Multi-regional building energy efficiency intelligent regulation strategy based on multi-objective optimization and model predictive control
With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale buildings with multi-regional function come out increasingly. The traditional uniform constant temperature design and operation management techn...
Gespeichert in:
| Veröffentlicht in: | Journal of cleaner production Jg. 349; S. 131264 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.05.2022
|
| Schlagworte: | |
| ISSN: | 0959-6526, 1879-1786 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale buildings with multi-regional function come out increasingly. The traditional uniform constant temperature design and operation management technology can no longer meet the needs of occupants, as the dynamic thermal comfort level of human body in different regions has great discrepancy. This paper conducts the whole chain regulation model for large multi-regional buildings from demand level, application level and control level. Aiming to reduce the load reasonably on the premise of thermal comfort, a model of dynamically adjusting the set point temperature in different regions is established on demand level. As load demand refers to the energy provided by the operation of HVAC system, the controlled parameters values are obtained by adopting the intelligent optimization strategy for the application level. On the bottom control level, the optimized parameters are managed by model predictive control (MPC), which has great advantage of rapid response. It is found that the strategy of dynamically adjusting the temperature set point in typical day can reduce the load demand by 6.16% without sacrificing the comfort of indoor personnel. Based on the load demand optimization, the operation optimization and MPC strategy is further adopted for application and control level by simulation, and can realize the total energy saving of HVAC system by 12.78%.
•A unified whole chain regulation model for multi-regional building is provided.•The multi-regional dynamic indoor set point temperature model is established.•The intelligent optimization regulation model is obtained on application level.•A fast parameter regulation control model is established on control level.•The strategy achieves multi-objective optimization of energy and thermal comfort. |
|---|---|
| AbstractList | With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale buildings with multi-regional function come out increasingly. The traditional uniform constant temperature design and operation management technology can no longer meet the needs of occupants, as the dynamic thermal comfort level of human body in different regions has great discrepancy. This paper conducts the whole chain regulation model for large multi-regional buildings from demand level, application level and control level. Aiming to reduce the load reasonably on the premise of thermal comfort, a model of dynamically adjusting the set point temperature in different regions is established on demand level. As load demand refers to the energy provided by the operation of HVAC system, the controlled parameters values are obtained by adopting the intelligent optimization strategy for the application level. On the bottom control level, the optimized parameters are managed by model predictive control (MPC), which has great advantage of rapid response. It is found that the strategy of dynamically adjusting the temperature set point in typical day can reduce the load demand by 6.16% without sacrificing the comfort of indoor personnel. Based on the load demand optimization, the operation optimization and MPC strategy is further adopted for application and control level by simulation, and can realize the total energy saving of HVAC system by 12.78%.
•A unified whole chain regulation model for multi-regional building is provided.•The multi-regional dynamic indoor set point temperature model is established.•The intelligent optimization regulation model is obtained on application level.•A fast parameter regulation control model is established on control level.•The strategy achieves multi-objective optimization of energy and thermal comfort. With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale buildings with multi-regional function come out increasingly. The traditional uniform constant temperature design and operation management technology can no longer meet the needs of occupants, as the dynamic thermal comfort level of human body in different regions has great discrepancy. This paper conducts the whole chain regulation model for large multi-regional buildings from demand level, application level and control level. Aiming to reduce the load reasonably on the premise of thermal comfort, a model of dynamically adjusting the set point temperature in different regions is established on demand level. As load demand refers to the energy provided by the operation of HVAC system, the controlled parameters values are obtained by adopting the intelligent optimization strategy for the application level. On the bottom control level, the optimized parameters are managed by model predictive control (MPC), which has great advantage of rapid response. It is found that the strategy of dynamically adjusting the temperature set point in typical day can reduce the load demand by 6.16% without sacrificing the comfort of indoor personnel. Based on the load demand optimization, the operation optimization and MPC strategy is further adopted for application and control level by simulation, and can realize the total energy saving of HVAC system by 12.78%. |
| ArticleNumber | 131264 |
| Author | Zhou, Zhihua Du, Yahui Zhao, Jing |
| Author_xml | – sequence: 1 givenname: Yahui surname: Du fullname: Du, Yahui – sequence: 2 givenname: Zhihua surname: Zhou fullname: Zhou, Zhihua – sequence: 3 givenname: Jing orcidid: 0000-0002-0346-3292 surname: Zhao fullname: Zhao, Jing email: zhaojing@tju.edu.cn |
| BookMark | eNqFkc2KFDEUhYOMYM_oIwhZuqm2kkpV0rgQGRwVRtzoOuTnpkmRStokNdA-gw9tpmtWbmZ14fKdA-eca3QVUwSE3pJ-T3oyvZ_3swlwymlPe0r3ZCB0Yi_Qjgh-6AgX0xXa9Yfx0E0jnV6h61Lmvie852yH_n5fQ_VdhqNPUQWsVx-sj0cMEfLxjME5bzxEc8Y-VgjBHyFW3Pg1qNo0uNSsKjRUqwIWt89ysUx6BlP9A-B0qn7xfzZcRYuXZCHgUwbrN8KkWHMKr9FLp0KBN0_3Bv26-_zz9mt3_-PLt9tP950ZGK0dsWrkjA-Kccs1cK2doaMexlG5QVOggvDBUstGp8honGBCOGHAEscOTJvhBr3bfFtnv1coVS6-mBZORUhrka0-IbjgZGjohw01OZWSwUnj6yVJi-2DJL183EDO8mkD-biB3DZo6vE_9Sn7ReXzs7qPmw5aCw8esiyXEVphuZUqbfLPOPwDAeirpQ |
| CitedBy_id | crossref_primary_10_1016_j_rser_2024_114510 crossref_primary_10_2478_amns_2024_0934 crossref_primary_10_1016_j_energy_2024_132577 crossref_primary_10_1016_j_enbuild_2024_114919 crossref_primary_10_1016_j_jobe_2024_109304 crossref_primary_10_1016_j_jobe_2024_110013 crossref_primary_10_1016_j_enbuild_2022_112664 crossref_primary_10_1016_j_ijrefrig_2025_04_027 crossref_primary_10_1007_s11630_024_1953_9 crossref_primary_10_1016_j_jobe_2024_111708 crossref_primary_10_1016_j_jwpe_2023_103641 crossref_primary_10_1038_s41598_025_13325_4 crossref_primary_10_1016_j_enbuild_2025_115851 crossref_primary_10_1016_j_applthermaleng_2024_122595 crossref_primary_10_1109_ACCESS_2023_3319368 crossref_primary_10_1016_j_apenergy_2023_122436 crossref_primary_10_1177_01445987241298534 crossref_primary_10_3389_fenrg_2023_1225416 crossref_primary_10_3390_pr13072197 |
| Cites_doi | 10.1016/j.enbuild.2005.05.008 10.1016/j.apenergy.2019.04.164 10.1016/j.rser.2013.11.036 10.1016/j.conengprac.2019.104211 10.1016/j.applthermaleng.2019.02.107 10.1002/etep.2697 10.1016/j.enpol.2008.12.033 10.1016/j.buildenv.2014.09.010 10.1016/S0378-7788(00)00114-6 10.1016/j.enbuild.2012.06.028 10.1016/j.enbuild.2019.05.006 10.1177/014362449801900407 10.1016/j.enbuild.2012.12.011 10.1016/0140-7007(95)96863-2 10.1016/j.ces.2011.07.052 10.1016/j.jobe.2018.03.018 10.1016/j.egyr.2021.02.043 10.1016/j.buildenv.2013.11.016 10.1016/j.apenergy.2019.03.209 10.1016/j.buildenv.2013.09.005 10.1016/j.solener.2020.05.090 10.1080/10789669.2002.10391291 10.1016/j.enbuild.2014.11.063 10.1016/j.rser.2018.04.080 10.1016/j.apenergy.2019.03.038 10.3390/en11030495 10.1016/j.jclepro.2019.01.266 10.1016/j.renene.2018.08.034 10.1016/j.enbuild.2016.09.003 10.1016/j.apenergy.2021.117900 10.1016/j.apenergy.2015.12.115 10.1016/j.anucene.2021.108375 10.3390/en11040719 10.1016/j.apenergy.2011.10.037 10.1016/j.buildenv.2019.03.062 10.1016/j.jclepro.2020.120751 10.1016/j.apenergy.2013.08.061 10.1016/j.buildenv.2015.04.033 10.1016/j.enbuild.2018.06.050 10.1016/j.apenergy.2016.02.141 10.1016/j.apenergy.2008.02.008 10.1016/j.enconman.2010.10.028 10.1016/S1359-4311(02)00242-9 10.1016/j.scs.2017.02.010 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2022.131264 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| ExternalDocumentID | 10_1016_j_jclepro_2022_131264 S0959652622008952 |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADHUB ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-1da57473a47d7be7bbfc25b355af3b2e28173d2d45fa15cf8488f8ced1f494bc3 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788101400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-6526 |
| IngestDate | Thu Oct 02 07:04:54 EDT 2025 Sat Nov 29 07:09:40 EST 2025 Tue Nov 18 21:02:08 EST 2025 Fri Feb 23 02:39:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Model predictive control Dynamic temperature set point Multi-objective optimization Intelligent optimization strategy Multi-regional building |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-1da57473a47d7be7bbfc25b355af3b2e28173d2d45fa15cf8488f8ced1f494bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0346-3292 |
| PQID | 2648878713 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2648878713 crossref_citationtrail_10_1016_j_jclepro_2022_131264 crossref_primary_10_1016_j_jclepro_2022_131264 elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_131264 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-15 |
| PublicationDateYYYYMMDD | 2022-05-15 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Yu (bib30) 2021; 7 Ma, Li, Nie (bib35) 2011; 26 Tyler, Arens, Zhang (bib47) 2015; 88 Yu, Li, Jia, Zhang, Wang (bib53) 2015; 88 Ling (bib34) 2017 Jurinak (bib26) 1982 Lee, Cheng (bib28) 2012; 54 Bingham, Agelin-Chaab, Rosen (bib8) 2019; 132 Ma, Qin, Salsbury, Xu (bib36) 2012; 67 Hu, Xiao, Jorgensen, Li (bib24) 2019; 153 (bib5) 2014 Yu, Chan (bib52) 2008; 85 Rahnama, Ansarifar (bib42) 2021; 161 Li, Yu, Zhang (bib31) 2022; 306 Joe, Karava (bib25) 2019; 245 Li (bib29) 2012; 9 Ding, Wei, Wang (bib15) 2020; 256 Kheiri (bib27) 2018; 92 Maddalena, Lian, Jones (bib38) 2020; 95 Gordon, Kim, Hui (bib22) 1995; 18 Zhang, Wang (bib54) 2015 Qin, Han, Sun, Wu, Guo (bib32) 2020; 39 Qiu, Feng, Zhang, Li, Li (bib41) 2019; 195 Zhao, Liu (bib56) 2018; 174 (bib19) 2012 Hu, Karava (bib23) 2014; 71 Liang, Quinte, Jia, Sun (bib33) 2015; 92 Yik, Lam (bib51) 1998; 19 GB/T 18049-2000 (bib20) 2000 Papadopoulos, Kontokosta, Vlachokostas, Azar (bib40) 2019; 155 Wang (bib48) 2014 Beghi, Cecchinato, Rampazzo (bib6) 2011; 52 Costa, Keane, Torrens, Corry (bib10) 2013; 101 Tang, Wang (bib46) 2019; 242 Abdalla, Nallagownden, Nor, Romlie, Hassan (bib1) 2018; 11 Fong, Hanby, Chow (bib18) 2006; 38 Delgarm, Sajadi, Delgarm (bib13) 2016; 131 Machairas, Tsangrassoulis, Axarli (bib37) 2014; 31 Zhou, Zhang, An, Chen, Yang, Kang (bib57) 2018; 34 Zhao, Du (bib55) 2020; 206 Yang (bib49) 2017 Nguyen, Reiter, Rigo (bib39) 2014; 113 Cao, Du, Soleymanzadeh (bib9) 2019; 218 Behrooz, Mariun, Marhaban, Mohd Radzi, Ramli (bib7) 2018; 11 Ascione, Bianco, De Stasio, Mauro, Vanoli (bib4) 2017; 31 Crawley, Lawrie, Winkelmann, Buhl, Huang, Pedersen, Strand, Liesen, Fisher, Witte, Glazer (bib11) 2011; 33 Ding, Wang, Kong, Yang (bib14) 2019; 250 Delgarm, Sajadi, Kowsary, Delgarm (bib12) 2016; 170 Fanger (bib16) 1982 Sghiouri, Mezrhab, Karkri, Naji (bib44) 2018; 18 Ali, Vukovic, Sahir, Fontanella (bib3) 2013; 59 Reddy, Andersen (bib43) 2002; 8 Afram, Janabi-Sharifi (bib2) 2014; 72 Swider (bib45) 2003; 23 Feng, Wu, Liu (bib17) 2009; 37 Ghahramani, Zhang, Dutta, Yang, Becerik-Gerber (bib21) 2016; 165 Yang, Yu, Shu, Han, Cao, Jiang (bib50) 2019; 29 Cao (10.1016/j.jclepro.2022.131264_bib9) 2019; 218 Hu (10.1016/j.jclepro.2022.131264_bib23) 2014; 71 Ma (10.1016/j.jclepro.2022.131264_bib36) 2012; 67 Tang (10.1016/j.jclepro.2022.131264_bib46) 2019; 242 Zhang (10.1016/j.jclepro.2022.131264_bib54) 2015 Ali (10.1016/j.jclepro.2022.131264_bib3) 2013; 59 Costa (10.1016/j.jclepro.2022.131264_bib10) 2013; 101 Liang (10.1016/j.jclepro.2022.131264_bib33) 2015; 92 (10.1016/j.jclepro.2022.131264_bib19) 2012 Yu (10.1016/j.jclepro.2022.131264_bib53) 2015; 88 Ding (10.1016/j.jclepro.2022.131264_bib14) 2019; 250 Yang (10.1016/j.jclepro.2022.131264_bib49) 2017 Zhao (10.1016/j.jclepro.2022.131264_bib56) 2018; 174 Fanger (10.1016/j.jclepro.2022.131264_bib16) 1982 Fong (10.1016/j.jclepro.2022.131264_bib18) 2006; 38 Papadopoulos (10.1016/j.jclepro.2022.131264_bib40) 2019; 155 Ascione (10.1016/j.jclepro.2022.131264_bib4) 2017; 31 Hu (10.1016/j.jclepro.2022.131264_bib24) 2019; 153 Zhou (10.1016/j.jclepro.2022.131264_bib57) 2018; 34 Joe (10.1016/j.jclepro.2022.131264_bib25) 2019; 245 Ling (10.1016/j.jclepro.2022.131264_bib34) 2017 GB/T 18049-2000 (10.1016/j.jclepro.2022.131264_bib20) 2000 Li (10.1016/j.jclepro.2022.131264_bib29) 2012; 9 (10.1016/j.jclepro.2022.131264_bib5) 2014 Swider (10.1016/j.jclepro.2022.131264_bib45) 2003; 23 Behrooz (10.1016/j.jclepro.2022.131264_bib7) 2018; 11 Ma (10.1016/j.jclepro.2022.131264_bib35) 2011; 26 Maddalena (10.1016/j.jclepro.2022.131264_bib38) 2020; 95 Ghahramani (10.1016/j.jclepro.2022.131264_bib21) 2016; 165 Reddy (10.1016/j.jclepro.2022.131264_bib43) 2002; 8 Tyler (10.1016/j.jclepro.2022.131264_bib47) 2015; 88 Lee (10.1016/j.jclepro.2022.131264_bib28) 2012; 54 Feng (10.1016/j.jclepro.2022.131264_bib17) 2009; 37 Bingham (10.1016/j.jclepro.2022.131264_bib8) 2019; 132 Abdalla (10.1016/j.jclepro.2022.131264_bib1) 2018; 11 Li (10.1016/j.jclepro.2022.131264_bib30) 2021; 7 Sghiouri (10.1016/j.jclepro.2022.131264_bib44) 2018; 18 Nguyen (10.1016/j.jclepro.2022.131264_bib39) 2014; 113 Yik (10.1016/j.jclepro.2022.131264_bib51) 1998; 19 Gordon (10.1016/j.jclepro.2022.131264_bib22) 1995; 18 Delgarm (10.1016/j.jclepro.2022.131264_bib13) 2016; 131 Machairas (10.1016/j.jclepro.2022.131264_bib37) 2014; 31 Jurinak (10.1016/j.jclepro.2022.131264_bib26) 1982 Yu (10.1016/j.jclepro.2022.131264_bib52) 2008; 85 Wang (10.1016/j.jclepro.2022.131264_bib48) 2014 Rahnama (10.1016/j.jclepro.2022.131264_bib42) 2021; 161 Li (10.1016/j.jclepro.2022.131264_bib31) 2022; 306 Delgarm (10.1016/j.jclepro.2022.131264_bib12) 2016; 170 Ding (10.1016/j.jclepro.2022.131264_bib15) 2020; 256 Crawley (10.1016/j.jclepro.2022.131264_bib11) 2011; 33 Qin (10.1016/j.jclepro.2022.131264_bib32) 2020; 39 Beghi (10.1016/j.jclepro.2022.131264_bib6) 2011; 52 Qiu (10.1016/j.jclepro.2022.131264_bib41) 2019; 195 Zhao (10.1016/j.jclepro.2022.131264_bib55) 2020; 206 Afram (10.1016/j.jclepro.2022.131264_bib2) 2014; 72 Kheiri (10.1016/j.jclepro.2022.131264_bib27) 2018; 92 Yang (10.1016/j.jclepro.2022.131264_bib50) 2019; 29 |
| References_xml | – volume: 19 start-page: 233 year: 1998 end-page: 241 ident: bib51 article-title: Chiller model for plant design studies publication-title: Build. Serv. Eng. Technol. – volume: 256 year: 2020 ident: bib15 article-title: Optimization approach of passive cool skin technology application for the Building's exterior walls publication-title: J. Clean. Prod. – volume: 11 start-page: 719 year: 2018 ident: bib1 article-title: An application of a novel technique for assessing the operating performance of existing cooling systems on a university campus publication-title: Energies – volume: 71 start-page: 233 year: 2014 end-page: 244 ident: bib23 article-title: Model predictive control strategies for buildings with mixed-mode cooling publication-title: Build. Environ. – volume: 174 start-page: 293 year: 2018 end-page: 308 ident: bib56 article-title: A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis publication-title: Energy Build. – year: 2017 ident: bib34 article-title: Optimization of Energy Saving and Control of Central Air Conditioning System Based on Parameter Lumping – volume: 72 start-page: 343 year: 2014 end-page: 355 ident: bib2 article-title: Theory and applications of HVAC control systems – a review of model predictive control (MPC) publication-title: Build. Environ. – volume: 242 start-page: 873 year: 2019 end-page: 882 ident: bib46 article-title: Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids publication-title: Appl. Energy – volume: 153 start-page: 316 year: 2019 end-page: 329 ident: bib24 article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass publication-title: Appl. Therm. Eng. – volume: 9 start-page: 34 year: 2012 ident: bib29 article-title: The temperature of air conditioner is raised by 2°C to save electricity by 20 publication-title: Qual. Explor. – volume: 170 start-page: 293 year: 2016 end-page: 303 ident: bib12 article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO) publication-title: Appl. Energy – start-page: 19 year: 1982 end-page: 142 ident: bib16 article-title: Thermal Comfort 2 – volume: 18 start-page: 292 year: 2018 end-page: 302 ident: bib44 article-title: Shading devices optimization to enhance thermal comfort and energy performance of residential building in Morocco publication-title: J. Build. Eng. – volume: 39 start-page: 115 year: 2020 end-page: 119 ident: bib32 article-title: Design and application research of regional multi-demand-side energy optimization management platform publication-title: Electr. Drive – volume: 161 year: 2021 ident: bib42 article-title: Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms publication-title: Ann. Nucl. Energy – volume: 132 start-page: 1088 year: 2019 end-page: 1103 ident: bib8 article-title: Whole building optimization of a residential home with PV and battery storage in the Bahamas publication-title: Renew. Energy – volume: 195 start-page: 149 year: 2019 end-page: 160 ident: bib41 article-title: Stochastic optimized chiller operation strategy based on multi-objective optimization considering measurement uncertainty publication-title: Energy Build. – start-page: 50 year: 2015 end-page: 52 ident: bib54 article-title: Common architecture research public institutions saving optimization control system publication-title: Autom. Instrum. – volume: 59 start-page: 111 year: 2013 end-page: 122 ident: bib3 article-title: Energy analysis of chilled water system configurations using simulation-based optimization publication-title: Energy Build. – volume: 101 start-page: 310 year: 2013 end-page: 316 ident: bib10 article-title: Building operation and energy performance: monitoring, analysis and optimisation toolkit publication-title: Appl. Energy – volume: 306 year: 2022 ident: bib31 article-title: Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning publication-title: Appl. Energy – volume: 34 start-page: 29 year: 2018 end-page: 36 ident: bib57 article-title: Optimization of resident controllable energy efficiency load based on demand response publication-title: Power Syst. Clean Energy – volume: 85 start-page: 931 year: 2008 end-page: 950 ident: bib52 article-title: Optimization of water-cooled chiller system with load-based speed control publication-title: Appl. Energy – volume: 113 start-page: 1043 year: 2014 end-page: 1058 ident: bib39 article-title: A review on simulation-based optimization methods applied to building performance analysis publication-title: Appl. Energy – year: 2000 ident: bib20 article-title: Moderate Thermal Environments-Determination of the PMV and PPD Indices and Specification of the Condition for Thermal Comfort (Chinese) – volume: 29 year: 2019 ident: bib50 article-title: Adaptive fractional-order PID control of PMSG-based wind energy conversion system for MPPT using linear observers publication-title: Int. Trans. Electr. Energy Syst. – volume: 206 start-page: 997 year: 2020 end-page: 1017 ident: bib55 article-title: Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: a case study for office building in different climatic regions of China publication-title: Sol. Energy – volume: 26 start-page: 435 year: 2011 end-page: 441 ident: bib35 article-title: Research on dynamic optimization of air-conditioning temperature setting control in public buildings publication-title: J. Syst. Eng. – volume: 37 start-page: 2060 year: 2009 end-page: 2065 ident: bib17 article-title: Energy-efficiency supervision systems for energy management in large public buildings: necessary choice for China publication-title: Energy Pol. – volume: 18 start-page: 253 year: 1995 end-page: 257 ident: bib22 article-title: Centrifugal chillers: thermodynamic modeling and a diagnostic case study publication-title: Int. J. Refrig. – volume: 92 start-page: 897 year: 2018 end-page: 920 ident: bib27 article-title: A review on optimization methods applied in energy-efficient building geometry and envelope design publication-title: Renew. Sustain. Energy Rev. – year: 2017 ident: bib49 article-title: The air conditioner should be adjusted up by one degree" needs to be integrated into the "technical perspective – volume: 38 start-page: 220 year: 2006 end-page: 231 ident: bib18 article-title: HVAC system optimization for energy management by evolutionary programming publication-title: Energy Build. – volume: 31 start-page: 136 year: 2017 end-page: 150 ident: bib4 article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems publication-title: Sustain. Cities Soc. – volume: 155 start-page: 350 year: 2019 end-page: 359 ident: bib40 article-title: Rethinking HVAC temperature set points in commercial buildings: the potential for zero-cost energy savings and comfort improvement in different climates publication-title: Build. Environ. – volume: 165 start-page: 930 year: 2016 end-page: 942 ident: bib21 article-title: Energy savings from temperature set points and deadband: quantifying the influence of building and system properties on savings publication-title: Appl. Energy – volume: 8 start-page: 101 year: 2002 end-page: 124 ident: bib43 article-title: An evaluation of classical steady-state off-line linear parameter estimation methods applied to chiller performance data publication-title: HVAC Res – volume: 131 start-page: 42 year: 2016 end-page: 53 ident: bib13 article-title: Multi-objective optimization of building energy performance and indoor thermal comfort: a new method using artificial bee colony (ABC) publication-title: Energy Build. – year: 2014 ident: bib5 article-title: Measurement of Energy, Demand, and Water Savings – year: 1982 ident: bib26 article-title: Open Cycle Solid Desiccant Cooling-Component Models and System Simulation – volume: 67 start-page: 92 year: 2012 end-page: 100 ident: bib36 article-title: Demand reduction in building energy systems based on economic model predictive control publication-title: Chem. Eng. Sci. – volume: 31 start-page: 101 year: 2014 end-page: 112 ident: bib37 article-title: Algorithms for optimization of building design: a review publication-title: Renew. Sustain. Energy Rev. – volume: 7 start-page: 1267 year: 2021 end-page: 1279 ident: bib30 article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system publication-title: Energy Rep. – volume: 95 year: 2020 ident: bib38 article-title: Data-driven methods for building control — a review and promising future directions publication-title: Control Eng. Pract. – volume: 52 start-page: 1650 year: 2011 end-page: 1661 ident: bib6 article-title: A multi-phase genetic algorithm for the efficient management of multi-chiller systems publication-title: Energy Convers. Manag. – volume: 88 start-page: 89 year: 2015 end-page: 96 ident: bib47 article-title: Extending air temperature set points: simulated energy savings and design considerations for new and retrofit buildings publication-title: Build. Environ. – volume: 245 start-page: 65 year: 2019 end-page: 77 ident: bib25 article-title: A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings publication-title: Appl. Energy – volume: 92 start-page: 256 year: 2015 end-page: 268 ident: bib33 article-title: MPC control for improving energy efficiency of a building air handler for multi-zone VAVs publication-title: Build. Environ. – year: 2014 ident: bib48 article-title: The Energy Conservation Investigation on Fuzzy PID Control in the Water System of Central Air Condition – volume: 88 start-page: 135 year: 2015 end-page: 143 ident: bib53 article-title: Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design publication-title: Energy Build. – volume: 218 start-page: 315 year: 2019 end-page: 327 ident: bib9 article-title: Model predictive control of commercial buildings in demand response programs in the presence of thermal storage publication-title: J. Clean. Prod. – volume: 33 start-page: 319 year: 2011 end-page: 331 ident: bib11 article-title: EnergyPlus: creating a new-generation building energy simulation program publication-title: Energy Build. – year: 2012 ident: bib19 article-title: Ministry of Housing and Urban-Rural Development of the People's Republic of China. Design Code for Heating, Ventilation and Air Conditioning of Civil Buildings – volume: 23 start-page: 539 year: 2003 end-page: 556 ident: bib45 article-title: A comparison of empirically based steady-stated models for vaporcomparession liquid chillers publication-title: Appl. Therm. Eng. – volume: 250 start-page: 1600 year: 2019 end-page: 1617 ident: bib14 article-title: Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios publication-title: Appl. Energy – volume: 11 start-page: 495 year: 2018 ident: bib7 article-title: Review of control techniques for HVAC systems—nonlinearity approaches based on fuzzy cognitive maps publication-title: Energies – volume: 54 start-page: 290 year: 2012 end-page: 296 ident: bib28 article-title: A simulation-optimization approach for energy efficiency of chilled water system publication-title: Energy Build. – volume: 38 start-page: 220 issue: 3 year: 2006 ident: 10.1016/j.jclepro.2022.131264_bib18 article-title: HVAC system optimization for energy management by evolutionary programming publication-title: Energy Build. doi: 10.1016/j.enbuild.2005.05.008 – year: 2017 ident: 10.1016/j.jclepro.2022.131264_bib34 – volume: 250 start-page: 1600 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib14 article-title: Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.04.164 – volume: 31 start-page: 101 year: 2014 ident: 10.1016/j.jclepro.2022.131264_bib37 article-title: Algorithms for optimization of building design: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.11.036 – year: 2000 ident: 10.1016/j.jclepro.2022.131264_bib20 – volume: 95 year: 2020 ident: 10.1016/j.jclepro.2022.131264_bib38 article-title: Data-driven methods for building control — a review and promising future directions publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2019.104211 – volume: 153 start-page: 316 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib24 article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.107 – volume: 29 issue: 1 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib50 article-title: Adaptive fractional-order PID control of PMSG-based wind energy conversion system for MPPT using linear observers publication-title: Int. Trans. Electr. Energy Syst. doi: 10.1002/etep.2697 – volume: 37 start-page: 2060 issue: 6 year: 2009 ident: 10.1016/j.jclepro.2022.131264_bib17 article-title: Energy-efficiency supervision systems for energy management in large public buildings: necessary choice for China publication-title: Energy Pol. doi: 10.1016/j.enpol.2008.12.033 – year: 2012 ident: 10.1016/j.jclepro.2022.131264_bib19 – year: 1982 ident: 10.1016/j.jclepro.2022.131264_bib26 – volume: 88 start-page: 89 year: 2015 ident: 10.1016/j.jclepro.2022.131264_bib47 article-title: Extending air temperature set points: simulated energy savings and design considerations for new and retrofit buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2014.09.010 – volume: 33 start-page: 319 issue: 4 year: 2011 ident: 10.1016/j.jclepro.2022.131264_bib11 article-title: EnergyPlus: creating a new-generation building energy simulation program publication-title: Energy Build. doi: 10.1016/S0378-7788(00)00114-6 – volume: 54 start-page: 290 year: 2012 ident: 10.1016/j.jclepro.2022.131264_bib28 article-title: A simulation-optimization approach for energy efficiency of chilled water system publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.06.028 – volume: 195 start-page: 149 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib41 article-title: Stochastic optimized chiller operation strategy based on multi-objective optimization considering measurement uncertainty publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.05.006 – volume: 19 start-page: 233 issue: 4 year: 1998 ident: 10.1016/j.jclepro.2022.131264_bib51 article-title: Chiller model for plant design studies publication-title: Build. Serv. Eng. Technol. doi: 10.1177/014362449801900407 – volume: 9 start-page: 34 issue: 4 year: 2012 ident: 10.1016/j.jclepro.2022.131264_bib29 article-title: The temperature of air conditioner is raised by 2°C to save electricity by 20 publication-title: Qual. Explor. – year: 2017 ident: 10.1016/j.jclepro.2022.131264_bib49 – volume: 59 start-page: 111 year: 2013 ident: 10.1016/j.jclepro.2022.131264_bib3 article-title: Energy analysis of chilled water system configurations using simulation-based optimization publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.12.011 – year: 2014 ident: 10.1016/j.jclepro.2022.131264_bib5 – volume: 18 start-page: 253 issue: 4 year: 1995 ident: 10.1016/j.jclepro.2022.131264_bib22 article-title: Centrifugal chillers: thermodynamic modeling and a diagnostic case study publication-title: Int. J. Refrig. doi: 10.1016/0140-7007(95)96863-2 – volume: 67 start-page: 92 issue: 1 year: 2012 ident: 10.1016/j.jclepro.2022.131264_bib36 article-title: Demand reduction in building energy systems based on economic model predictive control publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.07.052 – volume: 18 start-page: 292 year: 2018 ident: 10.1016/j.jclepro.2022.131264_bib44 article-title: Shading devices optimization to enhance thermal comfort and energy performance of residential building in Morocco publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2018.03.018 – volume: 7 start-page: 1267 year: 2021 ident: 10.1016/j.jclepro.2022.131264_bib30 article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.02.043 – volume: 72 start-page: 343 year: 2014 ident: 10.1016/j.jclepro.2022.131264_bib2 article-title: Theory and applications of HVAC control systems – a review of model predictive control (MPC) publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.11.016 – volume: 245 start-page: 65 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib25 article-title: A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.209 – volume: 71 start-page: 233 year: 2014 ident: 10.1016/j.jclepro.2022.131264_bib23 article-title: Model predictive control strategies for buildings with mixed-mode cooling publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.09.005 – volume: 206 start-page: 997 year: 2020 ident: 10.1016/j.jclepro.2022.131264_bib55 article-title: Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: a case study for office building in different climatic regions of China publication-title: Sol. Energy doi: 10.1016/j.solener.2020.05.090 – volume: 8 start-page: 101 issue: 1 year: 2002 ident: 10.1016/j.jclepro.2022.131264_bib43 article-title: An evaluation of classical steady-state off-line linear parameter estimation methods applied to chiller performance data publication-title: HVAC Res doi: 10.1080/10789669.2002.10391291 – start-page: 50 issue: 1 year: 2015 ident: 10.1016/j.jclepro.2022.131264_bib54 article-title: Common architecture research public institutions saving optimization control system publication-title: Autom. Instrum. – volume: 88 start-page: 135 year: 2015 ident: 10.1016/j.jclepro.2022.131264_bib53 article-title: Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.11.063 – volume: 92 start-page: 897 year: 2018 ident: 10.1016/j.jclepro.2022.131264_bib27 article-title: A review on optimization methods applied in energy-efficient building geometry and envelope design publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.080 – volume: 39 start-page: 115 issue: 5 year: 2020 ident: 10.1016/j.jclepro.2022.131264_bib32 article-title: Design and application research of regional multi-demand-side energy optimization management platform publication-title: Electr. Drive – volume: 242 start-page: 873 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib46 article-title: Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.038 – volume: 11 start-page: 495 year: 2018 ident: 10.1016/j.jclepro.2022.131264_bib7 article-title: Review of control techniques for HVAC systems—nonlinearity approaches based on fuzzy cognitive maps publication-title: Energies doi: 10.3390/en11030495 – year: 2014 ident: 10.1016/j.jclepro.2022.131264_bib48 – volume: 218 start-page: 315 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib9 article-title: Model predictive control of commercial buildings in demand response programs in the presence of thermal storage publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.01.266 – volume: 132 start-page: 1088 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib8 article-title: Whole building optimization of a residential home with PV and battery storage in the Bahamas publication-title: Renew. Energy doi: 10.1016/j.renene.2018.08.034 – volume: 131 start-page: 42 year: 2016 ident: 10.1016/j.jclepro.2022.131264_bib13 article-title: Multi-objective optimization of building energy performance and indoor thermal comfort: a new method using artificial bee colony (ABC) publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.09.003 – start-page: 19 year: 1982 ident: 10.1016/j.jclepro.2022.131264_bib16 – volume: 34 start-page: 29 issue: 8 year: 2018 ident: 10.1016/j.jclepro.2022.131264_bib57 article-title: Optimization of resident controllable energy efficiency load based on demand response publication-title: Power Syst. Clean Energy – volume: 306 year: 2022 ident: 10.1016/j.jclepro.2022.131264_bib31 article-title: Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117900 – volume: 165 start-page: 930 year: 2016 ident: 10.1016/j.jclepro.2022.131264_bib21 article-title: Energy savings from temperature set points and deadband: quantifying the influence of building and system properties on savings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.12.115 – volume: 161 year: 2021 ident: 10.1016/j.jclepro.2022.131264_bib42 article-title: Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2021.108375 – volume: 11 start-page: 719 year: 2018 ident: 10.1016/j.jclepro.2022.131264_bib1 article-title: An application of a novel technique for assessing the operating performance of existing cooling systems on a university campus publication-title: Energies doi: 10.3390/en11040719 – volume: 101 start-page: 310 year: 2013 ident: 10.1016/j.jclepro.2022.131264_bib10 article-title: Building operation and energy performance: monitoring, analysis and optimisation toolkit publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.10.037 – volume: 155 start-page: 350 year: 2019 ident: 10.1016/j.jclepro.2022.131264_bib40 article-title: Rethinking HVAC temperature set points in commercial buildings: the potential for zero-cost energy savings and comfort improvement in different climates publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.03.062 – volume: 256 year: 2020 ident: 10.1016/j.jclepro.2022.131264_bib15 article-title: Optimization approach of passive cool skin technology application for the Building's exterior walls publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120751 – volume: 113 start-page: 1043 year: 2014 ident: 10.1016/j.jclepro.2022.131264_bib39 article-title: A review on simulation-based optimization methods applied to building performance analysis publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.08.061 – volume: 92 start-page: 256 year: 2015 ident: 10.1016/j.jclepro.2022.131264_bib33 article-title: MPC control for improving energy efficiency of a building air handler for multi-zone VAVs publication-title: Build. Environ. doi: 10.1016/j.buildenv.2015.04.033 – volume: 26 start-page: 435 issue: 4 year: 2011 ident: 10.1016/j.jclepro.2022.131264_bib35 article-title: Research on dynamic optimization of air-conditioning temperature setting control in public buildings publication-title: J. Syst. Eng. – volume: 174 start-page: 293 year: 2018 ident: 10.1016/j.jclepro.2022.131264_bib56 article-title: A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.06.050 – volume: 170 start-page: 293 year: 2016 ident: 10.1016/j.jclepro.2022.131264_bib12 article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO) publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.141 – volume: 85 start-page: 931 issue: 10 year: 2008 ident: 10.1016/j.jclepro.2022.131264_bib52 article-title: Optimization of water-cooled chiller system with load-based speed control publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.02.008 – volume: 52 start-page: 1650 issue: 3 year: 2011 ident: 10.1016/j.jclepro.2022.131264_bib6 article-title: A multi-phase genetic algorithm for the efficient management of multi-chiller systems publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2010.10.028 – volume: 23 start-page: 539 issue: 5 year: 2003 ident: 10.1016/j.jclepro.2022.131264_bib45 article-title: A comparison of empirically based steady-stated models for vaporcomparession liquid chillers publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00242-9 – volume: 31 start-page: 136 year: 2017 ident: 10.1016/j.jclepro.2022.131264_bib4 article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.02.010 |
| SSID | ssj0017074 |
| Score | 2.4911273 |
| Snippet | With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 131264 |
| SubjectTerms | Dynamic temperature set point energy efficiency human resources humans Intelligent optimization strategy Model predictive control Multi-objective optimization Multi-regional building quality of life temperature |
| Title | Multi-regional building energy efficiency intelligent regulation strategy based on multi-objective optimization and model predictive control |
| URI | https://dx.doi.org/10.1016/j.jclepro.2022.131264 https://www.proquest.com/docview/2648878713 |
| Volume | 349 |
| WOSCitedRecordID | wos000788101400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017074 issn: 0959-6526 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvGQkxCVKaeIkdo4r1BWgVeHQlSoulpPYaqrdpPSxLP-BH8341ZRqV7scuFiRFafTzBfP2OP5BqF3MsmUgnVHmAtoEpHBlaR5mEYyGiqVyYwoU2yCjsdsOs2_9Xo_fS7MxRltGnZ5mS_-q6qhD5StU2f_Qd3bh0IHXIPSoQW1Q3srxZuU2lAXXDCbfIWrex1Im-UnDWeESbist3Sc62Bpa9JrMKwsYe2vQFu4SkcTzKnDsC3mdnYMWphnzl0Cp4k-mHo6mm-gqu0d7gT8Na4vSCxAGn04rLLstZ0_bWyCmG3qbku7NZ3fZ_VsI7peYWNG3vS6nQtY9GrS03RvCzJLbca8n41JkgeLQUQi8NTCK-d4u90wH8xBWJBzoB_tBnRGzQfyx1_58enJCZ-MppP3ix-hLjemw_Ku9soddBDTNGd9dHD0eTT9sg1A0aEl8PYidslfH6785evcmj0Db7yWyUP0wL1zfGRh8gj1ZPMY3d8hoXyCfv8NGOwBgy1gcAcYvAMY3AEGe8BgAxgMPXuAwbuAwQAYbACDO8BgB5in6PR4NPn4KXQ1OsKSJPE6jCqRwoqUiIRWtJC0KFQZpwV4sUKRIpYxiyip4ipJlYjSUjEwGIqVsopUkidFSZ6hftM28jnCLGflMBoKqUkihSSMskIXd6ASfGCRkkOU-FfMS0dgr-uonHF_UnHOnWa41gy3mjlEg-2whWVwuWkA8_rjzg217iUHBN409K3XN4dpWsfe4HNqNyuuD5LCH6IReXGLe16ie90H8wr118uNfI3ulhfrerV847D6B-wdvuc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-regional+building+energy+efficiency+intelligent+regulation+strategy+based+on+multi-objective+optimization+and+model+predictive+control&rft.jtitle=Journal+of+cleaner+production&rft.au=Du%2C+Yahui&rft.au=Zhou%2C+Zhihua&rft.au=Zhao%2C+Jing&rft.date=2022-05-15&rft.issn=0959-6526&rft.volume=349+p.131264-&rft_id=info:doi/10.1016%2Fj.jclepro.2022.131264&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |