Sensitivity analysis of drill wear and optimization using Adaptive Neuro fuzzy –genetic algorithm technique toward sustainable machining
Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining processes involved drilling operation. Tool wear is a common phenomenon in the machining operation and significantly affects the product dim...
Gespeichert in:
| Veröffentlicht in: | Journal of cleaner production Jg. 172; S. 3289 - 3298 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
20.01.2018
|
| Schlagworte: | |
| ISSN: | 0959-6526, 1879-1786 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining processes involved drilling operation. Tool wear is a common phenomenon in the machining operation and significantly affects the product dimension accuracy, machining efficiency, manufacturing downtime, surface roughness and economic loss. Hence, an intelligent tool condition monitoring system is needed to maximize tool life and reduce machine downtime due to the tool replacement. In this study, experiments were conducted to investigate the influence of different drilling parameters on average drilling torque and thrust force. Effects of spindle rotational speed, feed rate and diameter of drill on tool wear were determined through Adaptive Neuro Fuzzy Inference System (ANFIS). Next, genetic algorithm (GA) was used to identify the optimal drilling parameter for different diameters of drill. Experimental results agreed well with the GA prediction results with a relative error of 3%. Hence, the results showed that ANFIS-GA is a faster and more accurate alternative to the existing methods for tool wear prediction.
•We investigated the drill wear using cutting force signal.•We conducted sensitivity analysis of the drill wear on mild steel.•We used Adaptive Neuro Fuzzy Inference system to predict drill wear.•We optimized the drilling parameters using genetic algorithm method. |
|---|---|
| AbstractList | Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining processes involved drilling operation. Tool wear is a common phenomenon in the machining operation and significantly affects the product dimension accuracy, machining efficiency, manufacturing downtime, surface roughness and economic loss. Hence, an intelligent tool condition monitoring system is needed to maximize tool life and reduce machine downtime due to the tool replacement. In this study, experiments were conducted to investigate the influence of different drilling parameters on average drilling torque and thrust force. Effects of spindle rotational speed, feed rate and diameter of drill on tool wear were determined through Adaptive Neuro Fuzzy Inference System (ANFIS). Next, genetic algorithm (GA) was used to identify the optimal drilling parameter for different diameters of drill. Experimental results agreed well with the GA prediction results with a relative error of 3%. Hence, the results showed that ANFIS-GA is a faster and more accurate alternative to the existing methods for tool wear prediction.
•We investigated the drill wear using cutting force signal.•We conducted sensitivity analysis of the drill wear on mild steel.•We used Adaptive Neuro Fuzzy Inference system to predict drill wear.•We optimized the drilling parameters using genetic algorithm method. Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining processes involved drilling operation. Tool wear is a common phenomenon in the machining operation and significantly affects the product dimension accuracy, machining efficiency, manufacturing downtime, surface roughness and economic loss. Hence, an intelligent tool condition monitoring system is needed to maximize tool life and reduce machine downtime due to the tool replacement. In this study, experiments were conducted to investigate the influence of different drilling parameters on average drilling torque and thrust force. Effects of spindle rotational speed, feed rate and diameter of drill on tool wear were determined through Adaptive Neuro Fuzzy Inference System (ANFIS). Next, genetic algorithm (GA) was used to identify the optimal drilling parameter for different diameters of drill. Experimental results agreed well with the GA prediction results with a relative error of 3%. Hence, the results showed that ANFIS-GA is a faster and more accurate alternative to the existing methods for tool wear prediction. |
| Author | Yew, Ming Kun Yew, Ming Chian Ng, Tan Ching Saw, Lip Huat Yusof, Farazila Ho, Li Wen Pambudi, Nugroho Agung |
| Author_xml | – sequence: 1 givenname: Lip Huat surname: Saw fullname: Saw, Lip Huat email: sawlh@utar.edu.my organization: Lee Kong Chian Faculty of Engineering and Science, UTAR, Selangor, 43000, Malaysia – sequence: 2 givenname: Li Wen surname: Ho fullname: Ho, Li Wen organization: Tech-lab Manufacturing Sdn Bhd, Selangor, 43200, Malaysia – sequence: 3 givenname: Ming Chian surname: Yew fullname: Yew, Ming Chian organization: Lee Kong Chian Faculty of Engineering and Science, UTAR, Selangor, 43000, Malaysia – sequence: 4 givenname: Farazila surname: Yusof fullname: Yusof, Farazila organization: Department of Mechanical Engineering, University of Malaya, Kuala Lumpur, 53600, Malaysia – sequence: 5 givenname: Nugroho Agung surname: Pambudi fullname: Pambudi, Nugroho Agung organization: Mechanical Engineering Education, Universitas Negeri Sebelas Maret, Jl. Ir. Sutami 36A, Surakarta 57126, Indonesia – sequence: 6 givenname: Tan Ching surname: Ng fullname: Ng, Tan Ching organization: Lee Kong Chian Faculty of Engineering and Science, UTAR, Selangor, 43000, Malaysia – sequence: 7 givenname: Ming Kun surname: Yew fullname: Yew, Ming Kun organization: Lee Kong Chian Faculty of Engineering and Science, UTAR, Selangor, 43000, Malaysia |
| BookMark | eNqFkc1uEzEUhS1UJNLCIyB5ySZhPD-esVigquJPqmABrC2PfZ3cyGMH25MqWbHutm_Ik-CQrth0daWj8x1dnXNJLnzwQMhrVq1Yxfjb7WqrHexiWNUV64u2aqrmGVmwoRdL1g_8giwq0Ykl72r-glymtK2KserbBbn_Dj5hxj3mA1VeuUPCRIOlJqJz9A5ULLKhYZdxwqPKGDydE_o1vTaqiHugX2GOgdr5eDzQP78f1uAho6bKrUPEvJloBr3x-GsGmsOdioamOWWFXo0O6KT0Bn0JfEmeW-USvHq8V-Tnxw8_bj4vb799-nJzfbvUTVvnJetqLVRvjVZt2wwCBjOMvWpHoTnnnerGtrHKMsZt1Y52EL0YemDc2LFno9HNFXlzzi2NlZ9SlhMmDc4pD2FOsmYNGwQXtSjWd2erjiGlCFZqzP86yFGhk6ySpwXkVj4uIE8LnOSyQKG7_-hdxEnFw5Pc-zMHpYU9QpRJI3gNBiPoLE3AJxL-Akwkq88 |
| CitedBy_id | crossref_primary_10_1177_16878132231196408 crossref_primary_10_1016_j_ymssp_2021_107738 crossref_primary_10_1016_j_pce_2024_103650 crossref_primary_10_1007_s10853_024_10233_2 crossref_primary_10_1016_j_jclepro_2020_121160 crossref_primary_10_3390_machines11080806 crossref_primary_10_3390_s24010307 crossref_primary_10_1177_0954405420935262 crossref_primary_10_1016_j_cie_2024_110272 crossref_primary_10_1016_j_cirpj_2021_11_007 crossref_primary_10_3390_su13084271 crossref_primary_10_1017_S089006042400009X crossref_primary_10_1016_j_smse_2023_100009 crossref_primary_10_1016_j_jmatprotec_2018_04_044 crossref_primary_10_1016_j_rcim_2022_102344 crossref_primary_10_1016_j_rcim_2022_102488 crossref_primary_10_1016_j_jclepro_2019_117711 crossref_primary_10_3390_ma13214952 crossref_primary_10_1007_s40436_023_00451_3 crossref_primary_10_1109_ACCESS_2020_3040196 crossref_primary_10_1007_s10845_020_01559_0 crossref_primary_10_1002_eng2_70279 crossref_primary_10_1007_s00170_019_04821_9 crossref_primary_10_3139_120_111344 crossref_primary_10_1155_2023_5647442 crossref_primary_10_1016_j_jclepro_2020_122585 crossref_primary_10_1155_2023_5401372 crossref_primary_10_1016_j_jer_2023_09_016 crossref_primary_10_1007_s40436_020_00339_6 crossref_primary_10_1016_j_ijdrr_2023_104092 crossref_primary_10_1016_j_measurement_2020_107478 crossref_primary_10_1016_j_cirpj_2022_06_001 |
| Cites_doi | 10.1016/j.asoc.2006.06.001 10.1016/S1003-6326(13)62764-8 10.1109/TLT.2011.36 10.1016/j.jclepro.2014.11.049 10.1016/j.proeng.2012.09.572 10.1016/j.proeng.2013.09.164 10.1016/j.jmatprotec.2007.06.029 10.1016/j.matpr.2015.07.317 10.1016/j.procs.2014.09.054 10.1016/j.matpr.2015.07.219 10.1109/21.256541 10.1016/0043-1648(94)06539-X 10.1016/j.cageo.2012.02.004 10.1016/S0890-6955(00)00112-7 10.1016/S0890-6955(02)00059-7 10.1016/S0890-6955(03)00023-3 10.1007/BF02823145 10.1016/j.medengphy.2015.03.014 10.1016/j.jclepro.2012.03.014 10.1016/j.wear.2014.05.007 10.1016/j.ymssp.2008.02.010 10.1016/j.advengsoft.2014.12.010 10.1016/S0166-3615(96)00075-9 10.1016/j.jclepro.2015.04.057 10.1016/j.precisioneng.2014.04.007 10.1016/j.measurement.2012.01.008 10.1016/j.jclepro.2017.08.178 10.1016/0890-6955(91)90051-4 10.1016/j.jclepro.2015.06.095 10.1016/j.wear.2015.05.009 10.1016/S0890-6955(02)00040-8 10.1016/0890-6955(95)00059-3 10.1115/1.3187869 10.1016/j.procir.2014.03.050 10.1016/j.compstruct.2015.04.025 10.1016/j.mspro.2015.04.126 10.1115/1.3187884 10.1016/j.asoc.2008.11.005 10.1016/j.jclepro.2016.09.125 10.1016/j.phpro.2010.01.105 |
| ContentType | Journal Article |
| Copyright | 2017 |
| Copyright_xml | – notice: 2017 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jclepro.2017.10.303 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1786 |
| EndPage | 3298 |
| ExternalDocumentID | 10_1016_j_jclepro_2017_10_303 S0959652617326082 |
| GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- 29K 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-152c9a7fdca44389e8d8b7a4b9c6665a5b43faf116f04bf897987e16dfb71bdc3 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423002500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-6526 |
| IngestDate | Sun Sep 28 09:00:57 EDT 2025 Tue Nov 18 21:18:50 EST 2025 Sat Nov 29 07:08:50 EST 2025 Fri Feb 23 02:46:18 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Drilling Multi-objective optimization ANFIS Tool condition monitoring Tool wear |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-152c9a7fdca44389e8d8b7a4b9c6665a5b43faf116f04bf897987e16dfb71bdc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2131896929 |
| PQPubID | 24069 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2131896929 crossref_citationtrail_10_1016_j_jclepro_2017_10_303 crossref_primary_10_1016_j_jclepro_2017_10_303 elsevier_sciencedirect_doi_10_1016_j_jclepro_2017_10_303 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-20 |
| PublicationDateYYYYMMDD | 2018-01-20 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of cleaner production |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Kalpakjian, Schmid (bib26) 2008 Hosoz, Ertunc, Bulgurcu (bib22) 2011; 38 Karimi, Minak, Kianfar (bib27) 2015; 131 Azmi (bib6) 2015; 82 Pecat, Brinksmeier (bib39) 2014; 14 Zhang, Li, Wang (bib52) 2012; 32 Wang, Kwon, Sturtevant, Kim, Lantrip (bib48) 2014; 317 Kim, Ahn (bib29) 2002; 42 Li, Wu (bib32) 1988; 110 Staroveski, Brezak, Udiljak (bib42) 2015; 37 Bo, Gao (bib10) 2014 Taskesen, Kutukde (bib44) 2013; 23 Aliustaoglu, Ertunc, Ocak (bib4) 2009; 23 Bhoskar, Kulkarni, Kulkarni, Petekar, Kakandikar, Nandedkar (bib8) 2015; 2 Kibble, Neely, Meyer, White (bib28) 2002 Vrabel, Mankova, Beno, Tuharsky (bib47) 2012; 48 Ferrari, Gomez (bib17) 2015; 8 Niketh, Samuel (bib37) 2017; 167 Thangaraj, Wright (bib45) 1988; 110 Fan, Hao, Lin, Yu (bib16) 2015; 90 Nam, Kim, Chung, Lee (bib36) 2015; 102 Tipnis, Peterson, Winer (bib46) 1980 Schnetler, Kohlhofer, Gleeson (bib41) 2009 Deb (bib12) 1999; 24 Lin, Ting (bib33) 1995; 180 Patra, Pal, Bhattacharyya (bib38) 2007; 7 Haber, Haber, Jimenez, Galan (bib20) 2009; 9 Ambhore, Kamble, Chinchanikar, Wayal (bib5) 2015; 2 Lin, Ting (bib34) 1996; 36 Kurada, Bradley (bib31) 1997; 34 Celik, Lazoglu, Kara, Kara (bib11) 2015; 338–339 Abu-Mahfouz, Banerjee (bib2) 2014; 36 Boothroyd, Knight (bib9) 1989 Xu, Yamada, Seikiya, Tanaka, Yamane (bib50) 2014; 38 Krishnamoorthy, Boopathy, Palanikumar, Davim (bib30) 2012; 45 Elbestawi, Papazafiriou, Du (bib14) 1991; 31 Holland (bib21) 1975 Durairaj, Gowri (bib13) 2013; 64 Wang, Li, Chen, Liu (bib49) 2015; 108 Mathew, Vijayaraghavan (bib35) 2017; 141 Al-Hmouz, Jun, Al-Hmouz, Yan (bib3) 2012; vol. 5 Gaitonde, Karnik, Achyutha, Siddeswarappa (bib18) 2008; 197 Jantunen (bib25) 2002; 42 Tahmasebi, Hezarkhani (bib43) 2012; 42 Bagal (bib7) 2012 Abu-Mahfouz (bib1) 2003; 43 Ertunc, Loparo, Ocak (bib15) 2001; 41 Gomez, Hey, Ruzzante, D'Attellis (bib19) 2010; 3 Jang (bib23) 1993; 23 Roy (bib40) 2005; 64 Ambhore (10.1016/j.jclepro.2017.10.303_bib5) 2015; 2 Azmi (10.1016/j.jclepro.2017.10.303_bib6) 2015; 82 Zhang (10.1016/j.jclepro.2017.10.303_bib52) 2012; 32 Mathew (10.1016/j.jclepro.2017.10.303_bib35) 2017; 141 Bhoskar (10.1016/j.jclepro.2017.10.303_bib8) 2015; 2 Elbestawi (10.1016/j.jclepro.2017.10.303_bib14) 1991; 31 Xu (10.1016/j.jclepro.2017.10.303_bib50) 2014; 38 Bo (10.1016/j.jclepro.2017.10.303_bib10) 2014 Lin (10.1016/j.jclepro.2017.10.303_bib33) 1995; 180 Al-Hmouz (10.1016/j.jclepro.2017.10.303_bib3) 2012; vol. 5 Gaitonde (10.1016/j.jclepro.2017.10.303_bib18) 2008; 197 Bagal (10.1016/j.jclepro.2017.10.303_bib7) 2012 Jang (10.1016/j.jclepro.2017.10.303_bib23) 1993; 23 Holland (10.1016/j.jclepro.2017.10.303_bib21) 1975 Durairaj (10.1016/j.jclepro.2017.10.303_bib13) 2013; 64 Taskesen (10.1016/j.jclepro.2017.10.303_bib44) 2013; 23 Wang (10.1016/j.jclepro.2017.10.303_bib49) 2015; 108 Kim (10.1016/j.jclepro.2017.10.303_bib29) 2002; 42 Pecat (10.1016/j.jclepro.2017.10.303_bib39) 2014; 14 Tahmasebi (10.1016/j.jclepro.2017.10.303_bib43) 2012; 42 Ertunc (10.1016/j.jclepro.2017.10.303_bib15) 2001; 41 Vrabel (10.1016/j.jclepro.2017.10.303_bib47) 2012; 48 Abu-Mahfouz (10.1016/j.jclepro.2017.10.303_bib1) 2003; 43 Celik (10.1016/j.jclepro.2017.10.303_bib11) 2015; 338–339 Krishnamoorthy (10.1016/j.jclepro.2017.10.303_bib30) 2012; 45 Schnetler (10.1016/j.jclepro.2017.10.303_bib41) 2009 Gomez (10.1016/j.jclepro.2017.10.303_bib19) 2010; 3 Staroveski (10.1016/j.jclepro.2017.10.303_bib42) 2015; 37 Kurada (10.1016/j.jclepro.2017.10.303_bib31) 1997; 34 Nam (10.1016/j.jclepro.2017.10.303_bib36) 2015; 102 Roy (10.1016/j.jclepro.2017.10.303_bib40) 2005; 64 Hosoz (10.1016/j.jclepro.2017.10.303_bib22) 2011; 38 Wang (10.1016/j.jclepro.2017.10.303_bib48) 2014; 317 Aliustaoglu (10.1016/j.jclepro.2017.10.303_bib4) 2009; 23 Abu-Mahfouz (10.1016/j.jclepro.2017.10.303_bib2) 2014; 36 Fan (10.1016/j.jclepro.2017.10.303_bib16) 2015; 90 Ferrari (10.1016/j.jclepro.2017.10.303_bib17) 2015; 8 Kalpakjian (10.1016/j.jclepro.2017.10.303_bib26) 2008 Karimi (10.1016/j.jclepro.2017.10.303_bib27) 2015; 131 Lin (10.1016/j.jclepro.2017.10.303_bib34) 1996; 36 Deb (10.1016/j.jclepro.2017.10.303_bib12) 1999; 24 Kibble (10.1016/j.jclepro.2017.10.303_bib28) 2002 Boothroyd (10.1016/j.jclepro.2017.10.303_bib9) 1989 Niketh (10.1016/j.jclepro.2017.10.303_bib37) 2017; 167 Jantunen (10.1016/j.jclepro.2017.10.303_bib25) 2002; 42 Li (10.1016/j.jclepro.2017.10.303_bib32) 1988; 110 Haber (10.1016/j.jclepro.2017.10.303_bib20) 2009; 9 Tipnis (10.1016/j.jclepro.2017.10.303_bib46) 1980 Patra (10.1016/j.jclepro.2017.10.303_bib38) 2007; 7 Thangaraj (10.1016/j.jclepro.2017.10.303_bib45) 1988; 110 |
| References_xml | – volume: 82 start-page: 53 year: 2015 end-page: 64 ident: bib6 article-title: Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites publication-title: Adv. Eng. Softw. – year: 2008 ident: bib26 article-title: Manufacturing Processes for Engineering Materials – volume: 14 start-page: 142 year: 2014 end-page: 147 ident: bib39 article-title: Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6Al4V stack material publication-title: Procedia. CIRP – year: 2009 ident: bib41 article-title: Fitting and Turning – volume: 41 start-page: 1363 year: 2001 end-page: 1384 ident: bib15 article-title: Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs) publication-title: Int. J. Mach. Tool. Manu – volume: 8 start-page: 693 year: 2015 end-page: 701 ident: bib17 article-title: Correlation between acoustic emission, thrust and tool wear in drilling publication-title: Procedia. Mater. Sci. – volume: 102 start-page: 428 year: 2015 end-page: 436 ident: bib36 article-title: Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm publication-title: J. Clean. Prod. – volume: 338–339 start-page: 11 year: 2015 end-page: 21 ident: bib11 article-title: Wear on SiAlON ceramic tools in drilling of aerospace grade CFRP composites publication-title: Wear – volume: 9 start-page: 889 year: 2009 end-page: 895 ident: bib20 article-title: An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process publication-title: Appl. Soft. Comput. – volume: 23 start-page: 539 year: 2009 end-page: 546 ident: bib4 article-title: Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system publication-title: Mech. Syst. Signal. P. R. – volume: 167 start-page: 253 year: 2017 end-page: 270 ident: bib37 article-title: Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy publication-title: J. Clean. Prod. – year: 1975 ident: bib21 article-title: Adaption in Natural and Artifical Systems – volume: 37 start-page: 560 year: 2015 end-page: 566 ident: bib42 article-title: Drill wear monitoring in cortical bone drilling publication-title: Med. Eng. Phys. – volume: 64 start-page: 653 year: 2005 end-page: 659 ident: bib40 article-title: Design of adaptive neuro-fuzzy inference system for predicting surface roughness in turning operation publication-title: J. Sci. Ind. Res. – volume: 24 start-page: 293 year: 1999 end-page: 315 ident: bib12 article-title: An introduction to genetic algorithms publication-title: Sadhana – year: 1989 ident: bib9 article-title: Fundamentals of Machining and Machine Tools – volume: 141 start-page: 439 year: 2017 end-page: 452 ident: bib35 article-title: Environmentally friendly drilling of intermetallic titanium aluminide at different aspect ratio publication-title: J. Clean. Prod. – volume: 108 start-page: 145 year: 2015 end-page: 157 ident: bib49 article-title: Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays publication-title: J. Clean. Prod. – volume: 36 start-page: 556 year: 2014 end-page: 563 ident: bib2 article-title: Drill wear feature identification under varying cutting conditions using vibration and cutting force signals and data mining techniques publication-title: Procedia. Comp. Sci. – volume: 317 start-page: 265 year: 2014 end-page: 276 ident: bib48 article-title: Comparative tool wear study based on drilling experiments on CFRp/Ti stack and its individual layers publication-title: Wear – volume: 180 start-page: 53 year: 1995 end-page: 60 ident: bib33 article-title: Tool wear monitoring in drilling using force signals publication-title: Wear – year: 2002 ident: bib28 article-title: Machine Tool Practice – volume: 131 start-page: 107 year: 2015 end-page: 114 ident: bib27 article-title: Analysis of damage mechanisms in drilling of composite materials by acoustic emission publication-title: Compos. Struct. – volume: 7 start-page: 929 year: 2007 end-page: 935 ident: bib38 article-title: Artificial neural network based prediction of drill flank wear from motor current signals publication-title: Appl. Soft. Comput. – volume: 64 start-page: 878 year: 2013 end-page: 887 ident: bib13 article-title: Parametric optimization for improved tool life and surface finish in micro turning using genetic algorithm publication-title: Procedia. Eng. – volume: 3 start-page: 819 year: 2010 end-page: 825 ident: bib19 article-title: Tool wear evaluation in drilling by acoustic emission publication-title: Phys. Procedia – volume: 2 start-page: 3419 year: 2015 end-page: 3428 ident: bib5 article-title: Tool condition monitoring system: a review publication-title: Mater. Today Proc. – volume: 110 start-page: 297 year: 1988 end-page: 300 ident: bib32 article-title: Monitoring drilling wear states by a fuzzy pattern recognition technique publication-title: J. Eng. Ind. – volume: 38 start-page: 791 year: 2014 end-page: 798 ident: bib50 article-title: Effect of different features to drill-wear prediction with black propagation neural network publication-title: Precis. Eng. – year: 2012 ident: bib7 article-title: Experimental Investigation and Modelling Micro Drilling Operation of Aerospace Material – volume: 31 start-page: 55 year: 1991 end-page: 73 ident: bib14 article-title: In process monitoring of tool wear in milling using cutting force signature publication-title: Int. J. Mach. Tool. Manu – volume: 90 start-page: 381 year: 2015 end-page: 387 ident: bib16 article-title: New observations on tool wear mechanism in machining Inconnel 718 under water vapor+air cooling lubrication cutting conditions publication-title: J. Clean. Prod. – volume: 197 start-page: 225 year: 2008 end-page: 236 ident: bib18 article-title: Genetic algorithm-based burr size minimization in drilling of AISI 316L stainless steel publication-title: J. Mater. Process. Tech. – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: bib23 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: Ieee. Trans. Syst. Man. Cybern. – volume: 2 start-page: 2624 year: 2015 end-page: 2630 ident: bib8 article-title: Genetic algorithm and its applications to mechanical engineering: a review publication-title: Mater. Today Proc. – volume: 23 start-page: 2524 year: 2013 end-page: 2536 ident: bib44 article-title: Analysis and optimization of drilling parameters for tool wear and hole dimensional accuracy in B publication-title: Trans. Nonferrous Met. Soc. China – volume: vol. 5 start-page: 226 year: 2012 end-page: 237 ident: bib3 article-title: Modeling and simulation of an Adaptive Neuro-fuzzy Inference System (ANFIS) for mobile learning publication-title: Ieee. Trans. Learn. Tech. – volume: 38 start-page: 14148 year: 2011 end-page: 14155 ident: bib22 article-title: An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower publication-title: Expt. Syst. Appl. – volume: 45 start-page: 1286 year: 2012 end-page: 1296 ident: bib30 article-title: Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics publication-title: Meas – year: 2014 ident: bib10 article-title: Computational Intelligence in Remanufacturing – volume: 32 start-page: 81 year: 2012 end-page: 87 ident: bib52 article-title: Tool life and cutting force in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions publication-title: J. Clean. Prod. – year: 1980 ident: bib46 article-title: Wear Control Handbook – volume: 42 start-page: 997 year: 2002 end-page: 1010 ident: bib25 article-title: A summary of methods applied to tool condition monitoring in drilling publication-title: Int. J. Mach. Tool. Manu – volume: 110 start-page: 192 year: 1988 end-page: 200 ident: bib45 article-title: Computer-assisted prediction of drill-failure using in-process measurements of thrust force publication-title: J. Eng. Ind. – volume: 48 start-page: 693 year: 2012 end-page: 700 ident: bib47 article-title: Surface roughness prediction using artificial neural networks when drilling Udimet 720 publication-title: Procedia. Eng. – volume: 36 start-page: 465 year: 1996 end-page: 475 ident: bib34 article-title: Drill wear monitoring using neural networks publication-title: Int. J. Mach. Tool. Manu – volume: 42 start-page: 1113 year: 2002 end-page: 1119 ident: bib29 article-title: Chip disposal state monitoring in drilling using neural network based spindle motor power sensing publication-title: Int. J. Mach. Tool. Manu – volume: 34 start-page: 55 year: 1997 end-page: 72 ident: bib31 article-title: A review of machine vision sensors for tool condition monitoring publication-title: Comp. Ind. – volume: 42 start-page: 18 year: 2012 end-page: 27 ident: bib43 article-title: A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation publication-title: Comp. Geosci. – volume: 43 start-page: 707 year: 2003 end-page: 720 ident: bib1 article-title: Drilling wear detection and classification using vibration signals and artificial neural network publication-title: Inter. J. Mach. Tool. Manu – year: 2002 ident: 10.1016/j.jclepro.2017.10.303_bib28 – volume: 7 start-page: 929 year: 2007 ident: 10.1016/j.jclepro.2017.10.303_bib38 article-title: Artificial neural network based prediction of drill flank wear from motor current signals publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2006.06.001 – volume: 23 start-page: 2524 year: 2013 ident: 10.1016/j.jclepro.2017.10.303_bib44 article-title: Analysis and optimization of drilling parameters for tool wear and hole dimensional accuracy in B4C reinforced Al-alloy publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(13)62764-8 – volume: vol. 5 start-page: 226 year: 2012 ident: 10.1016/j.jclepro.2017.10.303_bib3 article-title: Modeling and simulation of an Adaptive Neuro-fuzzy Inference System (ANFIS) for mobile learning publication-title: Ieee. Trans. Learn. Tech. doi: 10.1109/TLT.2011.36 – volume: 90 start-page: 381 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib16 article-title: New observations on tool wear mechanism in machining Inconnel 718 under water vapor+air cooling lubrication cutting conditions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.11.049 – volume: 48 start-page: 693 year: 2012 ident: 10.1016/j.jclepro.2017.10.303_bib47 article-title: Surface roughness prediction using artificial neural networks when drilling Udimet 720 publication-title: Procedia. Eng. doi: 10.1016/j.proeng.2012.09.572 – volume: 64 start-page: 878 year: 2013 ident: 10.1016/j.jclepro.2017.10.303_bib13 article-title: Parametric optimization for improved tool life and surface finish in micro turning using genetic algorithm publication-title: Procedia. Eng. doi: 10.1016/j.proeng.2013.09.164 – volume: 197 start-page: 225 year: 2008 ident: 10.1016/j.jclepro.2017.10.303_bib18 article-title: Genetic algorithm-based burr size minimization in drilling of AISI 316L stainless steel publication-title: J. Mater. Process. Tech. doi: 10.1016/j.jmatprotec.2007.06.029 – volume: 2 start-page: 3419 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib5 article-title: Tool condition monitoring system: a review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2015.07.317 – volume: 36 start-page: 556 year: 2014 ident: 10.1016/j.jclepro.2017.10.303_bib2 article-title: Drill wear feature identification under varying cutting conditions using vibration and cutting force signals and data mining techniques publication-title: Procedia. Comp. Sci. doi: 10.1016/j.procs.2014.09.054 – volume: 2 start-page: 2624 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib8 article-title: Genetic algorithm and its applications to mechanical engineering: a review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2015.07.219 – volume: 23 start-page: 665 year: 1993 ident: 10.1016/j.jclepro.2017.10.303_bib23 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: Ieee. Trans. Syst. Man. Cybern. doi: 10.1109/21.256541 – volume: 180 start-page: 53 year: 1995 ident: 10.1016/j.jclepro.2017.10.303_bib33 article-title: Tool wear monitoring in drilling using force signals publication-title: Wear doi: 10.1016/0043-1648(94)06539-X – volume: 42 start-page: 18 year: 2012 ident: 10.1016/j.jclepro.2017.10.303_bib43 article-title: A hybrid neural networks-fuzzy logic-genetic algorithm for grade estimation publication-title: Comp. Geosci. doi: 10.1016/j.cageo.2012.02.004 – volume: 64 start-page: 653 year: 2005 ident: 10.1016/j.jclepro.2017.10.303_bib40 article-title: Design of adaptive neuro-fuzzy inference system for predicting surface roughness in turning operation publication-title: J. Sci. Ind. Res. – volume: 41 start-page: 1363 year: 2001 ident: 10.1016/j.jclepro.2017.10.303_bib15 article-title: Tool wear condition monitoring in drilling operations using hidden Markov models (HMMs) publication-title: Int. J. Mach. Tool. Manu doi: 10.1016/S0890-6955(00)00112-7 – volume: 42 start-page: 1113 year: 2002 ident: 10.1016/j.jclepro.2017.10.303_bib29 article-title: Chip disposal state monitoring in drilling using neural network based spindle motor power sensing publication-title: Int. J. Mach. Tool. Manu doi: 10.1016/S0890-6955(02)00059-7 – volume: 43 start-page: 707 year: 2003 ident: 10.1016/j.jclepro.2017.10.303_bib1 article-title: Drilling wear detection and classification using vibration signals and artificial neural network publication-title: Inter. J. Mach. Tool. Manu doi: 10.1016/S0890-6955(03)00023-3 – volume: 24 start-page: 293 year: 1999 ident: 10.1016/j.jclepro.2017.10.303_bib12 article-title: An introduction to genetic algorithms publication-title: Sadhana doi: 10.1007/BF02823145 – volume: 37 start-page: 560 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib42 article-title: Drill wear monitoring in cortical bone drilling publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.03.014 – year: 2009 ident: 10.1016/j.jclepro.2017.10.303_bib41 – volume: 32 start-page: 81 year: 2012 ident: 10.1016/j.jclepro.2017.10.303_bib52 article-title: Tool life and cutting force in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.03.014 – year: 1989 ident: 10.1016/j.jclepro.2017.10.303_bib9 – volume: 317 start-page: 265 year: 2014 ident: 10.1016/j.jclepro.2017.10.303_bib48 article-title: Comparative tool wear study based on drilling experiments on CFRp/Ti stack and its individual layers publication-title: Wear doi: 10.1016/j.wear.2014.05.007 – volume: 23 start-page: 539 year: 2009 ident: 10.1016/j.jclepro.2017.10.303_bib4 article-title: Tool wear condition monitoring using a sensor fusion model based on fuzzy inference system publication-title: Mech. Syst. Signal. P. R. doi: 10.1016/j.ymssp.2008.02.010 – volume: 82 start-page: 53 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib6 article-title: Monitoring of tool wear using measured machining forces and neuro-fuzzy modelling approaches during machining of GFRP composites publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2014.12.010 – volume: 34 start-page: 55 year: 1997 ident: 10.1016/j.jclepro.2017.10.303_bib31 article-title: A review of machine vision sensors for tool condition monitoring publication-title: Comp. Ind. doi: 10.1016/S0166-3615(96)00075-9 – volume: 102 start-page: 428 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib36 article-title: Optimization of environmentally benign micro-drilling process with nanofluid minimum quantity lubrication using response surface methodology and genetic algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.04.057 – volume: 38 start-page: 791 year: 2014 ident: 10.1016/j.jclepro.2017.10.303_bib50 article-title: Effect of different features to drill-wear prediction with black propagation neural network publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2014.04.007 – volume: 45 start-page: 1286 year: 2012 ident: 10.1016/j.jclepro.2017.10.303_bib30 article-title: Application of grey fuzzy logic for the optimization of drilling parameters for CFRP composites with multiple performance characteristics publication-title: Meas doi: 10.1016/j.measurement.2012.01.008 – volume: 167 start-page: 253 year: 2017 ident: 10.1016/j.jclepro.2017.10.303_bib37 article-title: Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.178 – volume: 31 start-page: 55 year: 1991 ident: 10.1016/j.jclepro.2017.10.303_bib14 article-title: In process monitoring of tool wear in milling using cutting force signature publication-title: Int. J. Mach. Tool. Manu doi: 10.1016/0890-6955(91)90051-4 – year: 2008 ident: 10.1016/j.jclepro.2017.10.303_bib26 – volume: 108 start-page: 145 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib49 article-title: Evaluation of minimum quantity lubrication effects by cutting force signals in face milling of Inconel 182 overlays publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.06.095 – volume: 338–339 start-page: 11 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib11 article-title: Wear on SiAlON ceramic tools in drilling of aerospace grade CFRP composites publication-title: Wear doi: 10.1016/j.wear.2015.05.009 – year: 2014 ident: 10.1016/j.jclepro.2017.10.303_bib10 – volume: 42 start-page: 997 year: 2002 ident: 10.1016/j.jclepro.2017.10.303_bib25 article-title: A summary of methods applied to tool condition monitoring in drilling publication-title: Int. J. Mach. Tool. Manu doi: 10.1016/S0890-6955(02)00040-8 – volume: 36 start-page: 465 year: 1996 ident: 10.1016/j.jclepro.2017.10.303_bib34 article-title: Drill wear monitoring using neural networks publication-title: Int. J. Mach. Tool. Manu doi: 10.1016/0890-6955(95)00059-3 – volume: 110 start-page: 192 year: 1988 ident: 10.1016/j.jclepro.2017.10.303_bib45 article-title: Computer-assisted prediction of drill-failure using in-process measurements of thrust force publication-title: J. Eng. Ind. doi: 10.1115/1.3187869 – year: 1975 ident: 10.1016/j.jclepro.2017.10.303_bib21 – volume: 14 start-page: 142 year: 2014 ident: 10.1016/j.jclepro.2017.10.303_bib39 article-title: Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6Al4V stack material publication-title: Procedia. CIRP doi: 10.1016/j.procir.2014.03.050 – year: 2012 ident: 10.1016/j.jclepro.2017.10.303_bib7 – volume: 131 start-page: 107 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib27 article-title: Analysis of damage mechanisms in drilling of composite materials by acoustic emission publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.04.025 – year: 1980 ident: 10.1016/j.jclepro.2017.10.303_bib46 – volume: 8 start-page: 693 year: 2015 ident: 10.1016/j.jclepro.2017.10.303_bib17 article-title: Correlation between acoustic emission, thrust and tool wear in drilling publication-title: Procedia. Mater. Sci. doi: 10.1016/j.mspro.2015.04.126 – volume: 110 start-page: 297 year: 1988 ident: 10.1016/j.jclepro.2017.10.303_bib32 article-title: Monitoring drilling wear states by a fuzzy pattern recognition technique publication-title: J. Eng. Ind. doi: 10.1115/1.3187884 – volume: 9 start-page: 889 year: 2009 ident: 10.1016/j.jclepro.2017.10.303_bib20 article-title: An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2008.11.005 – volume: 38 start-page: 14148 year: 2011 ident: 10.1016/j.jclepro.2017.10.303_bib22 article-title: An adaptive neuro-fuzzy inference system model for predicting the performance of a refrigeration system with a cooling tower publication-title: Expt. Syst. Appl. – volume: 141 start-page: 439 year: 2017 ident: 10.1016/j.jclepro.2017.10.303_bib35 article-title: Environmentally friendly drilling of intermetallic titanium aluminide at different aspect ratio publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.09.125 – volume: 3 start-page: 819 year: 2010 ident: 10.1016/j.jclepro.2017.10.303_bib19 article-title: Tool wear evaluation in drilling by acoustic emission publication-title: Phys. Procedia doi: 10.1016/j.phpro.2010.01.105 |
| SSID | ssj0017074 |
| Score | 2.3851988 |
| Snippet | Machining processes have an important place in the manufacturing industry and it indeed contributed to the economic growth of a country. About 75% of machining... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3289 |
| SubjectTerms | algorithms ANFIS Drilling economic development financial economics fuzzy logic manufacturing monitoring Multi-objective optimization prediction surface roughness Tool condition monitoring Tool wear torque |
| Title | Sensitivity analysis of drill wear and optimization using Adaptive Neuro fuzzy –genetic algorithm technique toward sustainable machining |
| URI | https://dx.doi.org/10.1016/j.jclepro.2017.10.303 https://www.proquest.com/docview/2131896929 |
| Volume | 172 |
| WOSCitedRecordID | wos000423002500025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1786 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017074 issn: 0959-6526 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVKlwMcEJ9i-ZKREJcopUmcxjlWqFVBq4JEV-qeIieO2VZpEtJmu_TEmSv_hp_DL2HsxGm0C9rlwCWq3Lqp-17s8fjNDEKvREx9GhNhCk5dkzAnMn3BiAmrOY9IP_QtR6hiE950Sudz_2On81PHwpwlXprS83M__69QQxuALUNn_wHu5kuhAV4D6HAF2OF6LeA_SUl6XROCtVKO8GKRJMZWJu6RzvIM5opVHYRplMpjMOQsV0oilbHDEOVu99XQaggHbhir7K7J56xYbE5Xxj7_60aJb411KxprpVSaemG8bP7Cr2ZpXEiBGK8y2DbOHratvAW5MSlZI8uZVCWhF9t98NpJvK2k_1K7cNoi-km5zlS2yTEr2G6RsLZzw5K6OtPuX_BSDtwqqL6ZsD3byHsObBVNx65qWNfTr2xrLeX63UvLROWxWPaWMFYYplT4eT3pwOg7-3VRawGmH4Lx8dFRMBvNZ6_zL6asWCZP9uvyLTfQge25Pu2ig-G70fx9c4bl9asc4HoI-_ixN3-8898sows2gjJ8ZnfRnRoyPKyYdg914vQ-ut3KY_kAfW9xDmvO4UxgxTksOQfNHLc5hxXnsOYcVpzDinP417cfNdtwwzbcsA1XbMMttuGGbQ_R8Xg0ezsx6yIfZuQQe2OC_Rj5zBM8YoSA9RxTTkOPkdCPYGftMjckjmDCsgaiT0JBfc-nXmwNuAg9K-SR8wh10yyNHyPsgm0ahxT28HafeMRmMWwuIscRhFvcHkSHiOg_OIjqDPiyEEsSaKnjMqhxCSQushlwOUS9pltepYC5qgPV6AW1HVvZpwHw76quLzXaAczz8vAOnsWsXAe2BauvP4DdzJNrfOYpurV_nJ6h7qYo4-foZnS2WayLFzVTfwMN9dPc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+analysis+of+drill+wear+and+optimization+using+Adaptive+Neuro+fuzzy+%E2%80%93genetic+algorithm+technique+toward+sustainable+machining&rft.jtitle=Journal+of+cleaner+production&rft.au=Saw%2C+Lip+Huat&rft.au=He%2C+Liwen&rft.au=Yew%2C+Ming+Chian&rft.au=Yusof%2C+Farazila&rft.date=2018-01-20&rft.issn=0959-6526&rft.volume=172+p.3289-3298&rft.spage=3289&rft.epage=3298&rft_id=info:doi/10.1016%2Fj.jclepro.2017.10.303&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |