Deep learning-based algorithms for long-term prediction of chlorophyll-a in catchment streams
•We developed a deep learning-based framework for long-term Chl-a simulation.•The performance of six state of the art deep learning algorithms was compared.•Our study employed separate sub-basins to train and evaluate DL models.•Chl-a prediction is improved by using sub-basin characteristics as inpu...
Saved in:
| Published in: | Journal of hydrology (Amsterdam) Vol. 626; p. 130240 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2023
|
| Subjects: | |
| ISSN: | 0022-1694, 1879-2707 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We developed a deep learning-based framework for long-term Chl-a simulation.•The performance of six state of the art deep learning algorithms was compared.•Our study employed separate sub-basins to train and evaluate DL models.•Chl-a prediction is improved by using sub-basin characteristics as input data.•Attention based LSTM model can simulate and explain Chl-a behavior in surface water.
Accurate estimation of harmful algal blooms is imperative for the protection of surface water. Chlorophyll-a (Chl-a) which is used as a proxy for estimating the algal concentration, is affected by a wide range of weather and physicochemical factors that act at varying spatial and temporal scales. Deep learning (DL) based models such as Long-Short Term Memory (LSTM) and Convolution Neural Networks (CNNs) have shown promising results for hydrological and Chl-a simulations. Recently several variants of LSTM and CNNs have been developed which can model highly non-linear relationships between input and target data. Therefore, these advanced DL methods have the potential for long-term simulation of Chl-a. Previous DL-based studies on Chl-a simulation have developed site-dependent models. This indicates that the DL models were trained and evaluated using data from the same site, making it difficult to apply these models to other sites. Development of site-independent models requires a more robust training strategy which can result in DL models that can be evaluated in new novel situations. To address these issues, we propose a DL-based framework which can incorporate irregularly measured water quality observations, static physical features, and climate data measured at constant time steps. In this framework, we compared the performance of six state of the art DL methods which include (1) LSTM, (2) CNN, (3) Temporal Convolution Networks (TCN), (4) CNN-LSTM, (5) LSTM based autoencoder, and (6) input-attention LSTM (IA-LSTM). The IA-LSTM is an explainable DL method which can select important hydrologic, climatic and water quality parameters for Chl-a prediction. Our results indicate that the IA-LSTM exhibited the best performance, with an R2 value of 0.85 at the training site and 0.52 at the test site. We showed that attention-based deep learning models improve the prediction performance and make the black-box deep learning models interpretable and explainable. The attention-based deep learning models indicated that Chl-a concentration in the Nakdong River was strongly affected by climate factors during the previous three days. The proposed DL framework can be adopted to develop regional water quality models using deep learning. |
|---|---|
| AbstractList | •We developed a deep learning-based framework for long-term Chl-a simulation.•The performance of six state of the art deep learning algorithms was compared.•Our study employed separate sub-basins to train and evaluate DL models.•Chl-a prediction is improved by using sub-basin characteristics as input data.•Attention based LSTM model can simulate and explain Chl-a behavior in surface water.
Accurate estimation of harmful algal blooms is imperative for the protection of surface water. Chlorophyll-a (Chl-a) which is used as a proxy for estimating the algal concentration, is affected by a wide range of weather and physicochemical factors that act at varying spatial and temporal scales. Deep learning (DL) based models such as Long-Short Term Memory (LSTM) and Convolution Neural Networks (CNNs) have shown promising results for hydrological and Chl-a simulations. Recently several variants of LSTM and CNNs have been developed which can model highly non-linear relationships between input and target data. Therefore, these advanced DL methods have the potential for long-term simulation of Chl-a. Previous DL-based studies on Chl-a simulation have developed site-dependent models. This indicates that the DL models were trained and evaluated using data from the same site, making it difficult to apply these models to other sites. Development of site-independent models requires a more robust training strategy which can result in DL models that can be evaluated in new novel situations. To address these issues, we propose a DL-based framework which can incorporate irregularly measured water quality observations, static physical features, and climate data measured at constant time steps. In this framework, we compared the performance of six state of the art DL methods which include (1) LSTM, (2) CNN, (3) Temporal Convolution Networks (TCN), (4) CNN-LSTM, (5) LSTM based autoencoder, and (6) input-attention LSTM (IA-LSTM). The IA-LSTM is an explainable DL method which can select important hydrologic, climatic and water quality parameters for Chl-a prediction. Our results indicate that the IA-LSTM exhibited the best performance, with an R2 value of 0.85 at the training site and 0.52 at the test site. We showed that attention-based deep learning models improve the prediction performance and make the black-box deep learning models interpretable and explainable. The attention-based deep learning models indicated that Chl-a concentration in the Nakdong River was strongly affected by climate factors during the previous three days. The proposed DL framework can be adopted to develop regional water quality models using deep learning. Accurate estimation of harmful algal blooms is imperative for the protection of surface water. Chlorophyll-a (Chl-a) which is used as a proxy for estimating the algal concentration, is affected by a wide range of weather and physicochemical factors that act at varying spatial and temporal scales. Deep learning (DL) based models such as Long-Short Term Memory (LSTM) and Convolution Neural Networks (CNNs) have shown promising results for hydrological and Chl-a simulations. Recently several variants of LSTM and CNNs have been developed which can model highly non-linear relationships between input and target data. Therefore, these advanced DL methods have the potential for long-term simulation of Chl-a. Previous DL-based studies on Chl-a simulation have developed site-dependent models. This indicates that the DL models were trained and evaluated using data from the same site, making it difficult to apply these models to other sites. Development of site-independent models requires a more robust training strategy which can result in DL models that can be evaluated in new novel situations. To address these issues, we propose a DL-based framework which can incorporate irregularly measured water quality observations, static physical features, and climate data measured at constant time steps. In this framework, we compared the performance of six state of the art DL methods which include (1) LSTM, (2) CNN, (3) Temporal Convolution Networks (TCN), (4) CNN-LSTM, (5) LSTM based autoencoder, and (6) input-attention LSTM (IA-LSTM). The IA-LSTM is an explainable DL method which can select important hydrologic, climatic and water quality parameters for Chl-a prediction. Our results indicate that the IA-LSTM exhibited the best performance, with an R² value of 0.85 at the training site and 0.52 at the test site. We showed that attention-based deep learning models improve the prediction performance and make the black-box deep learning models interpretable and explainable. The attention-based deep learning models indicated that Chl-a concentration in the Nakdong River was strongly affected by climate factors during the previous three days. The proposed DL framework can be adopted to develop regional water quality models using deep learning. |
| ArticleNumber | 130240 |
| Author | Cho, Kyung Hwa Abbas, Ather Park, Minji Baek, Sang-Soo |
| Author_xml | – sequence: 1 givenname: Ather surname: Abbas fullname: Abbas, Ather organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia – sequence: 2 givenname: Minji surname: Park fullname: Park, Minji organization: Water Pollution Load Management Research Division, National Institute of Environmental Research, 42 Hwangyong-ro, Seogu, Incheon 22689, South Korea – sequence: 3 givenname: Sang-Soo surname: Baek fullname: Baek, Sang-Soo email: ssbaek@yu.ac.kr organization: Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea – sequence: 4 givenname: Kyung Hwa surname: Cho fullname: Cho, Kyung Hwa email: khcho80@korea.ac.kr organization: School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea |
| BookMark | eNqFkMtKAzEUhoMo2KqPIGTpZmpucykuROoVBDe6lJBmTjopmWRMUqFv75R25aZncxbn_3443xSd-uABoWtKZpTQ6nY9W3fbNgY3Y4TxGeWECXKCJrSp5wWrSX2KJoQwVtBqLs7RNKU1GYdzMUHfjwADdqCit35VLFWCFiu3CtHmrk_YhIhdGC8ZYo-HCK3V2QaPg8G6cyGGods6VyhsPdYq664Hn3HKEVSfLtGZUS7B1WFfoK_np8_Fa_H-8fK2eHgvNBcsF5RUTVszDtDSJQEtQJSaVMAoMaURvAXamEbUFKgQc8UJVCUznDbQNGZJSn6Bbva9Qww_G0hZ9jZpcE55CJskOS15Oa8FZWP0bh_VMaQUwUhts9q9lKOyTlIid1LlWh6kyp1UuZc60uU_eoi2V3F7lLvfczBa-LUQZdIWvB51RtBZtsEeafgDcjSXTA |
| CitedBy_id | crossref_primary_10_1016_j_cej_2025_163074 crossref_primary_10_1016_j_watres_2024_122401 crossref_primary_10_1016_j_desal_2025_119193 crossref_primary_10_4491_eer_2023_712 crossref_primary_10_1016_j_ecoinf_2024_102954 crossref_primary_10_3390_rs17152737 crossref_primary_10_1016_j_ecolind_2025_113244 crossref_primary_10_1080_15481603_2025_2484864 crossref_primary_10_1007_s12145_024_01658_z crossref_primary_10_3390_jmse12071119 crossref_primary_10_1016_j_jhydrol_2024_132081 crossref_primary_10_1016_j_envres_2024_119911 crossref_primary_10_1016_j_wroa_2025_100367 crossref_primary_10_1016_j_watres_2024_121861 crossref_primary_10_1016_j_jhydrol_2025_133800 crossref_primary_10_1016_j_jenvman_2025_124832 crossref_primary_10_1016_j_jhazmat_2024_135285 crossref_primary_10_1016_j_jwpe_2025_108341 crossref_primary_10_1016_j_scitotenv_2024_175451 crossref_primary_10_1016_j_scitotenv_2025_179481 crossref_primary_10_1016_j_asoc_2024_112352 crossref_primary_10_1016_j_algal_2024_103779 crossref_primary_10_1007_s12145_025_01796_y crossref_primary_10_1016_j_envres_2025_122500 crossref_primary_10_1016_j_jhydrol_2025_133485 crossref_primary_10_3390_jmse13010151 crossref_primary_10_3390_rs17101684 crossref_primary_10_1016_j_scitotenv_2024_171009 crossref_primary_10_1016_j_scitotenv_2024_175407 |
| Cites_doi | 10.1016/j.ijforecast.2021.03.012 10.1016/j.uclim.2023.101458 10.2166/hydro.2017.010 10.1007/s11270-010-0695-3 10.1038/s41598-021-96633-9 10.1007/s11269-015-1103-y 10.1098/rspl.1895.0041 10.3390/w13233328 10.1016/0304-3800(94)90075-2 10.1016/j.jclepro.2022.131724 10.1016/j.ijsrc.2016.02.001 10.1016/j.scitotenv.2014.09.005 10.1016/j.jhydrol.2021.126455 10.3390/ijerph15071322 10.1109/ACCESS.2020.2993874 10.1007/s00477-020-01776-2 10.1007/s12205-011-1052-9 10.1016/j.jenvman.2021.113060 10.1016/j.jenvman.2019.07.021 10.3390/w10111543 10.1016/j.ecolmodel.2019.108835 10.2495/EID180141 10.1016/j.uclim.2021.100872 10.1016/j.watres.2021.117001 10.5194/hess-25-5517-2021 10.3390/w12061822 10.1145/3448250 10.1007/BF00020532 10.1007/BF00013459 10.1016/j.knosys.2018.06.015 10.1016/j.rse.2020.111974 10.1162/neco.1997.9.8.1735 10.1016/j.jhazmat.2020.123066 10.1098/rsta.2020.0209 10.1029/2000JD900719 10.1029/2018WR022580 10.1080/10402381.2018.1530318 10.1126/science.1155398 10.1016/j.watres.2020.116349 10.1016/j.jhydrol.2021.126196 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2023.130240 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| ExternalDocumentID | 10_1016_j_jhydrol_2023_130240 S0022169423011824 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c342t-1068d723eed1b0ec4e45c06e210f5f43de18f8471e1449a30e652f318e88fb053 |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001091732100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Thu Oct 02 21:45:14 EDT 2025 Sat Nov 29 07:30:58 EST 2025 Tue Nov 18 22:31:05 EST 2025 Sat Feb 17 16:12:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Explainable-AI Chlorophyll-a Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c342t-1068d723eed1b0ec4e45c06e210f5f43de18f8471e1449a30e652f318e88fb053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 3153597412 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3153597412 crossref_citationtrail_10_1016_j_jhydrol_2023_130240 crossref_primary_10_1016_j_jhydrol_2023_130240 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_130240 |
| PublicationCentury | 2000 |
| PublicationDate | November 2023 2023-11-00 20231101 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kendall, M.G. (1946). The advanced theory of statistics. The advanced theory of statistics. Park, Cho, Park, Cha, Kim (b0225) 2015; 502 Brown, Barnwell (b0035) 1987 Bengio, Lecun, Hinton (b0025) 2021; 64 Kindle (b0135) 1987; 9 Lee, Lee (b0155) 2018; 15 He, Luo, Xing, Yu, Zhang, Chen (b0080) 2019; 248 Neitsch, S.L., Arnold, J.G., Kiniry, J.R., & Williams, J.R. (2011). Soil and water assessment tool theoretical documentation version 2009. In: Texas Water Resources Institute. Barzegar, Aalami, Adamowski (b0020) 2021; 598 Hochreiter, Schmidhuber (b0085) 1997; 9 Lee, Woo, Kim, Kim, Pyo, Cho (b0160) 2021; 343 Yajima, Derot (b0275) 2018; 20 Gallagher, Williams, Lazzeri, Chennault, Jourdain, O’Leary, Condon, Maxwell (b0070) 2021; 13 Barzegar, Aalami, Adamowski (b0015) 2020; 34 Malek, Ahmad, Singh, Milow, Salleh (b0190) 2011 Pearson, K. (1895). Notes on Regression and Inheritance in the Case of Two Parents Proceedings of the Royal Society of London, 58, 240-242. In: ed. O'Brien, Hershey, Hobbie, Hullar, Kipphut, Miller, Moller, Vestal (b0205) 1992; 240 Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. LeCun, Bengio (b0145) 1995; 3361 Jang, Abbas, Kim, Shin, Kim, Cho (b0100) 2021; 196 Paerl, Huisman (b0215) 2008; 320 Cho, Choi, Park (b0045) 2018; 215 Zhang, Li, Jiang, Sun, Zhao, Yan, Wang (b0290) 2022; 354 Samal, Babu, Das (b0240) 2021; 38 Zheng, Wang, Liu, Zhang, Ding, Xie, Li, Wang (b0295) 2021; 295 Zang, Huang, Wu, Du, Scholz, Gao, Lin, Guo, Dong (b0280) 2011; 219 Kim, Jung, Tsang, Kwon (b0125) 2020; 400 Kayalvizhi, Jiavana, Suganthi, Malarvizhi (b0115) 2023; 49 Bai, S., Kolter, J.Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. Taylor (b0260) 2001; 106 Cole, T.M., & Buchak, E.M. (1995). CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0. User Manual. In: Army engineer waterways experiment station vicksburg ms environmental lab. Fatehi, Amiri, Alizadeh, Adamowski (b0065) 2015; 29 Kim, Kim, Kim (b0130) 2019; 35 Cao, Ma, Duan, Pahlevan, Melack, Shen, Xue (b0040) 2020; 248 Zhang, Brett, Brattebo, Welch (b0285) 2018; 54 Du, Qin, Zhang, Liu (b0060) 2018; 160 Shin, Kim, Hong, Lee, Lee, Hong, Lee, Kim, Park, Park, Heo (b0245) 2020; 12 Pyo, Park, Pachepsky, Baek, Kim, Cho (b0235) 2020; 186 Ouyang, Lawson, Feng, Ye, Zhang, Shen (b0210) 2021; 599 Stefan, Fang (b0255) 1994; 71 Berend, Xie, Ma, Zhou, Liu, Xu, Zhao (b0030) 2020 Page, Kumar, Mishra (b0220) 2018; 66 Hutter, Hoos, Leyton-Brown (b0095) 2014 Lim, Arık, Loeff, Pfister (b0170) 2021; 37 Liu, Jiang, Mu, Wang (b0180) 2020; 8 Goodfellow, Bengio, Courville (b0075) 2016 Molnar (b0195) 2020 Chollet (b0050) 2018 Hu, Wu, Li, Jian, Li, Lou (b0090) 2018; 10 Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Ji, Jang, Kim (b0110) 2016; 31 Snoek, Larochelle, Adams (b0250) 2012 Lee, Kim, Park, Stenstrom, Kang (b0150) 2020; 415 Wunsch, Liesch, Broda (b0270) 2020; 2020 Lees, Buechel, Anderson, Slater, Reece, Coxon, Dadson (b0165) 2021; 25 Lim, Zohren (b0175) 2021; 379 Umwali, Kurban, Isabwe, Mind’je, Azadi, Guo, Udahogora, Nyirarwasa, Umuhoza, Nzabarinda, Gasirabo, Sabirhazi (b0265) 2021; 11 Jeong, Kim, Shin, Yoon, Kim, Joo (b0105) 2011; 15 Kayalvizhi (10.1016/j.jhydrol.2023.130240_b0115) 2023; 49 He (10.1016/j.jhydrol.2023.130240_b0080) 2019; 248 LeCun (10.1016/j.jhydrol.2023.130240_b0145) 1995; 3361 Park (10.1016/j.jhydrol.2023.130240_b0225) 2015; 502 Samal (10.1016/j.jhydrol.2023.130240_b0240) 2021; 38 Kim (10.1016/j.jhydrol.2023.130240_b0125) 2020; 400 Zheng (10.1016/j.jhydrol.2023.130240_b0295) 2021; 295 Barzegar (10.1016/j.jhydrol.2023.130240_b0015) 2020; 34 Kindle (10.1016/j.jhydrol.2023.130240_b0135) 1987; 9 10.1016/j.jhydrol.2023.130240_b0200 10.1016/j.jhydrol.2023.130240_b0005 Hu (10.1016/j.jhydrol.2023.130240_b0090) 2018; 10 Hochreiter (10.1016/j.jhydrol.2023.130240_b0085) 1997; 9 10.1016/j.jhydrol.2023.130240_b0120 Yajima (10.1016/j.jhydrol.2023.130240_b0275) 2018; 20 Zhang (10.1016/j.jhydrol.2023.130240_b0290) 2022; 354 Cho (10.1016/j.jhydrol.2023.130240_b0045) 2018; 215 Goodfellow (10.1016/j.jhydrol.2023.130240_b0075) 2016 Zang (10.1016/j.jhydrol.2023.130240_b0280) 2011; 219 Lee (10.1016/j.jhydrol.2023.130240_b0155) 2018; 15 Snoek (10.1016/j.jhydrol.2023.130240_b0250) 2012 Taylor (10.1016/j.jhydrol.2023.130240_b0260) 2001; 106 Jeong (10.1016/j.jhydrol.2023.130240_b0105) 2011; 15 Malek (10.1016/j.jhydrol.2023.130240_b0190) 2011 Berend (10.1016/j.jhydrol.2023.130240_b0030) 2020 10.1016/j.jhydrol.2023.130240_b0230 Brown (10.1016/j.jhydrol.2023.130240_b0035) 1987 Gallagher (10.1016/j.jhydrol.2023.130240_b0070) 2021; 13 Zhang (10.1016/j.jhydrol.2023.130240_b0285) 2018; 54 Lees (10.1016/j.jhydrol.2023.130240_b0165) 2021; 25 Stefan (10.1016/j.jhydrol.2023.130240_b0255) 1994; 71 Pyo (10.1016/j.jhydrol.2023.130240_b0235) 2020; 186 Hutter (10.1016/j.jhydrol.2023.130240_b0095) 2014 O'Brien (10.1016/j.jhydrol.2023.130240_b0205) 1992; 240 Bengio (10.1016/j.jhydrol.2023.130240_b0025) 2021; 64 Lim (10.1016/j.jhydrol.2023.130240_b0175) 2021; 379 Molnar (10.1016/j.jhydrol.2023.130240_b0195) 2020 10.1016/j.jhydrol.2023.130240_b0140 Fatehi (10.1016/j.jhydrol.2023.130240_b0065) 2015; 29 Chollet (10.1016/j.jhydrol.2023.130240_b0050) 2018 Lim (10.1016/j.jhydrol.2023.130240_b0170) 2021; 37 Page (10.1016/j.jhydrol.2023.130240_b0220) 2018; 66 Wunsch (10.1016/j.jhydrol.2023.130240_b0270) 2020; 2020 Liu (10.1016/j.jhydrol.2023.130240_b0180) 2020; 8 Umwali (10.1016/j.jhydrol.2023.130240_b0265) 2021; 11 Lee (10.1016/j.jhydrol.2023.130240_b0160) 2021; 343 Shin (10.1016/j.jhydrol.2023.130240_b0245) 2020; 12 Jang (10.1016/j.jhydrol.2023.130240_b0100) 2021; 196 Paerl (10.1016/j.jhydrol.2023.130240_b0215) 2008; 320 Ji (10.1016/j.jhydrol.2023.130240_b0110) 2016; 31 Barzegar (10.1016/j.jhydrol.2023.130240_b0020) 2021; 598 10.1016/j.jhydrol.2023.130240_b0010 Du (10.1016/j.jhydrol.2023.130240_b0060) 2018; 160 10.1016/j.jhydrol.2023.130240_b0055 Kim (10.1016/j.jhydrol.2023.130240_b0130) 2019; 35 Cao (10.1016/j.jhydrol.2023.130240_b0040) 2020; 248 Lee (10.1016/j.jhydrol.2023.130240_b0150) 2020; 415 Ouyang (10.1016/j.jhydrol.2023.130240_b0210) 2021; 599 |
| References_xml | – volume: 598 year: 2021 ident: b0020 article-title: Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting publication-title: J. Hydrol. – volume: 31 start-page: 257 year: 2016 end-page: 263 ident: b0110 article-title: Numerical modeling of sedimentation control scenarios in the approach channel of the Nakdong River Estuary Barrage, South Korea publication-title: Int. J. Sedim. Res. – volume: 35 start-page: 64 year: 2019 end-page: 76 ident: b0130 article-title: Simulation of eutrophication in a reservoir by CE-QUAL-W2 for the evaluation of the importance of point sources and summer monsoon publication-title: Lake Reservoir Manage. – volume: 160 start-page: 61 year: 2018 end-page: 70 ident: b0060 article-title: Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network publication-title: Knowl.-Based Syst. – volume: 215 start-page: 157 year: 2018 end-page: 163 ident: b0045 article-title: Deep learning application to time-series prediction of daily chlorophyll-a concentration publication-title: WIT Trans. Ecol. Environ. – volume: 354 year: 2022 ident: b0290 article-title: Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model publication-title: J. Clean. Prod. – start-page: 1 year: 2011 end-page: 11 ident: b0190 article-title: Assessment of predictive models for chlorophyll-a concentration of a tropical lake. In, BMC bioinformatics – volume: 106 start-page: 7183 year: 2001 end-page: 7192 ident: b0260 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res. Atmos. – volume: 248 year: 2020 ident: b0040 article-title: A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes publication-title: Remote Sens. Environ. – volume: 37 start-page: 1748 year: 2021 end-page: 1764 ident: b0170 article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting publication-title: Int. J. Forecast. – volume: 599 year: 2021 ident: b0210 article-title: Continental-scale streamflow modeling of basins with reservoirs: towards a coherent deep-learning-based strategy publication-title: J. Hydrol. – volume: 400 year: 2020 ident: b0125 article-title: Stochastic modeling of chlorophyll-a for probabilistic assessment and monitoring of algae blooms in the Lower Nakdong River, South Korea publication-title: J. Hazard. Mater. – volume: 38 year: 2021 ident: b0240 article-title: Temporal convolutional denoising autoencoder network for air pollution prediction with missing values publication-title: Urban Clim. – year: 2018 ident: b0050 article-title: Deep learning with Python – reference: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. – volume: 11 year: 2021 ident: b0265 article-title: Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi publication-title: Sci. Rep. – year: 2020 ident: b0195 article-title: Interpretable machine learning publication-title: Lulu. Com. – volume: 2020 start-page: 1 year: 2020 end-page: 23 ident: b0270 article-title: Groundwater level forecasting with artificial neural networks: a comparison of LSTM, CNN and NARX publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 379 start-page: 20200209 year: 2021 ident: b0175 article-title: Time-series forecasting with deep learning: a survey publication-title: Phil. Trans. R. Soc. A – reference: Cole, T.M., & Buchak, E.M. (1995). CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0. User Manual. In: Army engineer waterways experiment station vicksburg ms environmental lab. – start-page: 25 year: 2012 ident: b0250 article-title: Practical bayesian optimization of machine learning algorithms publication-title: Advances in Neural Information Processing Systems – volume: 186 year: 2020 ident: b0235 article-title: Using convolutional neural network for predicting cyanobacteria concentrations in river water publication-title: Water Res. – volume: 12 start-page: 1822 year: 2020 ident: b0245 article-title: Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods publication-title: Water – volume: 71 start-page: 37 year: 1994 end-page: 68 ident: b0255 article-title: Dissolved oxygen model for regional lake analysis publication-title: Ecol. Model. – year: 2016 ident: b0075 article-title: Deep learning – volume: 66 start-page: 69 year: 2018 end-page: 81 ident: b0220 article-title: A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 54 start-page: 6609 year: 2018 end-page: 6624 ident: b0285 article-title: How well does the mechanistic water quality model CE-QUAL-W2 represent biogeochemical responses to climatic and hydrologic forcing? publication-title: Water Resour. Res. – volume: 64 start-page: 58 year: 2021 end-page: 65 ident: b0025 article-title: Deep learning for AI publication-title: Commun. ACM – volume: 248 year: 2019 ident: b0080 article-title: Effects of temperature-control curtain on algae biomass and dissolved oxygen in a large stratified reservoir: Sanbanxi Reservoir case study publication-title: J. Environ. Manage. – volume: 13 start-page: 3328 year: 2021 ident: b0070 article-title: Sandtank-ML: an educational tool at the interface of hydrology and machine learning publication-title: Water – volume: 3361 start-page: 1995 year: 1995 ident: b0145 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – volume: 415 year: 2020 ident: b0150 article-title: Automatic calibration and improvements on an instream chlorophyll a simulation in the HSPF model publication-title: Ecol. Model. – volume: 219 start-page: 157 year: 2011 end-page: 174 ident: b0280 article-title: Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters publication-title: Water Air Soil Pollut. – reference: Bai, S., Kolter, J.Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271. – start-page: 1041 year: 2020 end-page: 1052 ident: b0030 article-title: Cats are not fish: Deep learning testing calls for out-of-distribution awareness publication-title: In, Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering – volume: 15 start-page: 1322 year: 2018 ident: b0155 article-title: Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models publication-title: Int. J. Environ. Res. Public Health – reference: Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. – volume: 25 start-page: 5517 year: 2021 end-page: 5534 ident: b0165 article-title: Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models publication-title: Hydrol. Earth Syst. Sci. – volume: 320 start-page: 57 year: 2008 end-page: 58 ident: b0215 article-title: Blooms like it hot publication-title: Science – volume: 29 start-page: 5055 year: 2015 end-page: 5072 ident: b0065 article-title: Modeling the relationship between catchment attributes and in-stream water quality publication-title: Water Resour. Manag. – volume: 240 start-page: 143 year: 1992 end-page: 188 ident: b0205 article-title: Control mechanisms of arctic lake ecosystems: a limnocorral experiment publication-title: Hydrobiologia – volume: 15 start-page: 983 year: 2011 end-page: 994 ident: b0105 article-title: Impact of summer rainfall on the seasonal water quality variation (chlorophyll a) in the regulated Nakdong River publication-title: KSCE J. Civ. Eng. – reference: Pearson, K. (1895). Notes on Regression and Inheritance in the Case of Two Parents Proceedings of the Royal Society of London, 58, 240-242. In: ed. – volume: 49 year: 2023 ident: b0115 article-title: Prediction of ground water quality in western regions of Tamil Nadu using deep auto encoders publication-title: Urban Clim. – volume: 9 start-page: 547 year: 1987 end-page: 563 ident: b0135 article-title: Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate publication-title: Plant Mol. Biol. – start-page: 754 year: 2014 end-page: 762 ident: b0095 publication-title: An Efficient Approach for Assessing Hyperparameter Importance – volume: 8 start-page: 90069 year: 2020 end-page: 90086 ident: b0180 article-title: Streamflow prediction using deep learning neural network: case study of Yangtze River publication-title: IEEE Access – year: 1987 ident: b0035 article-title: The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: Documentation and user model. Environmental Research Laboratory – volume: 20 start-page: 206 year: 2018 end-page: 220 ident: b0275 article-title: Application of the Random Forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases publication-title: J. Hydroinf. – volume: 502 start-page: 31 year: 2015 end-page: 41 ident: b0225 article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea publication-title: Sci. Total Environ. – volume: 10 start-page: 1543 year: 2018 ident: b0090 article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation publication-title: Water – reference: Neitsch, S.L., Arnold, J.G., Kiniry, J.R., & Williams, J.R. (2011). Soil and water assessment tool theoretical documentation version 2009. In: Texas Water Resources Institute. – volume: 34 start-page: 415 year: 2020 end-page: 433 ident: b0015 article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model publication-title: Stoch. Env. Res. Risk A. – reference: Kendall, M.G. (1946). The advanced theory of statistics. The advanced theory of statistics. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0085 article-title: Long short-term memory publication-title: Neural Comput. – volume: 196 year: 2021 ident: b0100 article-title: Prediction of antibiotic-resistance genes occurrence at a recreational beach with deep learning models publication-title: Water Res. – volume: 343 year: 2021 ident: b0160 article-title: Dynamic calibration of phytoplankton blooms using the modified SWAT model publication-title: J. Clean. Prod. – volume: 295 year: 2021 ident: b0295 article-title: Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models publication-title: J. Environ. Manage. – volume: 37 start-page: 1748 issue: 4 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0170 article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2021.03.012 – volume: 49 year: 2023 ident: 10.1016/j.jhydrol.2023.130240_b0115 article-title: Prediction of ground water quality in western regions of Tamil Nadu using deep auto encoders publication-title: Urban Clim. doi: 10.1016/j.uclim.2023.101458 – volume: 20 start-page: 206 year: 2018 ident: 10.1016/j.jhydrol.2023.130240_b0275 article-title: Application of the Random Forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases publication-title: J. Hydroinf. doi: 10.2166/hydro.2017.010 – ident: 10.1016/j.jhydrol.2023.130240_b0055 – volume: 66 start-page: 69 year: 2018 ident: 10.1016/j.jhydrol.2023.130240_b0220 article-title: A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 219 start-page: 157 issue: 1-4 year: 2011 ident: 10.1016/j.jhydrol.2023.130240_b0280 article-title: Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-010-0695-3 – volume: 11 issue: 1 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0265 article-title: Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi publication-title: Sci. Rep. doi: 10.1038/s41598-021-96633-9 – volume: 29 start-page: 5055 issue: 14 year: 2015 ident: 10.1016/j.jhydrol.2023.130240_b0065 article-title: Modeling the relationship between catchment attributes and in-stream water quality publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-1103-y – ident: 10.1016/j.jhydrol.2023.130240_b0230 doi: 10.1098/rspl.1895.0041 – volume: 13 start-page: 3328 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0070 article-title: Sandtank-ML: an educational tool at the interface of hydrology and machine learning publication-title: Water doi: 10.3390/w13233328 – volume: 71 start-page: 37 issue: 1-3 year: 1994 ident: 10.1016/j.jhydrol.2023.130240_b0255 article-title: Dissolved oxygen model for regional lake analysis publication-title: Ecol. Model. doi: 10.1016/0304-3800(94)90075-2 – volume: 354 year: 2022 ident: 10.1016/j.jhydrol.2023.130240_b0290 article-title: Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131724 – volume: 31 start-page: 257 issue: 3 year: 2016 ident: 10.1016/j.jhydrol.2023.130240_b0110 article-title: Numerical modeling of sedimentation control scenarios in the approach channel of the Nakdong River Estuary Barrage, South Korea publication-title: Int. J. Sedim. Res. doi: 10.1016/j.ijsrc.2016.02.001 – volume: 502 start-page: 31 year: 2015 ident: 10.1016/j.jhydrol.2023.130240_b0225 article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.09.005 – year: 1987 ident: 10.1016/j.jhydrol.2023.130240_b0035 – year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0195 article-title: Interpretable machine learning publication-title: Lulu. Com. – volume: 599 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0210 article-title: Continental-scale streamflow modeling of basins with reservoirs: towards a coherent deep-learning-based strategy publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126455 – year: 2016 ident: 10.1016/j.jhydrol.2023.130240_b0075 – volume: 15 start-page: 1322 year: 2018 ident: 10.1016/j.jhydrol.2023.130240_b0155 article-title: Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph15071322 – volume: 8 start-page: 90069 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0180 article-title: Streamflow prediction using deep learning neural network: case study of Yangtze River publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993874 – volume: 34 start-page: 415 issue: 2 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0015 article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-020-01776-2 – volume: 15 start-page: 983 issue: 6 year: 2011 ident: 10.1016/j.jhydrol.2023.130240_b0105 article-title: Impact of summer rainfall on the seasonal water quality variation (chlorophyll a) in the regulated Nakdong River publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-011-1052-9 – volume: 295 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0295 article-title: Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2021.113060 – volume: 248 year: 2019 ident: 10.1016/j.jhydrol.2023.130240_b0080 article-title: Effects of temperature-control curtain on algae biomass and dissolved oxygen in a large stratified reservoir: Sanbanxi Reservoir case study publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2019.07.021 – volume: 10 start-page: 1543 year: 2018 ident: 10.1016/j.jhydrol.2023.130240_b0090 article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation publication-title: Water doi: 10.3390/w10111543 – volume: 415 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0150 article-title: Automatic calibration and improvements on an instream chlorophyll a simulation in the HSPF model publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2019.108835 – ident: 10.1016/j.jhydrol.2023.130240_b0140 – ident: 10.1016/j.jhydrol.2023.130240_b0010 – volume: 343 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0160 article-title: Dynamic calibration of phytoplankton blooms using the modified SWAT model publication-title: J. Clean. Prod. – volume: 215 start-page: 157 year: 2018 ident: 10.1016/j.jhydrol.2023.130240_b0045 article-title: Deep learning application to time-series prediction of daily chlorophyll-a concentration publication-title: WIT Trans. Ecol. Environ. doi: 10.2495/EID180141 – volume: 38 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0240 article-title: Temporal convolutional denoising autoencoder network for air pollution prediction with missing values publication-title: Urban Clim. doi: 10.1016/j.uclim.2021.100872 – ident: 10.1016/j.jhydrol.2023.130240_b0005 – volume: 196 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0100 article-title: Prediction of antibiotic-resistance genes occurrence at a recreational beach with deep learning models publication-title: Water Res. doi: 10.1016/j.watres.2021.117001 – volume: 25 start-page: 5517 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0165 article-title: Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-5517-2021 – volume: 3361 start-page: 1995 year: 1995 ident: 10.1016/j.jhydrol.2023.130240_b0145 article-title: Convolutional networks for images, speech, and time series publication-title: The Handbook of Brain Theory and Neural Networks – ident: 10.1016/j.jhydrol.2023.130240_b0200 – volume: 12 start-page: 1822 issue: 6 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0245 article-title: Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods publication-title: Water doi: 10.3390/w12061822 – volume: 64 start-page: 58 issue: 7 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0025 article-title: Deep learning for AI publication-title: Commun. ACM doi: 10.1145/3448250 – volume: 9 start-page: 547 issue: 6 year: 1987 ident: 10.1016/j.jhydrol.2023.130240_b0135 article-title: Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate publication-title: Plant Mol. Biol. doi: 10.1007/BF00020532 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0270 article-title: Groundwater level forecasting with artificial neural networks: a comparison of LSTM, CNN and NARX publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 240 start-page: 143 issue: 1-3 year: 1992 ident: 10.1016/j.jhydrol.2023.130240_b0205 article-title: Control mechanisms of arctic lake ecosystems: a limnocorral experiment publication-title: Hydrobiologia doi: 10.1007/BF00013459 – volume: 160 start-page: 61 year: 2018 ident: 10.1016/j.jhydrol.2023.130240_b0060 article-title: Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.06.015 – ident: 10.1016/j.jhydrol.2023.130240_b0120 – start-page: 1041 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0030 article-title: Cats are not fish: Deep learning testing calls for out-of-distribution awareness – volume: 248 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0040 article-title: A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111974 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.jhydrol.2023.130240_b0085 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 400 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0125 article-title: Stochastic modeling of chlorophyll-a for probabilistic assessment and monitoring of algae blooms in the Lower Nakdong River, South Korea publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123066 – volume: 379 start-page: 20200209 issue: 2194 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0175 article-title: Time-series forecasting with deep learning: a survey publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2020.0209 – volume: 106 start-page: 7183 issue: D7 year: 2001 ident: 10.1016/j.jhydrol.2023.130240_b0260 article-title: Summarizing multiple aspects of model performance in a single diagram publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD900719 – start-page: 25 year: 2012 ident: 10.1016/j.jhydrol.2023.130240_b0250 article-title: Practical bayesian optimization of machine learning algorithms – start-page: 1 year: 2011 ident: 10.1016/j.jhydrol.2023.130240_b0190 – volume: 54 start-page: 6609 issue: 9 year: 2018 ident: 10.1016/j.jhydrol.2023.130240_b0285 article-title: How well does the mechanistic water quality model CE-QUAL-W2 represent biogeochemical responses to climatic and hydrologic forcing? publication-title: Water Resour. Res. doi: 10.1029/2018WR022580 – volume: 35 start-page: 64 issue: 1 year: 2019 ident: 10.1016/j.jhydrol.2023.130240_b0130 article-title: Simulation of eutrophication in a reservoir by CE-QUAL-W2 for the evaluation of the importance of point sources and summer monsoon publication-title: Lake Reservoir Manage. doi: 10.1080/10402381.2018.1530318 – year: 2018 ident: 10.1016/j.jhydrol.2023.130240_b0050 – volume: 320 start-page: 57 issue: 5872 year: 2008 ident: 10.1016/j.jhydrol.2023.130240_b0215 article-title: Blooms like it hot publication-title: Science doi: 10.1126/science.1155398 – volume: 186 year: 2020 ident: 10.1016/j.jhydrol.2023.130240_b0235 article-title: Using convolutional neural network for predicting cyanobacteria concentrations in river water publication-title: Water Res. doi: 10.1016/j.watres.2020.116349 – volume: 598 year: 2021 ident: 10.1016/j.jhydrol.2023.130240_b0020 article-title: Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126196 – start-page: 754 year: 2014 ident: 10.1016/j.jhydrol.2023.130240_b0095 |
| SSID | ssj0000334 |
| Score | 2.568465 |
| Snippet | •We developed a deep learning-based framework for long-term Chl-a simulation.•The performance of six state of the art deep learning algorithms was... Accurate estimation of harmful algal blooms is imperative for the protection of surface water. Chlorophyll-a (Chl-a) which is used as a proxy for estimating... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 130240 |
| SubjectTerms | chlorophyll Chlorophyll-a climate Deep learning Explainable-AI Machine learning meteorological data neural networks poisonous algae prediction rivers surface water water quality watersheds |
| Title | Deep learning-based algorithms for long-term prediction of chlorophyll-a in catchment streams |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2023.130240 https://www.proquest.com/docview/3153597412 |
| Volume | 626 |
| WOSCitedRecordID | wos001091732100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhwQviJ9iGyAj8ValNLaTOI8VDAaICYkh9QVFTuKsKSGpum5s_wJ_NXe1E7cbMPbAS1Sltevmvn53Pvs-E_JCBbEvgjjwUCrdEzovPJmmQIaRTHkY5VpItTpsIjo4kJNJ_KnX-9nWwpxWUV3Ls7N4_l9NDffA2Fg6ew1zd53CDXgNRocrmB2u_2T411rP28Mgjjz0UvlAVUfNolxOjfrCoGrgHeRklAjIy6yNGrMpzN4bePBV5SnMhGRA1NPVdgGsKVFW2fxyLDs9zxdGzAkC1vF3FF_IEWkuy5CmpnJsjAGnW7cyG7U_lvWsdDlV_c3kqmGQn5vGbUBYZXU_nAM9DfZ_qPV8BeO2cG-Ng2H664fmaOOWg0O2zqK4mGpEnC4RvMk1zIYz88OG-A1D9_lNQe0Ljq7bftjubJsltpsEu0lMNzfIFouCWPbJ1vjd3uS98-uci1Z7Hsfv6sFe_nY8f4p0Lvj8VSBzeJfcsVajY4Oce6Sn6_vk1ltttcsfkK-IILqJIOoQRAFBtEMQdQiiTUE3EETLmnYIohZBD8mXN3uHr_Y9ewqHl3HBluCnQ5lHjEMw5acjnQktgmwUauaPiqAQPNe-LDDG0TA3jxUf6TBgBbgKLWWRAsc_Iv26qfVjQjVLQ61g1s9lKHKswVZxxIEaIiGKgKXbRLRPLMmsRD2elFIlf7XYNhl2zeZGo-WqBrI1R2IDTRNAJgCzq5o-b82XABHj6pqqdXNynHCIHXB27rOd645nl9x2_5QnpL9cnOin5GZ2uiyPF88sDn8BAH2uIg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+algorithms+for+long-term+prediction+of+chlorophyll-a+in+catchment+streams&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Abbas%2C+Ather&rft.au=Park%2C+Minji&rft.au=Baek%2C+Sang-Soo&rft.au=Cho%2C+Kyung+Hwa&rft.date=2023-11-01&rft.issn=0022-1694&rft.volume=626&rft.spage=130240&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.130240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2023_130240 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |