Sensitivity analysis of drill wear and optimization using Adaptive Neuro fuzzy –genetic algorithm technique toward sustainable machining

Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining processes involved drilling operation. Tool wear is a common phenomenon in the machining operation and significantly affects the product dim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of cleaner production Ročník 172; s. 3289 - 3298
Hlavní autoři: Saw, Lip Huat, Ho, Li Wen, Yew, Ming Chian, Yusof, Farazila, Pambudi, Nugroho Agung, Ng, Tan Ching, Yew, Ming Kun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 20.01.2018
Témata:
ISSN:0959-6526, 1879-1786
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining processes involved drilling operation. Tool wear is a common phenomenon in the machining operation and significantly affects the product dimension accuracy, machining efficiency, manufacturing downtime, surface roughness and economic loss. Hence, an intelligent tool condition monitoring system is needed to maximize tool life and reduce machine downtime due to the tool replacement. In this study, experiments were conducted to investigate the influence of different drilling parameters on average drilling torque and thrust force. Effects of spindle rotational speed, feed rate and diameter of drill on tool wear were determined through Adaptive Neuro Fuzzy Inference System (ANFIS). Next, genetic algorithm (GA) was used to identify the optimal drilling parameter for different diameters of drill. Experimental results agreed well with the GA prediction results with a relative error of 3%. Hence, the results showed that ANFIS-GA is a faster and more accurate alternative to the existing methods for tool wear prediction. •We investigated the drill wear using cutting force signal.•We conducted sensitivity analysis of the drill wear on mild steel.•We used Adaptive Neuro Fuzzy Inference system to predict drill wear.•We optimized the drilling parameters using genetic algorithm method.
AbstractList Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining processes involved drilling operation. Tool wear is a common phenomenon in the machining operation and significantly affects the product dimension accuracy, machining efficiency, manufacturing downtime, surface roughness and economic loss. Hence, an intelligent tool condition monitoring system is needed to maximize tool life and reduce machine downtime due to the tool replacement. In this study, experiments were conducted to investigate the influence of different drilling parameters on average drilling torque and thrust force. Effects of spindle rotational speed, feed rate and diameter of drill on tool wear were determined through Adaptive Neuro Fuzzy Inference System (ANFIS). Next, genetic algorithm (GA) was used to identify the optimal drilling parameter for different diameters of drill. Experimental results agreed well with the GA prediction results with a relative error of 3%. Hence, the results showed that ANFIS-GA is a faster and more accurate alternative to the existing methods for tool wear prediction. •We investigated the drill wear using cutting force signal.•We conducted sensitivity analysis of the drill wear on mild steel.•We used Adaptive Neuro Fuzzy Inference system to predict drill wear.•We optimized the drilling parameters using genetic algorithm method.
Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining processes involved drilling operation. Tool wear is a common phenomenon in the machining operation and significantly affects the product dimension accuracy, machining efficiency, manufacturing downtime, surface roughness and economic loss. Hence, an intelligent tool condition monitoring system is needed to maximize tool life and reduce machine downtime due to the tool replacement. In this study, experiments were conducted to investigate the influence of different drilling parameters on average drilling torque and thrust force. Effects of spindle rotational speed, feed rate and diameter of drill on tool wear were determined through Adaptive Neuro Fuzzy Inference System (ANFIS). Next, genetic algorithm (GA) was used to identify the optimal drilling parameter for different diameters of drill. Experimental results agreed well with the GA prediction results with a relative error of 3%. Hence, the results showed that ANFIS-GA is a faster and more accurate alternative to the existing methods for tool wear prediction.
Author Yew, Ming Kun
Yew, Ming Chian
Ng, Tan Ching
Saw, Lip Huat
Yusof, Farazila
Ho, Li Wen
Pambudi, Nugroho Agung
Author_xml – sequence: 1
  givenname: Lip Huat
  surname: Saw
  fullname: Saw, Lip Huat
  email: sawlh@utar.edu.my
  organization: Lee Kong Chian Faculty of Engineering and Science, UTAR, Selangor, 43000, Malaysia
– sequence: 2
  givenname: Li Wen
  surname: Ho
  fullname: Ho, Li Wen
  organization: Tech-lab Manufacturing Sdn Bhd, Selangor, 43200, Malaysia
– sequence: 3
  givenname: Ming Chian
  surname: Yew
  fullname: Yew, Ming Chian
  organization: Lee Kong Chian Faculty of Engineering and Science, UTAR, Selangor, 43000, Malaysia
– sequence: 4
  givenname: Farazila
  surname: Yusof
  fullname: Yusof, Farazila
  organization: Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, 53600, Malaysia
– sequence: 5
  givenname: Nugroho Agung
  surname: Pambudi
  fullname: Pambudi, Nugroho Agung
  organization: Mechanical Engineering Education, Universitas Negeri Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia
– sequence: 6
  givenname: Tan Ching
  surname: Ng
  fullname: Ng, Tan Ching
  organization: Lee Kong Chian Faculty of Engineering and Science, UTAR, Selangor, 43000, Malaysia
– sequence: 7
  givenname: Ming Kun
  surname: Yew
  fullname: Yew, Ming Kun
  organization: Lee Kong Chian Faculty of Engineering and Science, UTAR, Selangor, 43000, Malaysia
BookMark eNqFkc1uEzEUhS1UJNLCIyB5ySZhPD-esVigquJPqmABrC2PfZ3cyGMH25MqWbHutm_Ik-CQrth0daWj8x1dnXNJLnzwQMhrVq1Yxfjb7WqrHexiWNUV64u2aqrmGVmwoRdL1g_8giwq0Ykl72r-glymtK2KserbBbn_Dj5hxj3mA1VeuUPCRIOlJqJz9A5ULLKhYZdxwqPKGDydE_o1vTaqiHugX2GOgdr5eDzQP78f1uAho6bKrUPEvJloBr3x-GsGmsOdioamOWWFXo0O6KT0Bn0JfEmeW-USvHq8V-Tnxw8_bj4vb799-nJzfbvUTVvnJetqLVRvjVZt2wwCBjOMvWpHoTnnnerGtrHKMsZt1Y52EL0YemDc2LFno9HNFXlzzi2NlZ9SlhMmDc4pD2FOsmYNGwQXtSjWd2erjiGlCFZqzP86yFGhk6ySpwXkVj4uIE8LnOSyQKG7_-hdxEnFw5Pc-zMHpYU9QpRJI3gNBiPoLE3AJxL-Akwkq88
CitedBy_id crossref_primary_10_1177_16878132231196408
crossref_primary_10_1016_j_ymssp_2021_107738
crossref_primary_10_1016_j_pce_2024_103650
crossref_primary_10_1007_s10853_024_10233_2
crossref_primary_10_1016_j_jclepro_2020_121160
crossref_primary_10_3390_machines11080806
crossref_primary_10_3390_s24010307
crossref_primary_10_1177_0954405420935262
crossref_primary_10_1016_j_cie_2024_110272
crossref_primary_10_1016_j_cirpj_2021_11_007
crossref_primary_10_3390_su13084271
crossref_primary_10_1017_S089006042400009X
crossref_primary_10_1016_j_smse_2023_100009
crossref_primary_10_1016_j_jmatprotec_2018_04_044
crossref_primary_10_1016_j_rcim_2022_102344
crossref_primary_10_1016_j_rcim_2022_102488
crossref_primary_10_1016_j_jclepro_2019_117711
crossref_primary_10_3390_ma13214952
crossref_primary_10_1007_s40436_023_00451_3
crossref_primary_10_1109_ACCESS_2020_3040196
crossref_primary_10_1007_s10845_020_01559_0
crossref_primary_10_1002_eng2_70279
crossref_primary_10_1007_s00170_019_04821_9
crossref_primary_10_3139_120_111344
crossref_primary_10_1155_2023_5647442
crossref_primary_10_1016_j_jclepro_2020_122585
crossref_primary_10_1155_2023_5401372
crossref_primary_10_1016_j_jer_2023_09_016
crossref_primary_10_1007_s40436_020_00339_6
crossref_primary_10_1016_j_ijdrr_2023_104092
crossref_primary_10_1016_j_measurement_2020_107478
crossref_primary_10_1016_j_cirpj_2022_06_001
Cites_doi 10.1016/j.asoc.2006.06.001
10.1016/S1003-6326(13)62764-8
10.1109/TLT.2011.36
10.1016/j.jclepro.2014.11.049
10.1016/j.proeng.2012.09.572
10.1016/j.proeng.2013.09.164
10.1016/j.jmatprotec.2007.06.029
10.1016/j.matpr.2015.07.317
10.1016/j.procs.2014.09.054
10.1016/j.matpr.2015.07.219
10.1109/21.256541
10.1016/0043-1648(94)06539-X
10.1016/j.cageo.2012.02.004
10.1016/S0890-6955(00)00112-7
10.1016/S0890-6955(02)00059-7
10.1016/S0890-6955(03)00023-3
10.1007/BF02823145
10.1016/j.medengphy.2015.03.014
10.1016/j.jclepro.2012.03.014
10.1016/j.wear.2014.05.007
10.1016/j.ymssp.2008.02.010
10.1016/j.advengsoft.2014.12.010
10.1016/S0166-3615(96)00075-9
10.1016/j.jclepro.2015.04.057
10.1016/j.precisioneng.2014.04.007
10.1016/j.measurement.2012.01.008
10.1016/j.jclepro.2017.08.178
10.1016/0890-6955(91)90051-4
10.1016/j.jclepro.2015.06.095
10.1016/j.wear.2015.05.009
10.1016/S0890-6955(02)00040-8
10.1016/0890-6955(95)00059-3
10.1115/1.3187869
10.1016/j.procir.2014.03.050
10.1016/j.compstruct.2015.04.025
10.1016/j.mspro.2015.04.126
10.1115/1.3187884
10.1016/j.asoc.2008.11.005
10.1016/j.jclepro.2016.09.125
10.1016/j.phpro.2010.01.105
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2017.10.303
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
EndPage 3298
ExternalDocumentID 10_1016_j_jclepro_2017_10_303
S0959652617326082
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
29K
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-152c9a7fdca44389e8d8b7a4b9c6665a5b43faf116f04bf897987e16dfb71bdc3
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423002500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-6526
IngestDate Sun Sep 28 09:00:57 EDT 2025
Tue Nov 18 21:18:50 EST 2025
Sat Nov 29 07:08:50 EST 2025
Fri Feb 23 02:46:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Drilling
Multi-objective optimization
ANFIS
Tool condition monitoring
Tool wear
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-152c9a7fdca44389e8d8b7a4b9c6665a5b43faf116f04bf897987e16dfb71bdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2131896929
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2131896929
crossref_citationtrail_10_1016_j_jclepro_2017_10_303
crossref_primary_10_1016_j_jclepro_2017_10_303
elsevier_sciencedirect_doi_10_1016_j_jclepro_2017_10_303
PublicationCentury 2000
PublicationDate 2018-01-20
PublicationDateYYYYMMDD 2018-01-20
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-20
  day: 20
PublicationDecade 2010
PublicationTitle Journal of cleaner production
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kalpakjian, Schmid (bib26) 2008
Hosoz, Ertunc, Bulgurcu (bib22) 2011; 38
Karimi, Minak, Kianfar (bib27) 2015; 131
Azmi (bib6) 2015; 82
Pecat, Brinksmeier (bib39) 2014; 14
Zhang, Li, Wang (bib52) 2012; 32
Wang, Kwon, Sturtevant, Kim, Lantrip (bib48) 2014; 317
Kim, Ahn (bib29) 2002; 42
Li, Wu (bib32) 1988; 110
Staroveski, Brezak, Udiljak (bib42) 2015; 37
Bo, Gao (bib10) 2014
Taskesen, Kutukde (bib44) 2013; 23
Aliustaoglu, Ertunc, Ocak (bib4) 2009; 23
Bhoskar, Kulkarni, Kulkarni, Petekar, Kakandikar, Nandedkar (bib8) 2015; 2
Kibble, Neely, Meyer, White (bib28) 2002
Vrabel, Mankova, Beno, Tuharsky (bib47) 2012; 48
Ferrari, Gomez (bib17) 2015; 8
Niketh, Samuel (bib37) 2017; 167
Thangaraj, Wright (bib45) 1988; 110
Fan, Hao, Lin, Yu (bib16) 2015; 90
Nam, Kim, Chung, Lee (bib36) 2015; 102
Tipnis, Peterson, Winer (bib46) 1980
Schnetler, Kohlhofer, Gleeson (bib41) 2009
Deb (bib12) 1999; 24
Lin, Ting (bib33) 1995; 180
Patra, Pal, Bhattacharyya (bib38) 2007; 7
Haber, Haber, Jimenez, Galan (bib20) 2009; 9
Ambhore, Kamble, Chinchanikar, Wayal (bib5) 2015; 2
Lin, Ting (bib34) 1996; 36
Kurada, Bradley (bib31) 1997; 34
Celik, Lazoglu, Kara, Kara (bib11) 2015; 338–339
Abu-Mahfouz, Banerjee (bib2) 2014; 36
Boothroyd, Knight (bib9) 1989
Xu, Yamada, Seikiya, Tanaka, Yamane (bib50) 2014; 38
Krishnamoorthy, Boopathy, Palanikumar, Davim (bib30) 2012; 45
Elbestawi, Papazafiriou, Du (bib14) 1991; 31
Holland (bib21) 1975
Durairaj, Gowri (bib13) 2013; 64
Wang, Li, Chen, Liu (bib49) 2015; 108
Mathew, Vijayaraghavan (bib35) 2017; 141
Al-Hmouz, Jun, Al-Hmouz, Yan (bib3) 2012; vol. 5
Gaitonde, Karnik, Achyutha, Siddeswarappa (bib18) 2008; 197
Jantunen (bib25) 2002; 42
Tahmasebi, Hezarkhani (bib43) 2012; 42
Bagal (bib7) 2012
Abu-Mahfouz (bib1) 2003; 43
Ertunc, Loparo, Ocak (bib15) 2001; 41
Gomez, Hey, Ruzzante, D'Attellis (bib19) 2010; 3
Jang (bib23) 1993; 23
Roy (bib40) 2005; 64
Ambhore (10.1016/j.jclepro.2017.10.303_bib5) 2015; 2
Azmi (10.1016/j.jclepro.2017.10.303_bib6) 2015; 82
Zhang (10.1016/j.jclepro.2017.10.303_bib52) 2012; 32
Mathew (10.1016/j.jclepro.2017.10.303_bib35) 2017; 141
Bhoskar (10.1016/j.jclepro.2017.10.303_bib8) 2015; 2
Elbestawi (10.1016/j.jclepro.2017.10.303_bib14) 1991; 31
Xu (10.1016/j.jclepro.2017.10.303_bib50) 2014; 38
Bo (10.1016/j.jclepro.2017.10.303_bib10) 2014
Lin (10.1016/j.jclepro.2017.10.303_bib33) 1995; 180
Al-Hmouz (10.1016/j.jclepro.2017.10.303_bib3) 2012; vol. 5
Gaitonde (10.1016/j.jclepro.2017.10.303_bib18) 2008; 197
Bagal (10.1016/j.jclepro.2017.10.303_bib7) 2012
Jang (10.1016/j.jclepro.2017.10.303_bib23) 1993; 23
Holland (10.1016/j.jclepro.2017.10.303_bib21) 1975
Durairaj (10.1016/j.jclepro.2017.10.303_bib13) 2013; 64
Taskesen (10.1016/j.jclepro.2017.10.303_bib44) 2013; 23
Wang (10.1016/j.jclepro.2017.10.303_bib49) 2015; 108
Kim (10.1016/j.jclepro.2017.10.303_bib29) 2002; 42
Pecat (10.1016/j.jclepro.2017.10.303_bib39) 2014; 14
Tahmasebi (10.1016/j.jclepro.2017.10.303_bib43) 2012; 42
Ertunc (10.1016/j.jclepro.2017.10.303_bib15) 2001; 41
Vrabel (10.1016/j.jclepro.2017.10.303_bib47) 2012; 48
Abu-Mahfouz (10.1016/j.jclepro.2017.10.303_bib1) 2003; 43
Celik (10.1016/j.jclepro.2017.10.303_bib11) 2015; 338–339
Krishnamoorthy (10.1016/j.jclepro.2017.10.303_bib30) 2012; 45
Schnetler (10.1016/j.jclepro.2017.10.303_bib41) 2009
Gomez (10.1016/j.jclepro.2017.10.303_bib19) 2010; 3
Staroveski (10.1016/j.jclepro.2017.10.303_bib42) 2015; 37
Kurada (10.1016/j.jclepro.2017.10.303_bib31) 1997; 34
Nam (10.1016/j.jclepro.2017.10.303_bib36) 2015; 102
Roy (10.1016/j.jclepro.2017.10.303_bib40) 2005; 64
Hosoz (10.1016/j.jclepro.2017.10.303_bib22) 2011; 38
Wang (10.1016/j.jclepro.2017.10.303_bib48) 2014; 317
Aliustaoglu (10.1016/j.jclepro.2017.10.303_bib4) 2009; 23
Abu-Mahfouz (10.1016/j.jclepro.2017.10.303_bib2) 2014; 36
Fan (10.1016/j.jclepro.2017.10.303_bib16) 2015; 90
Ferrari (10.1016/j.jclepro.2017.10.303_bib17) 2015; 8
Kalpakjian (10.1016/j.jclepro.2017.10.303_bib26) 2008
Karimi (10.1016/j.jclepro.2017.10.303_bib27) 2015; 131
Lin (10.1016/j.jclepro.2017.10.303_bib34) 1996; 36
Deb (10.1016/j.jclepro.2017.10.303_bib12) 1999; 24
Kibble (10.1016/j.jclepro.2017.10.303_bib28) 2002
Boothroyd (10.1016/j.jclepro.2017.10.303_bib9) 1989
Niketh (10.1016/j.jclepro.2017.10.303_bib37) 2017; 167
Jantunen (10.1016/j.jclepro.2017.10.303_bib25) 2002; 42
Li (10.1016/j.jclepro.2017.10.303_bib32) 1988; 110
Haber (10.1016/j.jclepro.2017.10.303_bib20) 2009; 9
Tipnis (10.1016/j.jclepro.2017.10.303_bib46) 1980
Patra (10.1016/j.jclepro.2017.10.303_bib38) 2007; 7
Thangaraj (10.1016/j.jclepro.2017.10.303_bib45) 1988; 110
References_xml – volume: 82
  start-page: 53
  year: 2015
  end-page: 64
  ident: bib6
  article-title: Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites
  publication-title: Adv. Eng. Softw.
– year: 2008
  ident: bib26
  article-title: Manufacturing Processes for Engineering Materials
– volume: 14
  start-page: 142
  year: 2014
  end-page: 147
  ident: bib39
  article-title: Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6Al4V stack material
  publication-title: Procedia. CIRP
– year: 2009
  ident: bib41
  article-title: Fitting and Turning
– volume: 41
  start-page: 1363
  year: 2001
  end-page: 1384
  ident: bib15
  article-title: Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)
  publication-title: Int. J. Mach. Tool. Manu
– volume: 8
  start-page: 693
  year: 2015
  end-page: 701
  ident: bib17
  article-title: Correlation between acoustic emission, thrust and tool wear in drilling
  publication-title: Procedia. Mater. Sci.
– volume: 102
  start-page: 428
  year: 2015
  end-page: 436
  ident: bib36
  article-title: Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm
  publication-title: J. Clean. Prod.
– volume: 338–339
  start-page: 11
  year: 2015
  end-page: 21
  ident: bib11
  article-title: Wear on SiAlON ceramic tools in drilling of aerospace grade CFRP composites
  publication-title: Wear
– volume: 9
  start-page: 889
  year: 2009
  end-page: 895
  ident: bib20
  article-title: An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process
  publication-title: Appl. Soft. Comput.
– volume: 23
  start-page: 539
  year: 2009
  end-page: 546
  ident: bib4
  article-title: Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system
  publication-title: Mech. Syst. Signal. P. R.
– volume: 167
  start-page: 253
  year: 2017
  end-page: 270
  ident: bib37
  article-title: Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy
  publication-title: J. Clean. Prod.
– year: 1975
  ident: bib21
  article-title: Adaption in Natural and Artifical Systems
– volume: 37
  start-page: 560
  year: 2015
  end-page: 566
  ident: bib42
  article-title: Drill wear monitoring in cortical bone drilling
  publication-title: Med. Eng. Phys.
– volume: 64
  start-page: 653
  year: 2005
  end-page: 659
  ident: bib40
  article-title: Design of adaptive neuro-fuzzy inference system for predicting surface roughness in turning operation
  publication-title: J. Sci. Ind. Res.
– volume: 24
  start-page: 293
  year: 1999
  end-page: 315
  ident: bib12
  article-title: An introduction to genetic algorithms
  publication-title: Sadhana
– year: 1989
  ident: bib9
  article-title: Fundamentals of Machining and Machine Tools
– volume: 141
  start-page: 439
  year: 2017
  end-page: 452
  ident: bib35
  article-title: Environmentally friendly drilling of intermetallic titanium aluminide at different aspect ratio
  publication-title: J. Clean. Prod.
– volume: 108
  start-page: 145
  year: 2015
  end-page: 157
  ident: bib49
  article-title: Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays
  publication-title: J. Clean. Prod.
– volume: 36
  start-page: 556
  year: 2014
  end-page: 563
  ident: bib2
  article-title: Drill wear feature identification under varying cutting conditions using vibration and cutting force signals and data mining techniques
  publication-title: Procedia. Comp. Sci.
– volume: 317
  start-page: 265
  year: 2014
  end-page: 276
  ident: bib48
  article-title: Comparative tool wear study based on drilling experiments on CFRp/Ti stack and its individual layers
  publication-title: Wear
– volume: 180
  start-page: 53
  year: 1995
  end-page: 60
  ident: bib33
  article-title: Tool wear monitoring in drilling using force signals
  publication-title: Wear
– year: 2002
  ident: bib28
  article-title: Machine Tool Practice
– volume: 131
  start-page: 107
  year: 2015
  end-page: 114
  ident: bib27
  article-title: Analysis of damage mechanisms in drilling of composite materials by acoustic emission
  publication-title: Compos. Struct.
– volume: 7
  start-page: 929
  year: 2007
  end-page: 935
  ident: bib38
  article-title: Artificial neural network based prediction of drill flank wear from motor current signals
  publication-title: Appl. Soft. Comput.
– volume: 64
  start-page: 878
  year: 2013
  end-page: 887
  ident: bib13
  article-title: Parametric optimization for improved tool life and surface finish in micro turning using genetic algorithm
  publication-title: Procedia. Eng.
– volume: 3
  start-page: 819
  year: 2010
  end-page: 825
  ident: bib19
  article-title: Tool wear evaluation in drilling by acoustic emission
  publication-title: Phys. Procedia
– volume: 2
  start-page: 3419
  year: 2015
  end-page: 3428
  ident: bib5
  article-title: Tool condition monitoring system: a review
  publication-title: Mater. Today Proc.
– volume: 110
  start-page: 297
  year: 1988
  end-page: 300
  ident: bib32
  article-title: Monitoring drilling wear states by a fuzzy pattern recognition technique
  publication-title: J. Eng. Ind.
– volume: 38
  start-page: 791
  year: 2014
  end-page: 798
  ident: bib50
  article-title: Effect of different features to drill-wear prediction with black propagation neural network
  publication-title: Precis. Eng.
– year: 2012
  ident: bib7
  article-title: Experimental Investigation and Modelling Micro Drilling Operation of Aerospace Material
– volume: 31
  start-page: 55
  year: 1991
  end-page: 73
  ident: bib14
  article-title: In process monitoring of tool wear in milling using cutting force signature
  publication-title: Int. J. Mach. Tool. Manu
– volume: 90
  start-page: 381
  year: 2015
  end-page: 387
  ident: bib16
  article-title: New observations on tool wear mechanism in machining Inconnel 718 under water vapor+air cooling lubrication cutting conditions
  publication-title: J. Clean. Prod.
– volume: 197
  start-page: 225
  year: 2008
  end-page: 236
  ident: bib18
  article-title: Genetic algorithm-based burr size minimization in drilling of AISI 316L stainless steel
  publication-title: J. Mater. Process. Tech.
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: bib23
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: Ieee. Trans. Syst. Man. Cybern.
– volume: 2
  start-page: 2624
  year: 2015
  end-page: 2630
  ident: bib8
  article-title: Genetic algorithm and its applications to mechanical engineering: a review
  publication-title: Mater. Today Proc.
– volume: 23
  start-page: 2524
  year: 2013
  end-page: 2536
  ident: bib44
  article-title: Analysis and optimization of drilling parameters for tool wear and hole dimensional accuracy in B
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: vol. 5
  start-page: 226
  year: 2012
  end-page: 237
  ident: bib3
  article-title: Modeling and simulation of an Adaptive Neuro-fuzzy Inference System (ANFIS) for mobile learning
  publication-title: Ieee. Trans. Learn. Tech.
– volume: 38
  start-page: 14148
  year: 2011
  end-page: 14155
  ident: bib22
  article-title: An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower
  publication-title: Expt. Syst. Appl.
– volume: 45
  start-page: 1286
  year: 2012
  end-page: 1296
  ident: bib30
  article-title: Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics
  publication-title: Meas
– year: 2014
  ident: bib10
  article-title: Computational Intelligence in Remanufacturing
– volume: 32
  start-page: 81
  year: 2012
  end-page: 87
  ident: bib52
  article-title: Tool life and cutting force in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions
  publication-title: J. Clean. Prod.
– year: 1980
  ident: bib46
  article-title: Wear Control Handbook
– volume: 42
  start-page: 997
  year: 2002
  end-page: 1010
  ident: bib25
  article-title: A summary of methods applied to tool condition monitoring in drilling
  publication-title: Int. J. Mach. Tool. Manu
– volume: 110
  start-page: 192
  year: 1988
  end-page: 200
  ident: bib45
  article-title: Computer-assisted prediction of drill-failure using in-process measurements of thrust force
  publication-title: J. Eng. Ind.
– volume: 48
  start-page: 693
  year: 2012
  end-page: 700
  ident: bib47
  article-title: Surface roughness prediction using artificial neural networks when drilling Udimet 720
  publication-title: Procedia. Eng.
– volume: 36
  start-page: 465
  year: 1996
  end-page: 475
  ident: bib34
  article-title: Drill wear monitoring using neural networks
  publication-title: Int. J. Mach. Tool. Manu
– volume: 42
  start-page: 1113
  year: 2002
  end-page: 1119
  ident: bib29
  article-title: Chip disposal state monitoring in drilling using neural network based spindle motor power sensing
  publication-title: Int. J. Mach. Tool. Manu
– volume: 34
  start-page: 55
  year: 1997
  end-page: 72
  ident: bib31
  article-title: A review of machine vision sensors for tool condition monitoring
  publication-title: Comp. Ind.
– volume: 42
  start-page: 18
  year: 2012
  end-page: 27
  ident: bib43
  article-title: A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
  publication-title: Comp. Geosci.
– volume: 43
  start-page: 707
  year: 2003
  end-page: 720
  ident: bib1
  article-title: Drilling wear detection and classification using vibration signals and artificial neural network
  publication-title: Inter. J. Mach. Tool. Manu
– year: 2002
  ident: 10.1016/j.jclepro.2017.10.303_bib28
– volume: 7
  start-page: 929
  year: 2007
  ident: 10.1016/j.jclepro.2017.10.303_bib38
  article-title: Artificial neural network based prediction of drill flank wear from motor current signals
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2006.06.001
– volume: 23
  start-page: 2524
  year: 2013
  ident: 10.1016/j.jclepro.2017.10.303_bib44
  article-title: Analysis and optimization of drilling parameters for tool wear and hole dimensional accuracy in B4C reinforced Al-alloy
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(13)62764-8
– volume: vol. 5
  start-page: 226
  year: 2012
  ident: 10.1016/j.jclepro.2017.10.303_bib3
  article-title: Modeling and simulation of an Adaptive Neuro-fuzzy Inference System (ANFIS) for mobile learning
  publication-title: Ieee. Trans. Learn. Tech.
  doi: 10.1109/TLT.2011.36
– volume: 90
  start-page: 381
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib16
  article-title: New observations on tool wear mechanism in machining Inconnel 718 under water vapor+air cooling lubrication cutting conditions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.11.049
– volume: 48
  start-page: 693
  year: 2012
  ident: 10.1016/j.jclepro.2017.10.303_bib47
  article-title: Surface roughness prediction using artificial neural networks when drilling Udimet 720
  publication-title: Procedia. Eng.
  doi: 10.1016/j.proeng.2012.09.572
– volume: 64
  start-page: 878
  year: 2013
  ident: 10.1016/j.jclepro.2017.10.303_bib13
  article-title: Parametric optimization for improved tool life and surface finish in micro turning using genetic algorithm
  publication-title: Procedia. Eng.
  doi: 10.1016/j.proeng.2013.09.164
– volume: 197
  start-page: 225
  year: 2008
  ident: 10.1016/j.jclepro.2017.10.303_bib18
  article-title: Genetic algorithm-based burr size minimization in drilling of AISI 316L stainless steel
  publication-title: J. Mater. Process. Tech.
  doi: 10.1016/j.jmatprotec.2007.06.029
– volume: 2
  start-page: 3419
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib5
  article-title: Tool condition monitoring system: a review
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2015.07.317
– volume: 36
  start-page: 556
  year: 2014
  ident: 10.1016/j.jclepro.2017.10.303_bib2
  article-title: Drill wear feature identification under varying cutting conditions using vibration and cutting force signals and data mining techniques
  publication-title: Procedia. Comp. Sci.
  doi: 10.1016/j.procs.2014.09.054
– volume: 2
  start-page: 2624
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib8
  article-title: Genetic algorithm and its applications to mechanical engineering: a review
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2015.07.219
– volume: 23
  start-page: 665
  year: 1993
  ident: 10.1016/j.jclepro.2017.10.303_bib23
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: Ieee. Trans. Syst. Man. Cybern.
  doi: 10.1109/21.256541
– volume: 180
  start-page: 53
  year: 1995
  ident: 10.1016/j.jclepro.2017.10.303_bib33
  article-title: Tool wear monitoring in drilling using force signals
  publication-title: Wear
  doi: 10.1016/0043-1648(94)06539-X
– volume: 42
  start-page: 18
  year: 2012
  ident: 10.1016/j.jclepro.2017.10.303_bib43
  article-title: A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation
  publication-title: Comp. Geosci.
  doi: 10.1016/j.cageo.2012.02.004
– volume: 64
  start-page: 653
  year: 2005
  ident: 10.1016/j.jclepro.2017.10.303_bib40
  article-title: Design of adaptive neuro-fuzzy inference system for predicting surface roughness in turning operation
  publication-title: J. Sci. Ind. Res.
– volume: 41
  start-page: 1363
  year: 2001
  ident: 10.1016/j.jclepro.2017.10.303_bib15
  article-title: Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs)
  publication-title: Int. J. Mach. Tool. Manu
  doi: 10.1016/S0890-6955(00)00112-7
– volume: 42
  start-page: 1113
  year: 2002
  ident: 10.1016/j.jclepro.2017.10.303_bib29
  article-title: Chip disposal state monitoring in drilling using neural network based spindle motor power sensing
  publication-title: Int. J. Mach. Tool. Manu
  doi: 10.1016/S0890-6955(02)00059-7
– volume: 43
  start-page: 707
  year: 2003
  ident: 10.1016/j.jclepro.2017.10.303_bib1
  article-title: Drilling wear detection and classification using vibration signals and artificial neural network
  publication-title: Inter. J. Mach. Tool. Manu
  doi: 10.1016/S0890-6955(03)00023-3
– volume: 24
  start-page: 293
  year: 1999
  ident: 10.1016/j.jclepro.2017.10.303_bib12
  article-title: An introduction to genetic algorithms
  publication-title: Sadhana
  doi: 10.1007/BF02823145
– volume: 37
  start-page: 560
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib42
  article-title: Drill wear monitoring in cortical bone drilling
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.03.014
– year: 2009
  ident: 10.1016/j.jclepro.2017.10.303_bib41
– volume: 32
  start-page: 81
  year: 2012
  ident: 10.1016/j.jclepro.2017.10.303_bib52
  article-title: Tool life and cutting force in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.03.014
– year: 1989
  ident: 10.1016/j.jclepro.2017.10.303_bib9
– volume: 317
  start-page: 265
  year: 2014
  ident: 10.1016/j.jclepro.2017.10.303_bib48
  article-title: Comparative tool wear study based on drilling experiments on CFRp/Ti stack and its individual layers
  publication-title: Wear
  doi: 10.1016/j.wear.2014.05.007
– volume: 23
  start-page: 539
  year: 2009
  ident: 10.1016/j.jclepro.2017.10.303_bib4
  article-title: Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system
  publication-title: Mech. Syst. Signal. P. R.
  doi: 10.1016/j.ymssp.2008.02.010
– volume: 82
  start-page: 53
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib6
  article-title: Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2014.12.010
– volume: 34
  start-page: 55
  year: 1997
  ident: 10.1016/j.jclepro.2017.10.303_bib31
  article-title: A review of machine vision sensors for tool condition monitoring
  publication-title: Comp. Ind.
  doi: 10.1016/S0166-3615(96)00075-9
– volume: 102
  start-page: 428
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib36
  article-title: Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.04.057
– volume: 38
  start-page: 791
  year: 2014
  ident: 10.1016/j.jclepro.2017.10.303_bib50
  article-title: Effect of different features to drill-wear prediction with black propagation neural network
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2014.04.007
– volume: 45
  start-page: 1286
  year: 2012
  ident: 10.1016/j.jclepro.2017.10.303_bib30
  article-title: Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics
  publication-title: Meas
  doi: 10.1016/j.measurement.2012.01.008
– volume: 167
  start-page: 253
  year: 2017
  ident: 10.1016/j.jclepro.2017.10.303_bib37
  article-title: Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.08.178
– volume: 31
  start-page: 55
  year: 1991
  ident: 10.1016/j.jclepro.2017.10.303_bib14
  article-title: In process monitoring of tool wear in milling using cutting force signature
  publication-title: Int. J. Mach. Tool. Manu
  doi: 10.1016/0890-6955(91)90051-4
– year: 2008
  ident: 10.1016/j.jclepro.2017.10.303_bib26
– volume: 108
  start-page: 145
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib49
  article-title: Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.06.095
– volume: 338–339
  start-page: 11
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib11
  article-title: Wear on SiAlON ceramic tools in drilling of aerospace grade CFRP composites
  publication-title: Wear
  doi: 10.1016/j.wear.2015.05.009
– year: 2014
  ident: 10.1016/j.jclepro.2017.10.303_bib10
– volume: 42
  start-page: 997
  year: 2002
  ident: 10.1016/j.jclepro.2017.10.303_bib25
  article-title: A summary of methods applied to tool condition monitoring in drilling
  publication-title: Int. J. Mach. Tool. Manu
  doi: 10.1016/S0890-6955(02)00040-8
– volume: 36
  start-page: 465
  year: 1996
  ident: 10.1016/j.jclepro.2017.10.303_bib34
  article-title: Drill wear monitoring using neural networks
  publication-title: Int. J. Mach. Tool. Manu
  doi: 10.1016/0890-6955(95)00059-3
– volume: 110
  start-page: 192
  year: 1988
  ident: 10.1016/j.jclepro.2017.10.303_bib45
  article-title: Computer-assisted prediction of drill-failure using in-process measurements of thrust force
  publication-title: J. Eng. Ind.
  doi: 10.1115/1.3187869
– year: 1975
  ident: 10.1016/j.jclepro.2017.10.303_bib21
– volume: 14
  start-page: 142
  year: 2014
  ident: 10.1016/j.jclepro.2017.10.303_bib39
  article-title: Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6Al4V stack material
  publication-title: Procedia. CIRP
  doi: 10.1016/j.procir.2014.03.050
– year: 2012
  ident: 10.1016/j.jclepro.2017.10.303_bib7
– volume: 131
  start-page: 107
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib27
  article-title: Analysis of damage mechanisms in drilling of composite materials by acoustic emission
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.04.025
– year: 1980
  ident: 10.1016/j.jclepro.2017.10.303_bib46
– volume: 8
  start-page: 693
  year: 2015
  ident: 10.1016/j.jclepro.2017.10.303_bib17
  article-title: Correlation between acoustic emission, thrust and tool wear in drilling
  publication-title: Procedia. Mater. Sci.
  doi: 10.1016/j.mspro.2015.04.126
– volume: 110
  start-page: 297
  year: 1988
  ident: 10.1016/j.jclepro.2017.10.303_bib32
  article-title: Monitoring drilling wear states by a fuzzy pattern recognition technique
  publication-title: J. Eng. Ind.
  doi: 10.1115/1.3187884
– volume: 9
  start-page: 889
  year: 2009
  ident: 10.1016/j.jclepro.2017.10.303_bib20
  article-title: An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2008.11.005
– volume: 38
  start-page: 14148
  year: 2011
  ident: 10.1016/j.jclepro.2017.10.303_bib22
  article-title: An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower
  publication-title: Expt. Syst. Appl.
– volume: 141
  start-page: 439
  year: 2017
  ident: 10.1016/j.jclepro.2017.10.303_bib35
  article-title: Environmentally friendly drilling of intermetallic titanium aluminide at different aspect ratio
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.09.125
– volume: 3
  start-page: 819
  year: 2010
  ident: 10.1016/j.jclepro.2017.10.303_bib19
  article-title: Tool wear evaluation in drilling by acoustic emission
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2010.01.105
SSID ssj0017074
Score 2.3851988
Snippet Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3289
SubjectTerms algorithms
ANFIS
Drilling
economic development
financial economics
fuzzy logic
manufacturing
monitoring
Multi-objective optimization
prediction
surface roughness
Tool condition monitoring
Tool wear
torque
Title Sensitivity analysis of drill wear and optimization using Adaptive Neuro fuzzy –genetic algorithm technique toward sustainable machining
URI https://dx.doi.org/10.1016/j.jclepro.2017.10.303
https://www.proquest.com/docview/2131896929
Volume 172
WOSCitedRecordID wos000423002500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1786
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017074
  issn: 0959-6526
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF1FKQc4ID5Fy4cWiZvlYHvtrPcYoVaBQ4VEEenJWnu9NJFjR07ctDn1zJXfxB_hlzC7aztWCpQeuFjRSt6sPc874_GbNwi9gSDYD4RLbB460vbd2LeZgEDOIwK8T0olY6bZBD0-DicT9rHX-9HUwpxnNM_Diwu2-K-mhjEwtiqdvYW520lhAH6D0eEIZofjPxn-k6Kk1z0heEdyRJTTLLPWSrhHJcsL2CvmdRGmVemMwUjwhWYSacUOS1abzaXVsCEI_GGq1V2zr0U5XZ3Nra3-60qTb61lpxprrlmajWO8Hv7CqnmeloogJoyCbZvs4WuTLVhY44q3tJxxYUatL9vqtdN0bbj_irxw1kH6abUstNzkES_5ZprxbnbDVcQ623N20pTDwFTVtzu26fZT77nEM02Iav9NPNPW-ppvMGmK2WAGFwjXpmh9dKCyFg7ZOsOGALDjI1vmYkOKm0X1NJGaBsYiojRn9zwasLCP9kbvDycf2s9Z1DFy4M3FbEvJ3v52PX8KknbCBR0DnTxA92vr4ZEB3UPUS_NH6F5H0vIx-taBH27ghwuJNfywgh8MC9yFH9bwww38sIYf1vDDP6--18DDLfBwCzxsgIc7wMMt8J6gz0eHJ-_Gdt3vw06I761sCCUTxqkUCfd9CKTTUIQx5X7MEnjJDngQ-0Ry6bpD6fixDBllIU3doZAxdWORkKeonxd5-gzhUCYk4TE4ozjwqUw4EakImATzUOYIsY_85gZHSS2Gr3qyZNFfDbyPBu1pC6MGc9MJYWO9qA5pTagaASpvOvV1Y-0Itnz1HQ8ey6JaRp4LjpgN4cXm4LbreY7ubp-yF6i_Kqv0JbqTnK-my_JVDdtftGXa0g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+of+drill+wear+and+optimization+using+Adaptive+Neuro+fuzzy+%E2%80%93genetic+algorithm+technique+toward+sustainable+machining&rft.jtitle=Journal+of+cleaner+production&rft.au=Saw%2C+Lip+Huat&rft.au=Ho%2C+Li+Wen&rft.au=Yew%2C+Ming+Chian&rft.au=Yusof%2C+Farazila&rft.date=2018-01-20&rft.issn=0959-6526&rft.volume=172&rft.spage=3289&rft.epage=3298&rft_id=info:doi/10.1016%2Fj.jclepro.2017.10.303&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jclepro_2017_10_303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon