_primary_10_3390_plants12030601
crossref_primary_10_3390_math10142366
crossref_primary_10_3390_su16219332
crossref_primary_10_3390_math9202595
crossref_primary_10_1016_j_eswa_2023_122912
crossref_primary_10_1371_journal_pone_0326926
crossref_primary_10_1109_ACCESS_2021_3083928
crossref_primary_10_1016_j_jenvman_2024_121273
crossref_primary_10_1016_j_energy_2022_125609
crossref_primary_10_1016_j_knosys_2024_112037
crossref_primary_10_3390_en15103562
crossref_primary_10_1016_j_jhazmat_2024_136002
crossref_primary_10_1016_j_asoc_2022_108560
crossref_primary_10_1080_21642583_2023_2291409
crossref_primary_10_3390_fractalfract9050326
crossref_primary_10_1016_j_jclepro_2024_142932
crossref_primary_10_1016_j_apm_2021_03_020
crossref_primary_10_1007_s11356_023_31022_5
crossref_primary_10_1016_j_autcon_2022_104261
crossref_primary_10_1016_j_energy_2020_118773
crossref_primary_10_1016_j_apenergy_2023_121380
crossref_primary_10_3390_app12199512
crossref_primary_10_3390_math10224264
crossref_primary_10_33889_IJMEMS_2021_6_5_077
crossref_primary_10_1007_s10479_021_04392_7
crossref_primary_10_1016_j_scienta_2020_109528
crossref_primary_10_1016_j_asoc_2024_112648
crossref_primary_10_1002_isaf_1563
crossref_primary_10_1007_s10586_023_03979_y
crossref_primary_10_3390_rs15112913
crossref_primary_10_1016_j_ijar_2022_04_002
crossref_primary_10_1016_j_energy_2021_120797
crossref_primary_10_1016_j_eneco_2022_106162
crossref_primary_10_3390_en13133471
crossref_primary_10_1002_ese3_799
crossref_primary_10_1016_j_engappai_2021_104564
crossref_primary_10_1016_j_jclepro_2023_139232
crossref_primary_10_3389_fenrg_2022_898620
crossref_primary_10_1371_journal_pone_0296105
crossref_primary_10_1007_s00500_023_08172_2
crossref_primary_10_1016_j_eswa_2023_120647
crossref_primary_10_3390_electronics14122370
crossref_primary_10_1016_j_scitotenv_2022_160410
crossref_primary_10_1016_j_ins_2024_121235
crossref_primary_10_3390_en14051328
crossref_primary_10_1016_j_bios_2024_116076
crossref_primary_10_3390_su15129354
crossref_primary_10_1016_j_jksuci_2021_01_015
crossref_primary_10_1016_j_jclepro_2023_136192
crossref_primary_10_3390_en18164227
crossref_primary_10_1007_s11356_022_24570_9
crossref_primary_10_1016_j_energy_2022_123225
crossref_primary_10_3390_agriculture12081188
crossref_primary_10_1057_s41599_025_05482_8
crossref_primary_10_1016_j_energy_2025_138377
crossref_primary_10_1016_j_iref_2024_04_011
crossref_primary_10_1016_j_omega_2023_102922
crossref_primary_10_1016_j_engappai_2022_105172
crossref_primary_10_1016_j_asoc_2023_110948
crossref_primary_10_1142_S0129156425400609
crossref_primary_10_1016_j_ecolind_2021_108392
crossref_primary_10_1007_s42484_023_00115_2
crossref_primary_10_1016_j_cep_2021_108484
crossref_primary_10_1016_j_petsci_2022_03_013
crossref_primary_10_1371_journal_pone_0294269
crossref_primary_10_1007_s10614_023_10384_5
crossref_primary_10_3390_math13142323
crossref_primary_10_1002_ese3_1769
crossref_primary_10_1007_s10651_024_00619_5
crossref_primary_10_1016_j_apenergy_2023_121977
crossref_primary_10_3390_math11143126
crossref_primary_10_1155_jama_7706431
crossref_primary_10_1016_j_jes_2023_05_038
crossref_primary_10_1007_s11063_021_10607_6
crossref_primary_10_1016_j_apenergy_2022_118601
crossref_primary_10_1016_j_eswa_2024_123325
crossref_primary_10_1016_j_ins_2023_03_133
crossref_primary_10_1016_j_undsp_2024_01_004
crossref_primary_10_1016_j_apm_2022_09_004
crossref_primary_10_1007_s11356_022_21277_9
crossref_primary_10_1016_j_jclepro_2020_124124
crossref_primary_10_1007_s10668_023_03886_7
crossref_primary_10_1016_j_eneco_2025_108318
crossref_primary_10_1007_s11356_023_29196_z
crossref_primary_10_3390_app10165700
crossref_primary_10_1088_1742_6596_2430_1_012009
crossref_primary_10_1007_s11356_023_27109_8
crossref_primary_10_1016_j_compag_2020_105844
crossref_primary_10_1016_j_jenvman_2023_119873
crossref_primary_10_1016_j_scitotenv_2021_148444
crossref_primary_10_1186_s40537_025_01240_4
crossref_primary_10_1016_j_energy_2023_127783
crossref_primary_10_1007_s41660_024_00428_0
crossref_primary_10_1016_j_psep_2023_07_015
crossref_primary_10_1016_j_suscom_2021_100578
crossref_primary_10_3390_smartcities7060132
crossref_primary_10_1002_ese3_1304
crossref_primary_10_1016_j_eswa_2023_122502
crossref_primary_10_1016_j_asoc_2024_111869
crossref_primary_10_1007_s11665_021_05536_3
crossref_primary_10_1016_j_energy_2021_120941
crossref_primary_10_1016_j_energy_2023_129954
crossref_primary_10_1038_s41598_021_97195_6
crossref_primary_10_1016_j_renene_2022_10_027
crossref_primary_10_1016_j_chaos_2021_111783
crossref_primary_10_1016_j_jhazmat_2025_138492
crossref_primary_10_3390_en16114444
crossref_primary_10_1016_j_eneco_2022_106502
crossref_primary_10_1016_j_seta_2023_103168
crossref_primary_10_1016_j_eneco_2021_105239
crossref_primary_10_3390_su15086571
crossref_primary_10_3390_e27080817
crossref_primary_10_1002_for_2831
crossref_primary_10_1007_s10791_025_09565_7
crossref_primary_10_1016_j_jclepro_2023_136701
crossref_primary_10_1016_j_scitotenv_2020_142052
crossref_primary_10_1007_s11356_023_28563_0
crossref_primary_10_1007_s11356_024_32169_5
crossref_primary_10_1016_j_resourpol_2022_102714
crossref_primary_10_1007_s00477_021_02100_2
crossref_primary_10_1007_s00521_023_09106_7
crossref_primary_10_1002_ese3_703
crossref_primary_10_1016_j_susoc_2023_08_002
crossref_primary_10_1016_j_jclepro_2020_123997
crossref_primary_10_3390_agronomy14030546
crossref_primary_10_1016_j_eneco_2025_108350
crossref_primary_10_1007_s11356_022_19388_4
crossref_primary_10_1007_s13762_021_03871_5
crossref_primary_10_1007_s11071_025_11185_1
crossref_primary_10_1016_j_inffus_2023_101966
crossref_primary_10_3389_fenrg_2022_991570
crossref_primary_10_1016_j_apenergy_2023_122515
crossref_primary_10_1016_j_energy_2023_128150
crossref_primary_10_1007_s11356_023_26661_7
crossref_primary_10_1016_j_apr_2021_101306
crossref_primary_10_1016_j_engappai_2024_108646
crossref_primary_10_1016_j_commatsci_2023_112737
crossref_primary_10_3390_su13158413
crossref_primary_10_1016_j_scitotenv_2025_178541
crossref_primary_10_1088_1674_1056_ad9454
crossref_primary_10_1016_j_jclepro_2023_139508
crossref_primary_10_1016_j_epsr_2021_107762
crossref_primary_10_1002_ep_14216
crossref_primary_10_1007_s10479_023_05443_x
crossref_primary_10_3390_su14138002
crossref_primary_10_1016_j_resourpol_2022_102969
crossref_primary_10_1016_j_scitotenv_2021_149509
crossref_primary_10_1007_s42461_025_01190_8
crossref_primary_10_1109_TFUZZ_2023_3298970
crossref_primary_10_1016_j_apenergy_2024_123126
crossref_primary_10_1016_j_psep_2025_106772
crossref_primary_10_1016_j_energy_2021_120052
crossref_primary_10_1007_s10462_022_10199_0
crossref_primary_10_1016_j_energy_2024_132929
crossref_primary_10_1371_journal_pone_0285631
crossref_primary_10_1016_j_isatra_2020_03_012
crossref_primary_10_1007_s10644_024_09851_2
crossref_primary_10_1002_for_2916
Cites_doi 10.3390/en9010054
10.1016/j.enconman.2017.09.034
10.1016/j.apenergy.2008.09.017
10.1016/j.eneco.2017.12.030
10.1016/j.jclepro.2017.11.133
10.1016/j.apenergy.2018.02.003
10.1016/j.apenergy.2017.01.076
10.1016/j.knosys.2013.11.015
10.1016/j.energy.2015.10.041
10.1016/j.csda.2011.05.015
10.1016/j.eswa.2008.05.024
10.1016/j.physleta.2005.06.116
10.1016/j.enconman.2017.08.014
10.1016/j.apenergy.2018.09.118
10.1016/j.eneco.2013.06.017
10.1016/j.physa.2018.12.017
10.1016/j.egypro.2015.07.609
10.1016/j.eswa.2004.05.018
10.1016/j.eswa.2014.12.047
10.1016/S0029-8018(03)00115-X
10.1007/s10462-011-9208-z
10.1016/j.energy.2019.01.009
10.1063/1.4996653
10.1109/TSP.2013.2288675
10.1016/j.applthermaleng.2011.02.031
10.1016/j.renene.2018.02.092
10.1016/j.renene.2011.06.023
10.1016/j.applthermaleng.2005.10.006
10.1007/s00521-012-1323-5
10.1016/j.econmod.2011.11.003
10.1016/j.apenergy.2009.12.019
10.1007/s10614-013-9417-4
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2019.118671
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2019_118671
S0959652619335413
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-312f32c33a3b7a91cb221df7ec3893e97aef58866a4674d27bc6d1f54cd131503
ISICitedReferencesCount 219
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000498805600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Thu Oct 02 11:01:15 EDT 2025
Sat Nov 29 07:04:56 EST 2025
Tue Nov 18 21:08:18 EST 2025
Fri Feb 23 02:27:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Carbon price prediction
Empirical mode decomposition
Back propagation neural network
Genetic algorithm
Secondary decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-312f32c33a3b7a91cb221df7ec3893e97aef58866a4674d27bc6d1f54cd131503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2335123864
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2335123864
crossref_citationtrail_10_1016_j_jclepro_2019_118671
crossref_primary_10_1016_j_jclepro_2019_118671
elsevier_sciencedirect_doi_10_1016_j_jclepro_2019_118671
PublicationCentury 2000
PublicationDate 2020-01-10
PublicationDateYYYYMMDD 2020-01-10
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Canakoglu, Adiyeke, Agrali (bib3) 2018; 10
Najafi, Najafi, Hoseinpoori (bib18) 2011; 31
Hu, Wang (bib10) 2015; 93
Ding, Su, Yu (bib4) 2011; 36
Yildiz (bib25) 2005; 345
Yin, Dong, Chen, Ge, Lai, Vaccaro, Meng (bib26) 2017; 150
Zhao, Han, Ding, Kang (bib28) 2018; 216
Guo, Zhao, Lu, Wang (bib7) 2012; 37
Parlak, Islamoglu, Yasar, Egrisogut (bib19) 2006; 26
Ren, An, Wang, Li, Hu, Shang (bib20) 2014; 56
Zhu, Han, Wang, Wu, Zhang, Wei (bib29) 2017; 191
Liu, Zhang, Song (bib13) 2018; 172
Najafi, Ghobadian, Tavakoli, Buttsworth, Yusaf, Faizollahnejad (bib17) 2009; 86
Zhu, Wang, Chevallier, Wei (bib30) 2015; 45
Versace, Bhatt, Hinds, Shiffer (bib24) 2004; 27
Zhu, Wu, Chen, Liu, Zhou (bib32) 2019; 519
Arouri, Jawadi, Nguyen (bib1) 2012; 29
Mi, Liu, Li (bib15) 2017; 151
Hashim, Ramlan, Shiun, Siong, Kamyab, Majid, Lee (bib9) 2015; 75
Fan, Li, Tian (bib6) 2015; 42
Han, Ding, Zhao, Kang (bib8) 2019; 171
Moghtaderi, Flandrin, Borgnat (bib16) 2013; 58
Liu, Mi, Li (bib12) 2018; 123
Byun, Cho (bib2) 2013; 40
Sun, Zhang (bib23) 2018; 231
Dragomiretskiy, Zosso (bib5) 2014; 62
Lee (bib11) 2004; 31
Sedki, Ouazar, El Mazoudi (bib21) 2009; 36
Sun, Chen, Wei, Sun, Zang, Chen (bib22) 2016; 9
Zhang, Wei (bib27) 2010; 87
Liu, Sun, Zeng (bib14) 2014; 24
Zhu, Ye, Wang, He, Zhang, Wei (bib31) 2018; 70
Zhang (10.1016/j.jclepro.2019.118671_bib27) 2010; 87
Moghtaderi (10.1016/j.jclepro.2019.118671_bib16) 2013; 58
Ren (10.1016/j.jclepro.2019.118671_bib20) 2014; 56
Ding (10.1016/j.jclepro.2019.118671_bib4) 2011; 36
Liu (10.1016/j.jclepro.2019.118671_bib14) 2014; 24
Guo (10.1016/j.jclepro.2019.118671_bib7) 2012; 37
Zhao (10.1016/j.jclepro.2019.118671_bib28) 2018; 216
Sun (10.1016/j.jclepro.2019.118671_bib22) 2016; 9
Sun (10.1016/j.jclepro.2019.118671_bib23) 2018; 231
Canakoglu (10.1016/j.jclepro.2019.118671_bib3) 2018; 10
Zhu (10.1016/j.jclepro.2019.118671_bib29) 2017; 191
Hashim (10.1016/j.jclepro.2019.118671_bib9) 2015; 75
Yin (10.1016/j.jclepro.2019.118671_bib26) 2017; 150
Lee (10.1016/j.jclepro.2019.118671_bib11) 2004; 31
Parlak (10.1016/j.jclepro.2019.118671_bib19) 2006; 26
Zhu (10.1016/j.jclepro.2019.118671_bib32) 2019; 519
Byun (10.1016/j.jclepro.2019.118671_bib2) 2013; 40
Najafi (10.1016/j.jclepro.2019.118671_bib17) 2009; 86
Arouri (10.1016/j.jclepro.2019.118671_bib1) 2012; 29
Liu (10.1016/j.jclepro.2019.118671_bib13) 2018; 172
Versace (10.1016/j.jclepro.2019.118671_bib24) 2004; 27
Hu (10.1016/j.jclepro.2019.118671_bib10) 2015; 93
Zhu (10.1016/j.jclepro.2019.118671_bib30) 2015; 45
Mi (10.1016/j.jclepro.2019.118671_bib15) 2017; 151
Yildiz (10.1016/j.jclepro.2019.118671_bib25) 2005; 345
Liu (10.1016/j.jclepro.2019.118671_bib12) 2018; 123
Dragomiretskiy (10.1016/j.jclepro.2019.118671_bib5) 2014; 62
Najafi (10.1016/j.jclepro.2019.118671_bib18) 2011; 31
Fan (10.1016/j.jclepro.2019.118671_bib6) 2015; 42
Zhu (10.1016/j.jclepro.2019.118671_bib31) 2018; 70
Han (10.1016/j.jclepro.2019.118671_bib8) 2019; 171
Sedki (10.1016/j.jclepro.2019.118671_bib21) 2009; 36
References_xml – volume: 36
  start-page: 4523
  year: 2009
  end-page: 4527
  ident: bib21
  article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 417
  year: 2004
  end-page: 425
  ident: bib24
  article-title: Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 884
  year: 2012
  end-page: 892
  ident: bib1
  article-title: Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS
  publication-title: Econ. Modell.
– volume: 151
  start-page: 709
  year: 2017
  end-page: 722
  ident: bib15
  article-title: Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm
  publication-title: Energy Convers. Manag.
– volume: 36
  start-page: 153
  year: 2011
  end-page: 162
  ident: bib4
  article-title: An optimizing BP neural network algorithm based on genetic algorithm
  publication-title: Artif. Intell. Rev.
– volume: 86
  start-page: 630
  year: 2009
  end-page: 639
  ident: bib17
  article-title: Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network
  publication-title: Appl. Energy
– volume: 172
  start-page: 2793
  year: 2018
  end-page: 2810
  ident: bib13
  article-title: Regional carbon emission evolution mechanism and its prediction approach driven by carbon trading - a case study of Beijing
  publication-title: J. Clean. Prod.
– volume: 519
  start-page: 140
  year: 2019
  end-page: 158
  ident: bib32
  article-title: Carbon price forecasting with variational mode decomposition and optimal combined model
  publication-title: Phys. A Stat. Mech. Appl.
– volume: 345
  start-page: 69
  year: 2005
  end-page: 87
  ident: bib25
  article-title: Layered feedforward neural network is relevant to empirical physical formula construction: a theoretical analysis and some simulation results
  publication-title: Phys. Lett. A
– volume: 87
  start-page: 1804
  year: 2010
  end-page: 1814
  ident: bib27
  article-title: An overview of current research on EU ETS: evidence from its operating mechanism and economic effect
  publication-title: Appl. Energy
– volume: 70
  start-page: 143
  year: 2018
  end-page: 157
  ident: bib31
  article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting
  publication-title: Energy Econ.
– volume: 93
  start-page: 1456
  year: 2015
  end-page: 1466
  ident: bib10
  article-title: Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression
  publication-title: Energy
– volume: 45
  start-page: 195
  year: 2015
  end-page: 206
  ident: bib30
  article-title: Carbon price analysis using empirical mode decomposition
  publication-title: Comput. Econ.
– volume: 26
  start-page: 824
  year: 2006
  end-page: 828
  ident: bib19
  article-title: Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine
  publication-title: Appl. Therm. Eng.
– volume: 171
  start-page: 69
  year: 2019
  end-page: 76
  ident: bib8
  article-title: Forecasting carbon prices in the Shenzhen market, China: the role of mixed-frequency factors
  publication-title: Energy
– volume: 24
  start-page: 973
  year: 2014
  end-page: 983
  ident: bib14
  article-title: A new short-term load forecasting method of power system based on EEMD and SS-PSO
  publication-title: Neural Comput. Appl.
– volume: 56
  start-page: 226
  year: 2014
  end-page: 239
  ident: bib20
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
  publication-title: Knowl. Based Syst.
– volume: 216
  start-page: 132
  year: 2018
  end-page: 141
  ident: bib28
  article-title: Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS
  publication-title: Appl. Energy
– volume: 123
  start-page: 694
  year: 2018
  end-page: 705
  ident: bib12
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renew. Energy
– volume: 9
  start-page: 54
  year: 2016
  ident: bib22
  article-title: A carbon price forecasting model based on variational mode decomposition and spiking neural networks
  publication-title: Energies
– volume: 42
  start-page: 3945
  year: 2015
  end-page: 3952
  ident: bib6
  article-title: Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model
  publication-title: Expert Syst. Appl.
– volume: 191
  start-page: 521
  year: 2017
  end-page: 530
  ident: bib29
  article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression
  publication-title: Appl. Energy
– volume: 10
  year: 2018
  ident: bib3
  article-title: Modeling of carbon credit prices using regime switching approach
  publication-title: J. Renew. Sustain. Energy
– volume: 231
  start-page: 1354
  year: 2018
  end-page: 1371
  ident: bib23
  article-title: Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm
  publication-title: Appl. Energy
– volume: 40
  start-page: 207
  year: 2013
  end-page: 221
  ident: bib2
  article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities
  publication-title: Energy Econ.
– volume: 37
  start-page: 241
  year: 2012
  end-page: 249
  ident: bib7
  article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
  publication-title: Renew. Energy
– volume: 58
  start-page: 114
  year: 2013
  end-page: 126
  ident: bib16
  article-title: Trend filtering via empirical mode decompositions
  publication-title: Comput. Stat. Data Anal.
– volume: 31
  start-page: 225
  year: 2004
  end-page: 238
  ident: bib11
  article-title: Back-propagation neural network for long-term tidal predictions
  publication-title: Ocean Eng.
– volume: 150
  start-page: 108
  year: 2017
  end-page: 121
  ident: bib26
  article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
  publication-title: Energy Convers. Manag.
– volume: 75
  start-page: 2993
  year: 2015
  end-page: 2998
  ident: bib9
  article-title: An integrated carbon accounting and mitigation framework for greening the industry
  publication-title: Energy Procedia
– volume: 31
  start-page: 1839
  year: 2011
  end-page: 1847
  ident: bib18
  article-title: Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm
  publication-title: Appl. Therm. Eng.
– volume: 62
  start-page: 531
  year: 2014
  end-page: 544
  ident: bib5
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
– volume: 9
  start-page: 54
  issue: 1
  year: 2016
  ident: 10.1016/j.jclepro.2019.118671_bib22
  article-title: A carbon price forecasting model based on variational mode decomposition and spiking neural networks
  publication-title: Energies
  doi: 10.3390/en9010054
– volume: 151
  start-page: 709
  year: 2017
  ident: 10.1016/j.jclepro.2019.118671_bib15
  article-title: Wind speed forecasting method using wavelet, extreme learning machine and outlier correction algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.09.034
– volume: 86
  start-page: 630
  issue: 5
  year: 2009
  ident: 10.1016/j.jclepro.2019.118671_bib17
  article-title: Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.09.017
– volume: 70
  start-page: 143
  year: 2018
  ident: 10.1016/j.jclepro.2019.118671_bib31
  article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.12.030
– volume: 172
  start-page: 2793
  year: 2018
  ident: 10.1016/j.jclepro.2019.118671_bib13
  article-title: Regional carbon emission evolution mechanism and its prediction approach driven by carbon trading - a case study of Beijing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.11.133
– volume: 216
  start-page: 132
  year: 2018
  ident: 10.1016/j.jclepro.2019.118671_bib28
  article-title: Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.003
– volume: 191
  start-page: 521
  year: 2017
  ident: 10.1016/j.jclepro.2019.118671_bib29
  article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.076
– volume: 56
  start-page: 226
  year: 2014
  ident: 10.1016/j.jclepro.2019.118671_bib20
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.11.015
– volume: 93
  start-page: 1456
  year: 2015
  ident: 10.1016/j.jclepro.2019.118671_bib10
  article-title: Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.041
– volume: 58
  start-page: 114
  year: 2013
  ident: 10.1016/j.jclepro.2019.118671_bib16
  article-title: Trend filtering via empirical mode decompositions
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2011.05.015
– volume: 36
  start-page: 4523
  issue: 3
  year: 2009
  ident: 10.1016/j.jclepro.2019.118671_bib21
  article-title: Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.05.024
– volume: 345
  start-page: 69
  issue: 1–3
  year: 2005
  ident: 10.1016/j.jclepro.2019.118671_bib25
  article-title: Layered feedforward neural network is relevant to empirical physical formula construction: a theoretical analysis and some simulation results
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.06.116
– volume: 150
  start-page: 108
  year: 2017
  ident: 10.1016/j.jclepro.2019.118671_bib26
  article-title: An effective secondary decomposition approach for wind power forecasting using extreme learning machine trained by crisscross optimization
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.08.014
– volume: 231
  start-page: 1354
  year: 2018
  ident: 10.1016/j.jclepro.2019.118671_bib23
  article-title: Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.118
– volume: 40
  start-page: 207
  year: 2013
  ident: 10.1016/j.jclepro.2019.118671_bib2
  article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.06.017
– volume: 519
  start-page: 140
  year: 2019
  ident: 10.1016/j.jclepro.2019.118671_bib32
  article-title: Carbon price forecasting with variational mode decomposition and optimal combined model
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.12.017
– volume: 75
  start-page: 2993
  year: 2015
  ident: 10.1016/j.jclepro.2019.118671_bib9
  article-title: An integrated carbon accounting and mitigation framework for greening the industry
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.609
– volume: 27
  start-page: 417
  issue: 3
  year: 2004
  ident: 10.1016/j.jclepro.2019.118671_bib24
  article-title: Predicting the exchange traded fund DIA with a combination of genetic algorithms and neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2004.05.018
– volume: 42
  start-page: 3945
  issue: 8
  year: 2015
  ident: 10.1016/j.jclepro.2019.118671_bib6
  article-title: Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.12.047
– volume: 31
  start-page: 225
  issue: 2
  year: 2004
  ident: 10.1016/j.jclepro.2019.118671_bib11
  article-title: Back-propagation neural network for long-term tidal predictions
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(03)00115-X
– volume: 36
  start-page: 153
  issue: 2
  year: 2011
  ident: 10.1016/j.jclepro.2019.118671_bib4
  article-title: An optimizing BP neural network algorithm based on genetic algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9208-z
– volume: 171
  start-page: 69
  year: 2019
  ident: 10.1016/j.jclepro.2019.118671_bib8
  article-title: Forecasting carbon prices in the Shenzhen market, China: the role of mixed-frequency factors
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.009
– volume: 10
  issue: 3
  year: 2018
  ident: 10.1016/j.jclepro.2019.118671_bib3
  article-title: Modeling of carbon credit prices using regime switching approach
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4996653
– volume: 62
  start-page: 531
  issue: 3
  year: 2014
  ident: 10.1016/j.jclepro.2019.118671_bib5
  article-title: Variational mode decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 31
  start-page: 1839
  issue: 10
  year: 2011
  ident: 10.1016/j.jclepro.2019.118671_bib18
  article-title: Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2011.02.031
– volume: 123
  start-page: 694
  year: 2018
  ident: 10.1016/j.jclepro.2019.118671_bib12
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.092
– volume: 37
  start-page: 241
  issue: 1
  year: 2012
  ident: 10.1016/j.jclepro.2019.118671_bib7
  article-title: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.06.023
– volume: 26
  start-page: 824
  issue: 8–9
  year: 2006
  ident: 10.1016/j.jclepro.2019.118671_bib19
  article-title: Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a Diesel engine
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.10.006
– volume: 24
  start-page: 973
  issue: 3–4
  year: 2014
  ident: 10.1016/j.jclepro.2019.118671_bib14
  article-title: A new short-term load forecasting method of power system based on EEMD and SS-PSO
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-012-1323-5
– volume: 29
  start-page: 884
  issue: 3
  year: 2012
  ident: 10.1016/j.jclepro.2019.118671_bib1
  article-title: Nonlinearities in carbon spot-futures price relationships during Phase II of the EU ETS
  publication-title: Econ. Modell.
  doi: 10.1016/j.econmod.2011.11.003
– volume: 87
  start-page: 1804
  issue: 6
  year: 2010
  ident: 10.1016/j.jclepro.2019.118671_bib27
  article-title: An overview of current research on EU ETS: evidence from its operating mechanism and economic effect
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.12.019
– volume: 45
  start-page: 195
  issue: 2
  year: 2015
  ident: 10.1016/j.jclepro.2019.118671_bib30
  article-title: Carbon price analysis using empirical mode decomposition
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-013-9417-4
SSID ssj0017074
Score 2.6500611
Snippet Carbon trading is one of the important mechanisms used to reduce carbon dioxide emissions. The increasing interest in the carbon trading market has heightened...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118671
SubjectTerms algorithms
autocorrelation
Back propagation neural network
carbon dioxide
carbon markets
Carbon price prediction
China
emissions
Empirical mode decomposition
empirical research
Genetic algorithm
prediction
Secondary decomposition
time series analysis
Title A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network
URI https://dx.doi.org/10.1016/j.jclepro.2019.118671
https://www.proquest.com/docview/2335123864
Volume 243
WOSCitedRecordID wos000498805600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Nb9MwFMAt6DjAAfEpNj5kJMRlymjsJI6P1dQJ0FQ4dKI3K7Edmm4kpe2mir-e92InGR_TxoFLlFpxY_nnPD_7Pb9HyJuhMcKySAegyrMgyooikFkUB7yIDOA2IvfJJsRkks5m8rPP0rdu0gmIqkq3W7n8r6ihDGDj0dl_wN39KRTAPUCHK2CH643AjzDadF6j6xUIAQwCYEqXD7zJerOP85ZBG8Ea18IGveaMRc9y7761n519rVflZu6SZ9QgU76VP1BRzfQp-nOBCHKjBmNhAuHKeZJfoeZC67LKrrCicZFqeztUI_G-2LIfW373-nAOPTr3p9T8ngRD17bAe6f2m4tJ7M7C_yGk3X7B4mABLYCXo3-dBNGNkfb6Wam1xE8-qaOT42M1Hc-mb5ffA8wXhnZ1nzzlNtlhIpbpgOyMPoxnHzsLkhi6CNxtS_rTW-_--uar9JLfZuhG7Zg-IPd9R9KR4_yQ3LLVI3LvUhTJx2Q7oo44bYjTnjhtiNOGOIWfHXH6C3HaEadAnHbEKRKnl4hTR5x64k_IydF4evg-8Ak1As0jtoH5lhWcac4znotMhjpnLDSFsBrVVitFZos4TZMkwxw0holcJyYs4kibkMPKgT8lg6qu7DNCcw7PSCiGBUJkYIUmU5nYYZgZ0A-1He6SqO1OpX20eUx6cqZat8KF8hQUUlCOwi456KotXbiV6yqkLSvldUanCyoYbddVfd2yVSBT0VAG30N9vlaMc9CDeZpEezd45jm5238DL8hgszq3L8kdfbEp16tXflz-BBX1n-s
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+carbon+price+prediction+model+based+on+secondary+decomposition+algorithm+and+optimized+back+propagation+neural+network&rft.jtitle=Journal+of+cleaner+production&rft.au=Sun%2C+Wei&rft.au=Huang%2C+Chenchen&rft.date=2020-01-10&rft.issn=0959-6526&rft_id=info:doi/10.1016%2Fj.jclepro.2019.118671&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon