Multi-regional building energy efficiency intelligent regulation strategy based on multi-objective optimization and model predictive control

With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale buildings with multi-regional function come out increasingly. The traditional uniform constant temperature design and operation management techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cleaner production Jg. 349; S. 131264
Hauptverfasser: Du, Yahui, Zhou, Zhihua, Zhao, Jing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.05.2022
Schlagworte:
ISSN:0959-6526, 1879-1786
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale buildings with multi-regional function come out increasingly. The traditional uniform constant temperature design and operation management technology can no longer meet the needs of occupants, as the dynamic thermal comfort level of human body in different regions has great discrepancy. This paper conducts the whole chain regulation model for large multi-regional buildings from demand level, application level and control level. Aiming to reduce the load reasonably on the premise of thermal comfort, a model of dynamically adjusting the set point temperature in different regions is established on demand level. As load demand refers to the energy provided by the operation of HVAC system, the controlled parameters values are obtained by adopting the intelligent optimization strategy for the application level. On the bottom control level, the optimized parameters are managed by model predictive control (MPC), which has great advantage of rapid response. It is found that the strategy of dynamically adjusting the temperature set point in typical day can reduce the load demand by 6.16% without sacrificing the comfort of indoor personnel. Based on the load demand optimization, the operation optimization and MPC strategy is further adopted for application and control level by simulation, and can realize the total energy saving of HVAC system by 12.78%. •A unified whole chain regulation model for multi-regional building is provided.•The multi-regional dynamic indoor set point temperature model is established.•The intelligent optimization regulation model is obtained on application level.•A fast parameter regulation control model is established on control level.•The strategy achieves multi-objective optimization of energy and thermal comfort.
AbstractList With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale buildings with multi-regional function come out increasingly. The traditional uniform constant temperature design and operation management technology can no longer meet the needs of occupants, as the dynamic thermal comfort level of human body in different regions has great discrepancy. This paper conducts the whole chain regulation model for large multi-regional buildings from demand level, application level and control level. Aiming to reduce the load reasonably on the premise of thermal comfort, a model of dynamically adjusting the set point temperature in different regions is established on demand level. As load demand refers to the energy provided by the operation of HVAC system, the controlled parameters values are obtained by adopting the intelligent optimization strategy for the application level. On the bottom control level, the optimized parameters are managed by model predictive control (MPC), which has great advantage of rapid response. It is found that the strategy of dynamically adjusting the temperature set point in typical day can reduce the load demand by 6.16% without sacrificing the comfort of indoor personnel. Based on the load demand optimization, the operation optimization and MPC strategy is further adopted for application and control level by simulation, and can realize the total energy saving of HVAC system by 12.78%. •A unified whole chain regulation model for multi-regional building is provided.•The multi-regional dynamic indoor set point temperature model is established.•The intelligent optimization regulation model is obtained on application level.•A fast parameter regulation control model is established on control level.•The strategy achieves multi-objective optimization of energy and thermal comfort.
With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale buildings with multi-regional function come out increasingly. The traditional uniform constant temperature design and operation management technology can no longer meet the needs of occupants, as the dynamic thermal comfort level of human body in different regions has great discrepancy. This paper conducts the whole chain regulation model for large multi-regional buildings from demand level, application level and control level. Aiming to reduce the load reasonably on the premise of thermal comfort, a model of dynamically adjusting the set point temperature in different regions is established on demand level. As load demand refers to the energy provided by the operation of HVAC system, the controlled parameters values are obtained by adopting the intelligent optimization strategy for the application level. On the bottom control level, the optimized parameters are managed by model predictive control (MPC), which has great advantage of rapid response. It is found that the strategy of dynamically adjusting the temperature set point in typical day can reduce the load demand by 6.16% without sacrificing the comfort of indoor personnel. Based on the load demand optimization, the operation optimization and MPC strategy is further adopted for application and control level by simulation, and can realize the total energy saving of HVAC system by 12.78%.
ArticleNumber 131264
Author Zhou, Zhihua
Du, Yahui
Zhao, Jing
Author_xml – sequence: 1
  givenname: Yahui
  surname: Du
  fullname: Du, Yahui
– sequence: 2
  givenname: Zhihua
  surname: Zhou
  fullname: Zhou, Zhihua
– sequence: 3
  givenname: Jing
  orcidid: 0000-0002-0346-3292
  surname: Zhao
  fullname: Zhao, Jing
  email: zhaojing@tju.edu.cn
BookMark eNqFkc2KFDEUhYOMYM_oIwhZuqm2kkpV0rgQGRwVRtzoOuTnpkmRStokNdA-gw9tpmtWbmZ14fKdA-eca3QVUwSE3pJ-T3oyvZ_3swlwymlPe0r3ZCB0Yi_Qjgh-6AgX0xXa9Yfx0E0jnV6h61Lmvie852yH_n5fQ_VdhqNPUQWsVx-sj0cMEfLxjME5bzxEc8Y-VgjBHyFW3Pg1qNo0uNSsKjRUqwIWt89ysUx6BlP9A-B0qn7xfzZcRYuXZCHgUwbrN8KkWHMKr9FLp0KBN0_3Bv26-_zz9mt3_-PLt9tP950ZGK0dsWrkjA-Kccs1cK2doaMexlG5QVOggvDBUstGp8honGBCOGHAEscOTJvhBr3bfFtnv1coVS6-mBZORUhrka0-IbjgZGjohw01OZWSwUnj6yVJi-2DJL183EDO8mkD-biB3DZo6vE_9Sn7ReXzs7qPmw5aCw8esiyXEVphuZUqbfLPOPwDAeirpQ
CitedBy_id crossref_primary_10_1016_j_rser_2024_114510
crossref_primary_10_2478_amns_2024_0934
crossref_primary_10_1016_j_energy_2024_132577
crossref_primary_10_1016_j_enbuild_2024_114919
crossref_primary_10_1016_j_jobe_2024_109304
crossref_primary_10_1016_j_jobe_2024_110013
crossref_primary_10_1016_j_enbuild_2022_112664
crossref_primary_10_1016_j_ijrefrig_2025_04_027
crossref_primary_10_1007_s11630_024_1953_9
crossref_primary_10_1016_j_jobe_2024_111708
crossref_primary_10_1016_j_jwpe_2023_103641
crossref_primary_10_1038_s41598_025_13325_4
crossref_primary_10_1016_j_enbuild_2025_115851
crossref_primary_10_1016_j_applthermaleng_2024_122595
crossref_primary_10_1109_ACCESS_2023_3319368
crossref_primary_10_1016_j_apenergy_2023_122436
crossref_primary_10_1177_01445987241298534
crossref_primary_10_3389_fenrg_2023_1225416
crossref_primary_10_3390_pr13072197
Cites_doi 10.1016/j.enbuild.2005.05.008
10.1016/j.apenergy.2019.04.164
10.1016/j.rser.2013.11.036
10.1016/j.conengprac.2019.104211
10.1016/j.applthermaleng.2019.02.107
10.1002/etep.2697
10.1016/j.enpol.2008.12.033
10.1016/j.buildenv.2014.09.010
10.1016/S0378-7788(00)00114-6
10.1016/j.enbuild.2012.06.028
10.1016/j.enbuild.2019.05.006
10.1177/014362449801900407
10.1016/j.enbuild.2012.12.011
10.1016/0140-7007(95)96863-2
10.1016/j.ces.2011.07.052
10.1016/j.jobe.2018.03.018
10.1016/j.egyr.2021.02.043
10.1016/j.buildenv.2013.11.016
10.1016/j.apenergy.2019.03.209
10.1016/j.buildenv.2013.09.005
10.1016/j.solener.2020.05.090
10.1080/10789669.2002.10391291
10.1016/j.enbuild.2014.11.063
10.1016/j.rser.2018.04.080
10.1016/j.apenergy.2019.03.038
10.3390/en11030495
10.1016/j.jclepro.2019.01.266
10.1016/j.renene.2018.08.034
10.1016/j.enbuild.2016.09.003
10.1016/j.apenergy.2021.117900
10.1016/j.apenergy.2015.12.115
10.1016/j.anucene.2021.108375
10.3390/en11040719
10.1016/j.apenergy.2011.10.037
10.1016/j.buildenv.2019.03.062
10.1016/j.jclepro.2020.120751
10.1016/j.apenergy.2013.08.061
10.1016/j.buildenv.2015.04.033
10.1016/j.enbuild.2018.06.050
10.1016/j.apenergy.2016.02.141
10.1016/j.apenergy.2008.02.008
10.1016/j.enconman.2010.10.028
10.1016/S1359-4311(02)00242-9
10.1016/j.scs.2017.02.010
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2022.131264
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2022_131264
S0959652622008952
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADHUB
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-1da57473a47d7be7bbfc25b355af3b2e28173d2d45fa15cf8488f8ced1f494bc3
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000788101400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Thu Oct 02 07:04:54 EDT 2025
Sat Nov 29 07:09:40 EST 2025
Tue Nov 18 21:02:08 EST 2025
Fri Feb 23 02:39:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Model predictive control
Dynamic temperature set point
Multi-objective optimization
Intelligent optimization strategy
Multi-regional building
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-1da57473a47d7be7bbfc25b355af3b2e28173d2d45fa15cf8488f8ced1f494bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0346-3292
PQID 2648878713
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2648878713
crossref_citationtrail_10_1016_j_jclepro_2022_131264
crossref_primary_10_1016_j_jclepro_2022_131264
elsevier_sciencedirect_doi_10_1016_j_jclepro_2022_131264
PublicationCentury 2000
PublicationDate 2022-05-15
PublicationDateYYYYMMDD 2022-05-15
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of cleaner production
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Yu (bib30) 2021; 7
Ma, Li, Nie (bib35) 2011; 26
Tyler, Arens, Zhang (bib47) 2015; 88
Yu, Li, Jia, Zhang, Wang (bib53) 2015; 88
Ling (bib34) 2017
Jurinak (bib26) 1982
Lee, Cheng (bib28) 2012; 54
Bingham, Agelin-Chaab, Rosen (bib8) 2019; 132
Ma, Qin, Salsbury, Xu (bib36) 2012; 67
Hu, Xiao, Jorgensen, Li (bib24) 2019; 153
(bib5) 2014
Yu, Chan (bib52) 2008; 85
Rahnama, Ansarifar (bib42) 2021; 161
Li, Yu, Zhang (bib31) 2022; 306
Joe, Karava (bib25) 2019; 245
Li (bib29) 2012; 9
Ding, Wei, Wang (bib15) 2020; 256
Kheiri (bib27) 2018; 92
Maddalena, Lian, Jones (bib38) 2020; 95
Gordon, Kim, Hui (bib22) 1995; 18
Zhang, Wang (bib54) 2015
Qin, Han, Sun, Wu, Guo (bib32) 2020; 39
Qiu, Feng, Zhang, Li, Li (bib41) 2019; 195
Zhao, Liu (bib56) 2018; 174
(bib19) 2012
Hu, Karava (bib23) 2014; 71
Liang, Quinte, Jia, Sun (bib33) 2015; 92
Yik, Lam (bib51) 1998; 19
GB/T 18049-2000 (bib20) 2000
Papadopoulos, Kontokosta, Vlachokostas, Azar (bib40) 2019; 155
Wang (bib48) 2014
Beghi, Cecchinato, Rampazzo (bib6) 2011; 52
Costa, Keane, Torrens, Corry (bib10) 2013; 101
Tang, Wang (bib46) 2019; 242
Abdalla, Nallagownden, Nor, Romlie, Hassan (bib1) 2018; 11
Fong, Hanby, Chow (bib18) 2006; 38
Delgarm, Sajadi, Delgarm (bib13) 2016; 131
Machairas, Tsangrassoulis, Axarli (bib37) 2014; 31
Zhou, Zhang, An, Chen, Yang, Kang (bib57) 2018; 34
Zhao, Du (bib55) 2020; 206
Yang (bib49) 2017
Nguyen, Reiter, Rigo (bib39) 2014; 113
Cao, Du, Soleymanzadeh (bib9) 2019; 218
Behrooz, Mariun, Marhaban, Mohd Radzi, Ramli (bib7) 2018; 11
Ascione, Bianco, De Stasio, Mauro, Vanoli (bib4) 2017; 31
Crawley, Lawrie, Winkelmann, Buhl, Huang, Pedersen, Strand, Liesen, Fisher, Witte, Glazer (bib11) 2011; 33
Ding, Wang, Kong, Yang (bib14) 2019; 250
Delgarm, Sajadi, Kowsary, Delgarm (bib12) 2016; 170
Fanger (bib16) 1982
Sghiouri, Mezrhab, Karkri, Naji (bib44) 2018; 18
Ali, Vukovic, Sahir, Fontanella (bib3) 2013; 59
Reddy, Andersen (bib43) 2002; 8
Afram, Janabi-Sharifi (bib2) 2014; 72
Swider (bib45) 2003; 23
Feng, Wu, Liu (bib17) 2009; 37
Ghahramani, Zhang, Dutta, Yang, Becerik-Gerber (bib21) 2016; 165
Yang, Yu, Shu, Han, Cao, Jiang (bib50) 2019; 29
Cao (10.1016/j.jclepro.2022.131264_bib9) 2019; 218
Hu (10.1016/j.jclepro.2022.131264_bib23) 2014; 71
Ma (10.1016/j.jclepro.2022.131264_bib36) 2012; 67
Tang (10.1016/j.jclepro.2022.131264_bib46) 2019; 242
Zhang (10.1016/j.jclepro.2022.131264_bib54) 2015
Ali (10.1016/j.jclepro.2022.131264_bib3) 2013; 59
Costa (10.1016/j.jclepro.2022.131264_bib10) 2013; 101
Liang (10.1016/j.jclepro.2022.131264_bib33) 2015; 92
(10.1016/j.jclepro.2022.131264_bib19) 2012
Yu (10.1016/j.jclepro.2022.131264_bib53) 2015; 88
Ding (10.1016/j.jclepro.2022.131264_bib14) 2019; 250
Yang (10.1016/j.jclepro.2022.131264_bib49) 2017
Zhao (10.1016/j.jclepro.2022.131264_bib56) 2018; 174
Fanger (10.1016/j.jclepro.2022.131264_bib16) 1982
Fong (10.1016/j.jclepro.2022.131264_bib18) 2006; 38
Papadopoulos (10.1016/j.jclepro.2022.131264_bib40) 2019; 155
Ascione (10.1016/j.jclepro.2022.131264_bib4) 2017; 31
Hu (10.1016/j.jclepro.2022.131264_bib24) 2019; 153
Zhou (10.1016/j.jclepro.2022.131264_bib57) 2018; 34
Joe (10.1016/j.jclepro.2022.131264_bib25) 2019; 245
Ling (10.1016/j.jclepro.2022.131264_bib34) 2017
GB/T 18049-2000 (10.1016/j.jclepro.2022.131264_bib20) 2000
Li (10.1016/j.jclepro.2022.131264_bib29) 2012; 9
(10.1016/j.jclepro.2022.131264_bib5) 2014
Swider (10.1016/j.jclepro.2022.131264_bib45) 2003; 23
Behrooz (10.1016/j.jclepro.2022.131264_bib7) 2018; 11
Ma (10.1016/j.jclepro.2022.131264_bib35) 2011; 26
Maddalena (10.1016/j.jclepro.2022.131264_bib38) 2020; 95
Ghahramani (10.1016/j.jclepro.2022.131264_bib21) 2016; 165
Reddy (10.1016/j.jclepro.2022.131264_bib43) 2002; 8
Tyler (10.1016/j.jclepro.2022.131264_bib47) 2015; 88
Lee (10.1016/j.jclepro.2022.131264_bib28) 2012; 54
Feng (10.1016/j.jclepro.2022.131264_bib17) 2009; 37
Bingham (10.1016/j.jclepro.2022.131264_bib8) 2019; 132
Abdalla (10.1016/j.jclepro.2022.131264_bib1) 2018; 11
Li (10.1016/j.jclepro.2022.131264_bib30) 2021; 7
Sghiouri (10.1016/j.jclepro.2022.131264_bib44) 2018; 18
Nguyen (10.1016/j.jclepro.2022.131264_bib39) 2014; 113
Yik (10.1016/j.jclepro.2022.131264_bib51) 1998; 19
Gordon (10.1016/j.jclepro.2022.131264_bib22) 1995; 18
Delgarm (10.1016/j.jclepro.2022.131264_bib13) 2016; 131
Machairas (10.1016/j.jclepro.2022.131264_bib37) 2014; 31
Jurinak (10.1016/j.jclepro.2022.131264_bib26) 1982
Yu (10.1016/j.jclepro.2022.131264_bib52) 2008; 85
Wang (10.1016/j.jclepro.2022.131264_bib48) 2014
Rahnama (10.1016/j.jclepro.2022.131264_bib42) 2021; 161
Li (10.1016/j.jclepro.2022.131264_bib31) 2022; 306
Delgarm (10.1016/j.jclepro.2022.131264_bib12) 2016; 170
Ding (10.1016/j.jclepro.2022.131264_bib15) 2020; 256
Crawley (10.1016/j.jclepro.2022.131264_bib11) 2011; 33
Qin (10.1016/j.jclepro.2022.131264_bib32) 2020; 39
Beghi (10.1016/j.jclepro.2022.131264_bib6) 2011; 52
Qiu (10.1016/j.jclepro.2022.131264_bib41) 2019; 195
Zhao (10.1016/j.jclepro.2022.131264_bib55) 2020; 206
Afram (10.1016/j.jclepro.2022.131264_bib2) 2014; 72
Kheiri (10.1016/j.jclepro.2022.131264_bib27) 2018; 92
Yang (10.1016/j.jclepro.2022.131264_bib50) 2019; 29
References_xml – volume: 19
  start-page: 233
  year: 1998
  end-page: 241
  ident: bib51
  article-title: Chiller model for plant design studies
  publication-title: Build. Serv. Eng. Technol.
– volume: 256
  year: 2020
  ident: bib15
  article-title: Optimization approach of passive cool skin technology application for the Building's exterior walls
  publication-title: J. Clean. Prod.
– volume: 11
  start-page: 719
  year: 2018
  ident: bib1
  article-title: An application of a novel technique for assessing the operating performance of existing cooling systems on a university campus
  publication-title: Energies
– volume: 71
  start-page: 233
  year: 2014
  end-page: 244
  ident: bib23
  article-title: Model predictive control strategies for buildings with mixed-mode cooling
  publication-title: Build. Environ.
– volume: 174
  start-page: 293
  year: 2018
  end-page: 308
  ident: bib56
  article-title: A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis
  publication-title: Energy Build.
– year: 2017
  ident: bib34
  article-title: Optimization of Energy Saving and Control of Central Air Conditioning System Based on Parameter Lumping
– volume: 72
  start-page: 343
  year: 2014
  end-page: 355
  ident: bib2
  article-title: Theory and applications of HVAC control systems – a review of model predictive control (MPC)
  publication-title: Build. Environ.
– volume: 242
  start-page: 873
  year: 2019
  end-page: 882
  ident: bib46
  article-title: Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids
  publication-title: Appl. Energy
– volume: 153
  start-page: 316
  year: 2019
  end-page: 329
  ident: bib24
  article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass
  publication-title: Appl. Therm. Eng.
– volume: 9
  start-page: 34
  year: 2012
  ident: bib29
  article-title: The temperature of air conditioner is raised by 2°C to save electricity by 20
  publication-title: Qual. Explor.
– volume: 170
  start-page: 293
  year: 2016
  end-page: 303
  ident: bib12
  article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)
  publication-title: Appl. Energy
– start-page: 19
  year: 1982
  end-page: 142
  ident: bib16
  article-title: Thermal Comfort 2
– volume: 18
  start-page: 292
  year: 2018
  end-page: 302
  ident: bib44
  article-title: Shading devices optimization to enhance thermal comfort and energy performance of residential building in Morocco
  publication-title: J. Build. Eng.
– volume: 39
  start-page: 115
  year: 2020
  end-page: 119
  ident: bib32
  article-title: Design and application research of regional multi-demand-side energy optimization management platform
  publication-title: Electr. Drive
– volume: 161
  year: 2021
  ident: bib42
  article-title: Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms
  publication-title: Ann. Nucl. Energy
– volume: 132
  start-page: 1088
  year: 2019
  end-page: 1103
  ident: bib8
  article-title: Whole building optimization of a residential home with PV and battery storage in the Bahamas
  publication-title: Renew. Energy
– volume: 195
  start-page: 149
  year: 2019
  end-page: 160
  ident: bib41
  article-title: Stochastic optimized chiller operation strategy based on multi-objective optimization considering measurement uncertainty
  publication-title: Energy Build.
– start-page: 50
  year: 2015
  end-page: 52
  ident: bib54
  article-title: Common architecture research public institutions saving optimization control system
  publication-title: Autom. Instrum.
– volume: 59
  start-page: 111
  year: 2013
  end-page: 122
  ident: bib3
  article-title: Energy analysis of chilled water system configurations using simulation-based optimization
  publication-title: Energy Build.
– volume: 101
  start-page: 310
  year: 2013
  end-page: 316
  ident: bib10
  article-title: Building operation and energy performance: monitoring, analysis and optimisation toolkit
  publication-title: Appl. Energy
– volume: 306
  year: 2022
  ident: bib31
  article-title: Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning
  publication-title: Appl. Energy
– volume: 34
  start-page: 29
  year: 2018
  end-page: 36
  ident: bib57
  article-title: Optimization of resident controllable energy efficiency load based on demand response
  publication-title: Power Syst. Clean Energy
– volume: 85
  start-page: 931
  year: 2008
  end-page: 950
  ident: bib52
  article-title: Optimization of water-cooled chiller system with load-based speed control
  publication-title: Appl. Energy
– volume: 113
  start-page: 1043
  year: 2014
  end-page: 1058
  ident: bib39
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energy
– year: 2000
  ident: bib20
  article-title: Moderate Thermal Environments-Determination of the PMV and PPD Indices and Specification of the Condition for Thermal Comfort (Chinese)
– volume: 29
  year: 2019
  ident: bib50
  article-title: Adaptive fractional-order PID control of PMSG-based wind energy conversion system for MPPT using linear observers
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 206
  start-page: 997
  year: 2020
  end-page: 1017
  ident: bib55
  article-title: Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: a case study for office building in different climatic regions of China
  publication-title: Sol. Energy
– volume: 26
  start-page: 435
  year: 2011
  end-page: 441
  ident: bib35
  article-title: Research on dynamic optimization of air-conditioning temperature setting control in public buildings
  publication-title: J. Syst. Eng.
– volume: 37
  start-page: 2060
  year: 2009
  end-page: 2065
  ident: bib17
  article-title: Energy-efficiency supervision systems for energy management in large public buildings: necessary choice for China
  publication-title: Energy Pol.
– volume: 18
  start-page: 253
  year: 1995
  end-page: 257
  ident: bib22
  article-title: Centrifugal chillers: thermodynamic modeling and a diagnostic case study
  publication-title: Int. J. Refrig.
– volume: 92
  start-page: 897
  year: 2018
  end-page: 920
  ident: bib27
  article-title: A review on optimization methods applied in energy-efficient building geometry and envelope design
  publication-title: Renew. Sustain. Energy Rev.
– year: 2017
  ident: bib49
  article-title: The air conditioner should be adjusted up by one degree" needs to be integrated into the "technical perspective
– volume: 38
  start-page: 220
  year: 2006
  end-page: 231
  ident: bib18
  article-title: HVAC system optimization for energy management by evolutionary programming
  publication-title: Energy Build.
– volume: 31
  start-page: 136
  year: 2017
  end-page: 150
  ident: bib4
  article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems
  publication-title: Sustain. Cities Soc.
– volume: 155
  start-page: 350
  year: 2019
  end-page: 359
  ident: bib40
  article-title: Rethinking HVAC temperature set points in commercial buildings: the potential for zero-cost energy savings and comfort improvement in different climates
  publication-title: Build. Environ.
– volume: 165
  start-page: 930
  year: 2016
  end-page: 942
  ident: bib21
  article-title: Energy savings from temperature set points and deadband: quantifying the influence of building and system properties on savings
  publication-title: Appl. Energy
– volume: 8
  start-page: 101
  year: 2002
  end-page: 124
  ident: bib43
  article-title: An evaluation of classical steady-state off-line linear parameter estimation methods applied to chiller performance data
  publication-title: HVAC Res
– volume: 131
  start-page: 42
  year: 2016
  end-page: 53
  ident: bib13
  article-title: Multi-objective optimization of building energy performance and indoor thermal comfort: a new method using artificial bee colony (ABC)
  publication-title: Energy Build.
– year: 2014
  ident: bib5
  article-title: Measurement of Energy, Demand, and Water Savings
– year: 1982
  ident: bib26
  article-title: Open Cycle Solid Desiccant Cooling-Component Models and System Simulation
– volume: 67
  start-page: 92
  year: 2012
  end-page: 100
  ident: bib36
  article-title: Demand reduction in building energy systems based on economic model predictive control
  publication-title: Chem. Eng. Sci.
– volume: 31
  start-page: 101
  year: 2014
  end-page: 112
  ident: bib37
  article-title: Algorithms for optimization of building design: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 7
  start-page: 1267
  year: 2021
  end-page: 1279
  ident: bib30
  article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system
  publication-title: Energy Rep.
– volume: 95
  year: 2020
  ident: bib38
  article-title: Data-driven methods for building control — a review and promising future directions
  publication-title: Control Eng. Pract.
– volume: 52
  start-page: 1650
  year: 2011
  end-page: 1661
  ident: bib6
  article-title: A multi-phase genetic algorithm for the efficient management of multi-chiller systems
  publication-title: Energy Convers. Manag.
– volume: 88
  start-page: 89
  year: 2015
  end-page: 96
  ident: bib47
  article-title: Extending air temperature set points: simulated energy savings and design considerations for new and retrofit buildings
  publication-title: Build. Environ.
– volume: 245
  start-page: 65
  year: 2019
  end-page: 77
  ident: bib25
  article-title: A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings
  publication-title: Appl. Energy
– volume: 92
  start-page: 256
  year: 2015
  end-page: 268
  ident: bib33
  article-title: MPC control for improving energy efficiency of a building air handler for multi-zone VAVs
  publication-title: Build. Environ.
– year: 2014
  ident: bib48
  article-title: The Energy Conservation Investigation on Fuzzy PID Control in the Water System of Central Air Condition
– volume: 88
  start-page: 135
  year: 2015
  end-page: 143
  ident: bib53
  article-title: Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design
  publication-title: Energy Build.
– volume: 218
  start-page: 315
  year: 2019
  end-page: 327
  ident: bib9
  article-title: Model predictive control of commercial buildings in demand response programs in the presence of thermal storage
  publication-title: J. Clean. Prod.
– volume: 33
  start-page: 319
  year: 2011
  end-page: 331
  ident: bib11
  article-title: EnergyPlus: creating a new-generation building energy simulation program
  publication-title: Energy Build.
– year: 2012
  ident: bib19
  article-title: Ministry of Housing and Urban-Rural Development of the People's Republic of China. Design Code for Heating, Ventilation and Air Conditioning of Civil Buildings
– volume: 23
  start-page: 539
  year: 2003
  end-page: 556
  ident: bib45
  article-title: A comparison of empirically based steady-stated models for vaporcomparession liquid chillers
  publication-title: Appl. Therm. Eng.
– volume: 250
  start-page: 1600
  year: 2019
  end-page: 1617
  ident: bib14
  article-title: Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios
  publication-title: Appl. Energy
– volume: 11
  start-page: 495
  year: 2018
  ident: bib7
  article-title: Review of control techniques for HVAC systems—nonlinearity approaches based on fuzzy cognitive maps
  publication-title: Energies
– volume: 54
  start-page: 290
  year: 2012
  end-page: 296
  ident: bib28
  article-title: A simulation-optimization approach for energy efficiency of chilled water system
  publication-title: Energy Build.
– volume: 38
  start-page: 220
  issue: 3
  year: 2006
  ident: 10.1016/j.jclepro.2022.131264_bib18
  article-title: HVAC system optimization for energy management by evolutionary programming
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2005.05.008
– year: 2017
  ident: 10.1016/j.jclepro.2022.131264_bib34
– volume: 250
  start-page: 1600
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib14
  article-title: Multi-objective optimisation approach for campus energy plant operation based on building heating load scenarios
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.04.164
– volume: 31
  start-page: 101
  year: 2014
  ident: 10.1016/j.jclepro.2022.131264_bib37
  article-title: Algorithms for optimization of building design: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.11.036
– year: 2000
  ident: 10.1016/j.jclepro.2022.131264_bib20
– volume: 95
  year: 2020
  ident: 10.1016/j.jclepro.2022.131264_bib38
  article-title: Data-driven methods for building control — a review and promising future directions
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2019.104211
– volume: 153
  start-page: 316
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib24
  article-title: Price-responsive model predictive control of floor heating systems for demand response using building thermal mass
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.107
– volume: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib50
  article-title: Adaptive fractional-order PID control of PMSG-based wind energy conversion system for MPPT using linear observers
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/etep.2697
– volume: 37
  start-page: 2060
  issue: 6
  year: 2009
  ident: 10.1016/j.jclepro.2022.131264_bib17
  article-title: Energy-efficiency supervision systems for energy management in large public buildings: necessary choice for China
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2008.12.033
– year: 2012
  ident: 10.1016/j.jclepro.2022.131264_bib19
– year: 1982
  ident: 10.1016/j.jclepro.2022.131264_bib26
– volume: 88
  start-page: 89
  year: 2015
  ident: 10.1016/j.jclepro.2022.131264_bib47
  article-title: Extending air temperature set points: simulated energy savings and design considerations for new and retrofit buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2014.09.010
– volume: 33
  start-page: 319
  issue: 4
  year: 2011
  ident: 10.1016/j.jclepro.2022.131264_bib11
  article-title: EnergyPlus: creating a new-generation building energy simulation program
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(00)00114-6
– volume: 54
  start-page: 290
  year: 2012
  ident: 10.1016/j.jclepro.2022.131264_bib28
  article-title: A simulation-optimization approach for energy efficiency of chilled water system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.06.028
– volume: 195
  start-page: 149
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib41
  article-title: Stochastic optimized chiller operation strategy based on multi-objective optimization considering measurement uncertainty
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.05.006
– volume: 19
  start-page: 233
  issue: 4
  year: 1998
  ident: 10.1016/j.jclepro.2022.131264_bib51
  article-title: Chiller model for plant design studies
  publication-title: Build. Serv. Eng. Technol.
  doi: 10.1177/014362449801900407
– volume: 9
  start-page: 34
  issue: 4
  year: 2012
  ident: 10.1016/j.jclepro.2022.131264_bib29
  article-title: The temperature of air conditioner is raised by 2°C to save electricity by 20
  publication-title: Qual. Explor.
– year: 2017
  ident: 10.1016/j.jclepro.2022.131264_bib49
– volume: 59
  start-page: 111
  year: 2013
  ident: 10.1016/j.jclepro.2022.131264_bib3
  article-title: Energy analysis of chilled water system configurations using simulation-based optimization
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.12.011
– year: 2014
  ident: 10.1016/j.jclepro.2022.131264_bib5
– volume: 18
  start-page: 253
  issue: 4
  year: 1995
  ident: 10.1016/j.jclepro.2022.131264_bib22
  article-title: Centrifugal chillers: thermodynamic modeling and a diagnostic case study
  publication-title: Int. J. Refrig.
  doi: 10.1016/0140-7007(95)96863-2
– volume: 67
  start-page: 92
  issue: 1
  year: 2012
  ident: 10.1016/j.jclepro.2022.131264_bib36
  article-title: Demand reduction in building energy systems based on economic model predictive control
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.07.052
– volume: 18
  start-page: 292
  year: 2018
  ident: 10.1016/j.jclepro.2022.131264_bib44
  article-title: Shading devices optimization to enhance thermal comfort and energy performance of residential building in Morocco
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2018.03.018
– volume: 7
  start-page: 1267
  year: 2021
  ident: 10.1016/j.jclepro.2022.131264_bib30
  article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.02.043
– volume: 72
  start-page: 343
  year: 2014
  ident: 10.1016/j.jclepro.2022.131264_bib2
  article-title: Theory and applications of HVAC control systems – a review of model predictive control (MPC)
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.016
– volume: 245
  start-page: 65
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib25
  article-title: A model predictive control strategy to optimize the performance of radiant floor heating and cooling systems in office buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.209
– volume: 71
  start-page: 233
  year: 2014
  ident: 10.1016/j.jclepro.2022.131264_bib23
  article-title: Model predictive control strategies for buildings with mixed-mode cooling
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.09.005
– volume: 206
  start-page: 997
  year: 2020
  ident: 10.1016/j.jclepro.2022.131264_bib55
  article-title: Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: a case study for office building in different climatic regions of China
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.05.090
– volume: 8
  start-page: 101
  issue: 1
  year: 2002
  ident: 10.1016/j.jclepro.2022.131264_bib43
  article-title: An evaluation of classical steady-state off-line linear parameter estimation methods applied to chiller performance data
  publication-title: HVAC Res
  doi: 10.1080/10789669.2002.10391291
– start-page: 50
  issue: 1
  year: 2015
  ident: 10.1016/j.jclepro.2022.131264_bib54
  article-title: Common architecture research public institutions saving optimization control system
  publication-title: Autom. Instrum.
– volume: 88
  start-page: 135
  year: 2015
  ident: 10.1016/j.jclepro.2022.131264_bib53
  article-title: Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.11.063
– volume: 92
  start-page: 897
  year: 2018
  ident: 10.1016/j.jclepro.2022.131264_bib27
  article-title: A review on optimization methods applied in energy-efficient building geometry and envelope design
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.080
– volume: 39
  start-page: 115
  issue: 5
  year: 2020
  ident: 10.1016/j.jclepro.2022.131264_bib32
  article-title: Design and application research of regional multi-demand-side energy optimization management platform
  publication-title: Electr. Drive
– volume: 242
  start-page: 873
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib46
  article-title: Model predictive control for thermal energy storage and thermal comfort optimization of building demand response in smart grids
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.038
– volume: 11
  start-page: 495
  year: 2018
  ident: 10.1016/j.jclepro.2022.131264_bib7
  article-title: Review of control techniques for HVAC systems—nonlinearity approaches based on fuzzy cognitive maps
  publication-title: Energies
  doi: 10.3390/en11030495
– year: 2014
  ident: 10.1016/j.jclepro.2022.131264_bib48
– volume: 218
  start-page: 315
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib9
  article-title: Model predictive control of commercial buildings in demand response programs in the presence of thermal storage
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.01.266
– volume: 132
  start-page: 1088
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib8
  article-title: Whole building optimization of a residential home with PV and battery storage in the Bahamas
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.08.034
– volume: 131
  start-page: 42
  year: 2016
  ident: 10.1016/j.jclepro.2022.131264_bib13
  article-title: Multi-objective optimization of building energy performance and indoor thermal comfort: a new method using artificial bee colony (ABC)
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.09.003
– start-page: 19
  year: 1982
  ident: 10.1016/j.jclepro.2022.131264_bib16
– volume: 34
  start-page: 29
  issue: 8
  year: 2018
  ident: 10.1016/j.jclepro.2022.131264_bib57
  article-title: Optimization of resident controllable energy efficiency load based on demand response
  publication-title: Power Syst. Clean Energy
– volume: 306
  year: 2022
  ident: 10.1016/j.jclepro.2022.131264_bib31
  article-title: Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117900
– volume: 165
  start-page: 930
  year: 2016
  ident: 10.1016/j.jclepro.2022.131264_bib21
  article-title: Energy savings from temperature set points and deadband: quantifying the influence of building and system properties on savings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.115
– volume: 161
  year: 2021
  ident: 10.1016/j.jclepro.2022.131264_bib42
  article-title: Predicting and optimizing the thermal-hydraulic, natural circulation, and neutronics parameters in the NuScale nuclear reactor using nanofluid as a coolant via machine learning methods through GA, PSO and HPSOGA algorithms
  publication-title: Ann. Nucl. Energy
  doi: 10.1016/j.anucene.2021.108375
– volume: 11
  start-page: 719
  year: 2018
  ident: 10.1016/j.jclepro.2022.131264_bib1
  article-title: An application of a novel technique for assessing the operating performance of existing cooling systems on a university campus
  publication-title: Energies
  doi: 10.3390/en11040719
– volume: 101
  start-page: 310
  year: 2013
  ident: 10.1016/j.jclepro.2022.131264_bib10
  article-title: Building operation and energy performance: monitoring, analysis and optimisation toolkit
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.10.037
– volume: 155
  start-page: 350
  year: 2019
  ident: 10.1016/j.jclepro.2022.131264_bib40
  article-title: Rethinking HVAC temperature set points in commercial buildings: the potential for zero-cost energy savings and comfort improvement in different climates
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.03.062
– volume: 256
  year: 2020
  ident: 10.1016/j.jclepro.2022.131264_bib15
  article-title: Optimization approach of passive cool skin technology application for the Building's exterior walls
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120751
– volume: 113
  start-page: 1043
  year: 2014
  ident: 10.1016/j.jclepro.2022.131264_bib39
  article-title: A review on simulation-based optimization methods applied to building performance analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.061
– volume: 92
  start-page: 256
  year: 2015
  ident: 10.1016/j.jclepro.2022.131264_bib33
  article-title: MPC control for improving energy efficiency of a building air handler for multi-zone VAVs
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2015.04.033
– volume: 26
  start-page: 435
  issue: 4
  year: 2011
  ident: 10.1016/j.jclepro.2022.131264_bib35
  article-title: Research on dynamic optimization of air-conditioning temperature setting control in public buildings
  publication-title: J. Syst. Eng.
– volume: 174
  start-page: 293
  year: 2018
  ident: 10.1016/j.jclepro.2022.131264_bib56
  article-title: A hybrid method of dynamic cooling and heating load forecasting for office buildings based on artificial intelligence and regression analysis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.06.050
– volume: 170
  start-page: 293
  year: 2016
  ident: 10.1016/j.jclepro.2022.131264_bib12
  article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.141
– volume: 85
  start-page: 931
  issue: 10
  year: 2008
  ident: 10.1016/j.jclepro.2022.131264_bib52
  article-title: Optimization of water-cooled chiller system with load-based speed control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.02.008
– volume: 52
  start-page: 1650
  issue: 3
  year: 2011
  ident: 10.1016/j.jclepro.2022.131264_bib6
  article-title: A multi-phase genetic algorithm for the efficient management of multi-chiller systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2010.10.028
– volume: 23
  start-page: 539
  issue: 5
  year: 2003
  ident: 10.1016/j.jclepro.2022.131264_bib45
  article-title: A comparison of empirically based steady-stated models for vaporcomparession liquid chillers
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00242-9
– volume: 31
  start-page: 136
  year: 2017
  ident: 10.1016/j.jclepro.2022.131264_bib4
  article-title: A new comprehensive approach for cost-optimal building design integrated with the multi-objective model predictive control of HVAC systems
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.02.010
SSID ssj0017074
Score 2.4911273
Snippet With the improvement of occupants’ requirements for quality of life, the functions and regions of buildings are becoming more and more refined. Large-scale...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131264
SubjectTerms Dynamic temperature set point
energy efficiency
human resources
humans
Intelligent optimization strategy
Model predictive control
Multi-objective optimization
Multi-regional building
quality of life
temperature
Title Multi-regional building energy efficiency intelligent regulation strategy based on multi-objective optimization and model predictive control
URI https://dx.doi.org/10.1016/j.jclepro.2022.131264
https://www.proquest.com/docview/2648878713
Volume 349
WOSCitedRecordID wos000788101400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvGQkxCVKaeIkdo4r1BWgVeHQlSoulpPYaqrdpPSxLP-BH8341ZRqV7scuFiRFafTzBfP2OP5BqF3MsmUgnVHmAtoEpHBlaR5mEYyGiqVyYwoU2yCjsdsOs2_9Xo_fS7MxRltGnZ5mS_-q6qhD5StU2f_Qd3bh0IHXIPSoQW1Q3srxZuU2lAXXDCbfIWrex1Im-UnDWeESbist3Sc62Bpa9JrMKwsYe2vQFu4SkcTzKnDsC3mdnYMWphnzl0Cp4k-mHo6mm-gqu0d7gT8Na4vSCxAGn04rLLstZ0_bWyCmG3qbku7NZ3fZ_VsI7peYWNG3vS6nQtY9GrS03RvCzJLbca8n41JkgeLQUQi8NTCK-d4u90wH8xBWJBzoB_tBnRGzQfyx1_58enJCZ-MppP3ix-hLjemw_Ku9soddBDTNGd9dHD0eTT9sg1A0aEl8PYidslfH6785evcmj0Db7yWyUP0wL1zfGRh8gj1ZPMY3d8hoXyCfv8NGOwBgy1gcAcYvAMY3AEGe8BgAxgMPXuAwbuAwQAYbACDO8BgB5in6PR4NPn4KXQ1OsKSJPE6jCqRwoqUiIRWtJC0KFQZpwV4sUKRIpYxiyip4ipJlYjSUjEwGIqVsopUkidFSZ6hftM28jnCLGflMBoKqUkihSSMskIXd6ASfGCRkkOU-FfMS0dgr-uonHF_UnHOnWa41gy3mjlEg-2whWVwuWkA8_rjzg217iUHBN409K3XN4dpWsfe4HNqNyuuD5LCH6IReXGLe16ie90H8wr118uNfI3ulhfrerV847D6B-wdvuc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-regional+building+energy+efficiency+intelligent+regulation+strategy+based+on+multi-objective+optimization+and+model+predictive+control&rft.jtitle=Journal+of+cleaner+production&rft.au=Du%2C+Yahui&rft.au=Zhou%2C+Zhihua&rft.au=Zhao%2C+Jing&rft.date=2022-05-15&rft.issn=0959-6526&rft.volume=349+p.131264-&rft_id=info:doi/10.1016%2Fj.jclepro.2022.131264&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon