ABCpy : A High-Performance Computing Perspective to Approximate Bayesian Computation
ABCpy is a highly modular scientific library for approximate Bayesian computation (ABC) written in Python. The main contribution of this paper is to document a software engineering effort that enables domain scientists to easily apply ABC to their research without being ABC experts; using ABCpy they...
Uloženo v:
| Vydáno v: | Journal of statistical software Ročník 100; číslo 7; s. 1 - 38 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Foundation for Open Access Statistics
01.11.2021
|
| Témata: | |
| ISSN: | 1548-7660, 1548-7660 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | ABCpy is a highly modular scientific library for approximate Bayesian computation (ABC) written in Python. The main contribution of this paper is to document a software engineering effort that enables domain scientists to easily apply ABC to their research without being ABC experts; using ABCpy they can easily run large parallel simulations without much knowledge about parallelization. Further, ABCpy enables ABC experts to easily develop new inference schemes and evaluate them in a standardized environment and to extend the library with new algorithms. These benefits come mainly from the modularity of ABCpy. We give an overview of the design of ABCpy and provide a performance evaluation concentrating on parallelization. This points us towards the inherent imbalance in some of the ABC algorithms. We develop a dynamic scheduling MPI implementation to mitigate this issue and evaluate the various ABC algorithms according to their adaptability towards high-performance computing. |
|---|---|
| AbstractList | ABCpy is a highly modular scientific library for approximate Bayesian computation (ABC) written in Python. The main contribution of this paper is to document a software engineering effort that enables domain scientists to easily apply ABC to their research without being ABC experts; using ABCpy they can easily run large parallel simulations without much knowledge about parallelization. Further, ABCpy enables ABC experts to easily develop new inference schemes and evaluate them in a standardized environment and to extend the library with new algorithms. These benefits come mainly from the modularity of ABCpy. We give an overview of the design of ABCpy and provide a performance evaluation concentrating on parallelization. This points us towards the inherent imbalance in some of the ABC algorithms. We develop a dynamic scheduling MPI implementation to mitigate this issue and evaluate the various ABC algorithms according to their adaptability towards high-performance computing. |
| Author | Mira, Antonietta Pacchiardi, Lorenzo Onnela, Jukka-Pekka Ummadisingu, Avinash Widmer, Nicole Dutta, Ritabrata Künzli, Pierre Schoengens, Marcel |
| Author_xml | – sequence: 1 givenname: Ritabrata surname: Dutta fullname: Dutta, Ritabrata – sequence: 2 givenname: Marcel surname: Schoengens fullname: Schoengens, Marcel – sequence: 3 givenname: Lorenzo surname: Pacchiardi fullname: Pacchiardi, Lorenzo – sequence: 4 givenname: Avinash surname: Ummadisingu fullname: Ummadisingu, Avinash – sequence: 5 givenname: Nicole surname: Widmer fullname: Widmer, Nicole – sequence: 6 givenname: Pierre surname: Künzli fullname: Künzli, Pierre – sequence: 7 givenname: Jukka-Pekka surname: Onnela fullname: Onnela, Jukka-Pekka – sequence: 8 givenname: Antonietta surname: Mira fullname: Mira, Antonietta |
| BookMark | eNp1kFFLwzAQx4NMcJs--p4v0Jm0SZP61hV1A0Ef5nNIr-nM2JqSxOG-vXUbIoJPdxz_-3H3m6BR5zqD0C0lMyrzTNxtQpjtKSEzS8QFGlPOZCLynIx-9VdoEsKGkJSwgo_RqpxX_QHf4xIv7Po9eTW-dX6nOzC4crv-I9pujYdp6A1Euzc4Olz2vXefdqejwXN9MMHq7pzW0bruGl22ehvMzblO0dvjw6paJM8vT8uqfE4gY2lMKKkBRNowwiSQhvEip5ymQrTaGFrXTVtzUxc5k7WQhkoDnBMqhOQg60zKbIqWJ27j9Eb1frjIH5TTVh0Hzq-V9tHC1qgGdJ6CbJlkDaMpFCLNRNEUmZatzoEPrOTEAu9C8Kb94VGijnrVoFd961WD3iGf_cmDPX0fvbbbf7a-APL8ghQ |
| CitedBy_id | crossref_primary_10_1214_24_BA1451 crossref_primary_10_1371_journal_pcbi_1009910 crossref_primary_10_1111_rssc_12487 crossref_primary_10_1214_23_STS907 crossref_primary_10_1007_s00285_024_02144_2 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.18637/jss.v100.i07 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1548-7660 |
| EndPage | 38 |
| ExternalDocumentID | oai_doaj_org_article_dca62c8f484d412c972379d93a8fa6c5 10_18637_jss_v100_i07 |
| GroupedDBID | 29L 2WC 5GY 5VS AAFWJ AAKPC AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV C1A CITATION E3Z EBS EJD F5P GROUPED_DOAJ GX1 IPNFZ KQ8 M~E OK1 OVT P2P RIG RNS TR2 XSB |
| ID | FETCH-LOGICAL-c342t-10bcc72d4048c0d4596151277faee1bbdfb5eb9648b78e18ec55017785c8b3883 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725195400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1548-7660 |
| IngestDate | Fri Oct 03 12:53:11 EDT 2025 Sat Nov 29 04:38:02 EST 2025 Tue Nov 18 21:24:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c342t-10bcc72d4048c0d4596151277faee1bbdfb5eb9648b78e18ec55017785c8b3883 |
| ORCID | 0000-0003-4760-7638 0000-0001-8209-7747 0000-0001-6613-8668 0000-0002-5609-7935 |
| OpenAccessLink | https://doaj.org/article/dca62c8f484d412c972379d93a8fa6c5 |
| PageCount | 38 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dca62c8f484d412c972379d93a8fa6c5 crossref_primary_10_18637_jss_v100_i07 crossref_citationtrail_10_18637_jss_v100_i07 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of statistical software |
| PublicationYear | 2021 |
| Publisher | Foundation for Open Access Statistics |
| Publisher_xml | – name: Foundation for Open Access Statistics |
| SSID | ssj0020495 |
| Score | 2.4218287 |
| Snippet | ABCpy is a highly modular scientific library for approximate Bayesian computation (ABC) written in Python. The main contribution of this paper is to document a... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 1 |
| SubjectTerms | abc hpc imbalance mpi parallel python library spark |
| Title | ABCpy : A High-Performance Computing Perspective to Approximate Bayesian Computation |
| URI | https://doaj.org/article/dca62c8f484d412c972379d93a8fa6c5 |
| Volume | 100 |
| WOSCitedRecordID | wos000725195400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: DOA dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1548-7660 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020495 issn: 1548-7660 databaseCode: M~E dateStart: 19960101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6keNCD-MT6Yg_iybRJdrM78ZaWFi8tBRV6C9kXVKQtTSz24m93N0kfF_HiJZBlWMI3SfYbmPk-hO4tCfAFCOkpEVKPAlNO8lZ70q5GQWZAgCnNJvhwCONxPNqx-nI9YZU8cAVcW8mMhRIMBapoEErnksVjFZMMTMZkqV5qWc-6mKpLLct7o1pRExjh7fc8by0D329NnG_szgm0I9Rfnij9Y3RUU0GcVI9wgvb09BQdDjY6qvkZekk63fnqCSfY9WN4o22XP67sGOzBg0fbeUlczHDiVMK_JnYLjTvZSrspyTq6zMI5euv3XrvPXm2D4ElCw8L-KIWUPFTUfmzSVzSKHQsJOTeZ1oEQyohIi5hREBx0AFraqiPgHCIJggCQC9SYzqb6EuGQUBNrJQNjmROJibA3zAIEzBhBJWuixzU0qaw1wp1VxUfqagWHZGqRTB2SqUWyiR424fNKHOO3wI7DeRPkNK3LBZvptM50-lemr_5jk2t0ELqulHKa8AY1isWnvkX7cllM8sVd-RLZ6-C79wMBYs-k |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ABCpy%3A+A+High-Performance+Computing+Perspective+to+Approximate+Bayesian+Computation&rft.jtitle=Journal+of+statistical+software&rft.au=Ritabrata+Dutta&rft.au=Marcel+Schoengens&rft.au=Lorenzo+Pacchiardi&rft.au=Avinash+Ummadisingu&rft.date=2021-11-01&rft.pub=Foundation+for+Open+Access+Statistics&rft.eissn=1548-7660&rft.volume=100&rft.spage=1&rft.epage=38&rft_id=info:doi/10.18637%2Fjss.v100.i07&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dca62c8f484d412c972379d93a8fa6c5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7660&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7660&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7660&client=summon |