ABCpy : A High-Performance Computing Perspective to Approximate Bayesian Computation

ABCpy is a highly modular scientific library for approximate Bayesian computation (ABC) written in Python. The main contribution of this paper is to document a software engineering effort that enables domain scientists to easily apply ABC to their research without being ABC experts; using ABCpy they...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of statistical software Ročník 100; číslo 7; s. 1 - 38
Hlavní autoři: Dutta, Ritabrata, Schoengens, Marcel, Pacchiardi, Lorenzo, Ummadisingu, Avinash, Widmer, Nicole, Künzli, Pierre, Onnela, Jukka-Pekka, Mira, Antonietta
Médium: Journal Article
Jazyk:angličtina
Vydáno: Foundation for Open Access Statistics 01.11.2021
Témata:
ISSN:1548-7660, 1548-7660
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABCpy is a highly modular scientific library for approximate Bayesian computation (ABC) written in Python. The main contribution of this paper is to document a software engineering effort that enables domain scientists to easily apply ABC to their research without being ABC experts; using ABCpy they can easily run large parallel simulations without much knowledge about parallelization. Further, ABCpy enables ABC experts to easily develop new inference schemes and evaluate them in a standardized environment and to extend the library with new algorithms. These benefits come mainly from the modularity of ABCpy. We give an overview of the design of ABCpy and provide a performance evaluation concentrating on parallelization. This points us towards the inherent imbalance in some of the ABC algorithms. We develop a dynamic scheduling MPI implementation to mitigate this issue and evaluate the various ABC algorithms according to their adaptability towards high-performance computing.
AbstractList ABCpy is a highly modular scientific library for approximate Bayesian computation (ABC) written in Python. The main contribution of this paper is to document a software engineering effort that enables domain scientists to easily apply ABC to their research without being ABC experts; using ABCpy they can easily run large parallel simulations without much knowledge about parallelization. Further, ABCpy enables ABC experts to easily develop new inference schemes and evaluate them in a standardized environment and to extend the library with new algorithms. These benefits come mainly from the modularity of ABCpy. We give an overview of the design of ABCpy and provide a performance evaluation concentrating on parallelization. This points us towards the inherent imbalance in some of the ABC algorithms. We develop a dynamic scheduling MPI implementation to mitigate this issue and evaluate the various ABC algorithms according to their adaptability towards high-performance computing.
Author Mira, Antonietta
Pacchiardi, Lorenzo
Onnela, Jukka-Pekka
Ummadisingu, Avinash
Widmer, Nicole
Dutta, Ritabrata
Künzli, Pierre
Schoengens, Marcel
Author_xml – sequence: 1
  givenname: Ritabrata
  surname: Dutta
  fullname: Dutta, Ritabrata
– sequence: 2
  givenname: Marcel
  surname: Schoengens
  fullname: Schoengens, Marcel
– sequence: 3
  givenname: Lorenzo
  surname: Pacchiardi
  fullname: Pacchiardi, Lorenzo
– sequence: 4
  givenname: Avinash
  surname: Ummadisingu
  fullname: Ummadisingu, Avinash
– sequence: 5
  givenname: Nicole
  surname: Widmer
  fullname: Widmer, Nicole
– sequence: 6
  givenname: Pierre
  surname: Künzli
  fullname: Künzli, Pierre
– sequence: 7
  givenname: Jukka-Pekka
  surname: Onnela
  fullname: Onnela, Jukka-Pekka
– sequence: 8
  givenname: Antonietta
  surname: Mira
  fullname: Mira, Antonietta
BookMark eNp1kFFLwzAQx4NMcJs--p4v0Jm0SZP61hV1A0Ef5nNIr-nM2JqSxOG-vXUbIoJPdxz_-3H3m6BR5zqD0C0lMyrzTNxtQpjtKSEzS8QFGlPOZCLynIx-9VdoEsKGkJSwgo_RqpxX_QHf4xIv7Po9eTW-dX6nOzC4crv-I9pujYdp6A1Euzc4Olz2vXefdqejwXN9MMHq7pzW0bruGl22ehvMzblO0dvjw6paJM8vT8uqfE4gY2lMKKkBRNowwiSQhvEip5ymQrTaGFrXTVtzUxc5k7WQhkoDnBMqhOQg60zKbIqWJ27j9Eb1frjIH5TTVh0Hzq-V9tHC1qgGdJ6CbJlkDaMpFCLNRNEUmZatzoEPrOTEAu9C8Kb94VGijnrVoFd961WD3iGf_cmDPX0fvbbbf7a-APL8ghQ
CitedBy_id crossref_primary_10_1214_24_BA1451
crossref_primary_10_1371_journal_pcbi_1009910
crossref_primary_10_1111_rssc_12487
crossref_primary_10_1214_23_STS907
crossref_primary_10_1007_s00285_024_02144_2
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.18637/jss.v100.i07
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1548-7660
EndPage 38
ExternalDocumentID oai_doaj_org_article_dca62c8f484d412c972379d93a8fa6c5
10_18637_jss_v100_i07
GroupedDBID 29L
2WC
5GY
5VS
AAFWJ
AAKPC
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
IPNFZ
KQ8
M~E
OK1
OVT
P2P
RIG
RNS
TR2
XSB
ID FETCH-LOGICAL-c342t-10bcc72d4048c0d4596151277faee1bbdfb5eb9648b78e18ec55017785c8b3883
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725195400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1548-7660
IngestDate Fri Oct 03 12:53:11 EDT 2025
Sat Nov 29 04:38:02 EST 2025
Tue Nov 18 21:24:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c342t-10bcc72d4048c0d4596151277faee1bbdfb5eb9648b78e18ec55017785c8b3883
ORCID 0000-0003-4760-7638
0000-0001-8209-7747
0000-0001-6613-8668
0000-0002-5609-7935
OpenAccessLink https://doaj.org/article/dca62c8f484d412c972379d93a8fa6c5
PageCount 38
ParticipantIDs doaj_primary_oai_doaj_org_article_dca62c8f484d412c972379d93a8fa6c5
crossref_primary_10_18637_jss_v100_i07
crossref_citationtrail_10_18637_jss_v100_i07
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of statistical software
PublicationYear 2021
Publisher Foundation for Open Access Statistics
Publisher_xml – name: Foundation for Open Access Statistics
SSID ssj0020495
Score 2.4218287
Snippet ABCpy is a highly modular scientific library for approximate Bayesian computation (ABC) written in Python. The main contribution of this paper is to document a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1
SubjectTerms abc
hpc
imbalance
mpi
parallel
python library
spark
Title ABCpy : A High-Performance Computing Perspective to Approximate Bayesian Computation
URI https://doaj.org/article/dca62c8f484d412c972379d93a8fa6c5
Volume 100
WOSCitedRecordID wos000725195400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: DOA
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1548-7660
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020495
  issn: 1548-7660
  databaseCode: M~E
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MT6Yg_iybRJdrM78ZaWFi8tBRV6C9kXVKQtTSz24m93N0kfF_HiJZBlWMI3SfYbmPk-hO4tCfAFCOkpEVKPAlNO8lZ70q5GQWZAgCnNJvhwCONxPNqx-nI9YZU8cAVcW8mMhRIMBapoEErnksVjFZMMTMZkqV5qWc-6mKpLLct7o1pRExjh7fc8by0D329NnG_szgm0I9Rfnij9Y3RUU0GcVI9wgvb09BQdDjY6qvkZekk63fnqCSfY9WN4o22XP67sGOzBg0fbeUlczHDiVMK_JnYLjTvZSrspyTq6zMI5euv3XrvPXm2D4ElCw8L-KIWUPFTUfmzSVzSKHQsJOTeZ1oEQyohIi5hREBx0AFraqiPgHCIJggCQC9SYzqb6EuGQUBNrJQNjmROJibA3zAIEzBhBJWuixzU0qaw1wp1VxUfqagWHZGqRTB2SqUWyiR424fNKHOO3wI7DeRPkNK3LBZvptM50-lemr_5jk2t0ELqulHKa8AY1isWnvkX7cllM8sVd-RLZ6-C79wMBYs-k
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABCpy%3A+A+High-Performance+Computing+Perspective+to+Approximate+Bayesian+Computation&rft.jtitle=Journal+of+statistical+software&rft.au=Ritabrata+Dutta&rft.au=Marcel+Schoengens&rft.au=Lorenzo+Pacchiardi&rft.au=Avinash+Ummadisingu&rft.date=2021-11-01&rft.pub=Foundation+for+Open+Access+Statistics&rft.eissn=1548-7660&rft.volume=100&rft.spage=1&rft.epage=38&rft_id=info:doi/10.18637%2Fjss.v100.i07&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dca62c8f484d412c972379d93a8fa6c5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon