Deep learning-based algorithms for long-term prediction of chlorophyll-a in catchment streams

•We developed a deep learning-based framework for long-term Chl-a simulation.•The performance of six state of the art deep learning algorithms was compared.•Our study employed separate sub-basins to train and evaluate DL models.•Chl-a prediction is improved by using sub-basin characteristics as inpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) Jg. 626; S. 130240
Hauptverfasser: Abbas, Ather, Park, Minji, Baek, Sang-Soo, Cho, Kyung Hwa
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.11.2023
Schlagworte:
ISSN:0022-1694, 1879-2707
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We developed a deep learning-based framework for long-term Chl-a simulation.•The performance of six state of the art deep learning algorithms was compared.•Our study employed separate sub-basins to train and evaluate DL models.•Chl-a prediction is improved by using sub-basin characteristics as input data.•Attention based LSTM model can simulate and explain Chl-a behavior in surface water. Accurate estimation of harmful algal blooms is imperative for the protection of surface water. Chlorophyll-a (Chl-a) which is used as a proxy for estimating the algal concentration, is affected by a wide range of weather and physicochemical factors that act at varying spatial and temporal scales. Deep learning (DL) based models such as Long-Short Term Memory (LSTM) and Convolution Neural Networks (CNNs) have shown promising results for hydrological and Chl-a simulations. Recently several variants of LSTM and CNNs have been developed which can model highly non-linear relationships between input and target data. Therefore, these advanced DL methods have the potential for long-term simulation of Chl-a. Previous DL-based studies on Chl-a simulation have developed site-dependent models. This indicates that the DL models were trained and evaluated using data from the same site, making it difficult to apply these models to other sites. Development of site-independent models requires a more robust training strategy which can result in DL models that can be evaluated in new novel situations. To address these issues, we propose a DL-based framework which can incorporate irregularly measured water quality observations, static physical features, and climate data measured at constant time steps. In this framework, we compared the performance of six state of the art DL methods which include (1) LSTM, (2) CNN, (3) Temporal Convolution Networks (TCN), (4) CNN-LSTM, (5) LSTM based autoencoder, and (6) input-attention LSTM (IA-LSTM). The IA-LSTM is an explainable DL method which can select important hydrologic, climatic and water quality parameters for Chl-a prediction. Our results indicate that the IA-LSTM exhibited the best performance, with an R2 value of 0.85 at the training site and 0.52 at the test site. We showed that attention-based deep learning models improve the prediction performance and make the black-box deep learning models interpretable and explainable. The attention-based deep learning models indicated that Chl-a concentration in the Nakdong River was strongly affected by climate factors during the previous three days. The proposed DL framework can be adopted to develop regional water quality models using deep learning.
AbstractList •We developed a deep learning-based framework for long-term Chl-a simulation.•The performance of six state of the art deep learning algorithms was compared.•Our study employed separate sub-basins to train and evaluate DL models.•Chl-a prediction is improved by using sub-basin characteristics as input data.•Attention based LSTM model can simulate and explain Chl-a behavior in surface water. Accurate estimation of harmful algal blooms is imperative for the protection of surface water. Chlorophyll-a (Chl-a) which is used as a proxy for estimating the algal concentration, is affected by a wide range of weather and physicochemical factors that act at varying spatial and temporal scales. Deep learning (DL) based models such as Long-Short Term Memory (LSTM) and Convolution Neural Networks (CNNs) have shown promising results for hydrological and Chl-a simulations. Recently several variants of LSTM and CNNs have been developed which can model highly non-linear relationships between input and target data. Therefore, these advanced DL methods have the potential for long-term simulation of Chl-a. Previous DL-based studies on Chl-a simulation have developed site-dependent models. This indicates that the DL models were trained and evaluated using data from the same site, making it difficult to apply these models to other sites. Development of site-independent models requires a more robust training strategy which can result in DL models that can be evaluated in new novel situations. To address these issues, we propose a DL-based framework which can incorporate irregularly measured water quality observations, static physical features, and climate data measured at constant time steps. In this framework, we compared the performance of six state of the art DL methods which include (1) LSTM, (2) CNN, (3) Temporal Convolution Networks (TCN), (4) CNN-LSTM, (5) LSTM based autoencoder, and (6) input-attention LSTM (IA-LSTM). The IA-LSTM is an explainable DL method which can select important hydrologic, climatic and water quality parameters for Chl-a prediction. Our results indicate that the IA-LSTM exhibited the best performance, with an R2 value of 0.85 at the training site and 0.52 at the test site. We showed that attention-based deep learning models improve the prediction performance and make the black-box deep learning models interpretable and explainable. The attention-based deep learning models indicated that Chl-a concentration in the Nakdong River was strongly affected by climate factors during the previous three days. The proposed DL framework can be adopted to develop regional water quality models using deep learning.
Accurate estimation of harmful algal blooms is imperative for the protection of surface water. Chlorophyll-a (Chl-a) which is used as a proxy for estimating the algal concentration, is affected by a wide range of weather and physicochemical factors that act at varying spatial and temporal scales. Deep learning (DL) based models such as Long-Short Term Memory (LSTM) and Convolution Neural Networks (CNNs) have shown promising results for hydrological and Chl-a simulations. Recently several variants of LSTM and CNNs have been developed which can model highly non-linear relationships between input and target data. Therefore, these advanced DL methods have the potential for long-term simulation of Chl-a. Previous DL-based studies on Chl-a simulation have developed site-dependent models. This indicates that the DL models were trained and evaluated using data from the same site, making it difficult to apply these models to other sites. Development of site-independent models requires a more robust training strategy which can result in DL models that can be evaluated in new novel situations. To address these issues, we propose a DL-based framework which can incorporate irregularly measured water quality observations, static physical features, and climate data measured at constant time steps. In this framework, we compared the performance of six state of the art DL methods which include (1) LSTM, (2) CNN, (3) Temporal Convolution Networks (TCN), (4) CNN-LSTM, (5) LSTM based autoencoder, and (6) input-attention LSTM (IA-LSTM). The IA-LSTM is an explainable DL method which can select important hydrologic, climatic and water quality parameters for Chl-a prediction. Our results indicate that the IA-LSTM exhibited the best performance, with an R² value of 0.85 at the training site and 0.52 at the test site. We showed that attention-based deep learning models improve the prediction performance and make the black-box deep learning models interpretable and explainable. The attention-based deep learning models indicated that Chl-a concentration in the Nakdong River was strongly affected by climate factors during the previous three days. The proposed DL framework can be adopted to develop regional water quality models using deep learning.
ArticleNumber 130240
Author Cho, Kyung Hwa
Abbas, Ather
Park, Minji
Baek, Sang-Soo
Author_xml – sequence: 1
  givenname: Ather
  surname: Abbas
  fullname: Abbas, Ather
  organization: Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
– sequence: 2
  givenname: Minji
  surname: Park
  fullname: Park, Minji
  organization: Water Pollution Load Management Research Division, National Institute of Environmental Research, 42 Hwangyong-ro, Seogu, Incheon 22689, South Korea
– sequence: 3
  givenname: Sang-Soo
  surname: Baek
  fullname: Baek, Sang-Soo
  email: ssbaek@yu.ac.kr
  organization: Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea
– sequence: 4
  givenname: Kyung Hwa
  surname: Cho
  fullname: Cho, Kyung Hwa
  email: khcho80@korea.ac.kr
  organization: School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
BookMark eNqFkMtKAzEUhoMo2KqPIGTpZmpucykuROoVBDe6lJBmTjopmWRMUqFv75R25aZncxbn_3443xSd-uABoWtKZpTQ6nY9W3fbNgY3Y4TxGeWECXKCJrSp5wWrSX2KJoQwVtBqLs7RNKU1GYdzMUHfjwADdqCit35VLFWCFiu3CtHmrk_YhIhdGC8ZYo-HCK3V2QaPg8G6cyGGods6VyhsPdYq664Hn3HKEVSfLtGZUS7B1WFfoK_np8_Fa_H-8fK2eHgvNBcsF5RUTVszDtDSJQEtQJSaVMAoMaURvAXamEbUFKgQc8UJVCUznDbQNGZJSn6Bbva9Qww_G0hZ9jZpcE55CJskOS15Oa8FZWP0bh_VMaQUwUhts9q9lKOyTlIid1LlWh6kyp1UuZc60uU_eoi2V3F7lLvfczBa-LUQZdIWvB51RtBZtsEeafgDcjSXTA
CitedBy_id crossref_primary_10_1016_j_cej_2025_163074
crossref_primary_10_1016_j_watres_2024_122401
crossref_primary_10_1016_j_desal_2025_119193
crossref_primary_10_4491_eer_2023_712
crossref_primary_10_1016_j_ecoinf_2024_102954
crossref_primary_10_3390_rs17152737
crossref_primary_10_1016_j_ecolind_2025_113244
crossref_primary_10_1080_15481603_2025_2484864
crossref_primary_10_1007_s12145_024_01658_z
crossref_primary_10_3390_jmse12071119
crossref_primary_10_1016_j_jhydrol_2024_132081
crossref_primary_10_1016_j_envres_2024_119911
crossref_primary_10_1016_j_wroa_2025_100367
crossref_primary_10_1016_j_watres_2024_121861
crossref_primary_10_1016_j_jhydrol_2025_133800
crossref_primary_10_1016_j_jenvman_2025_124832
crossref_primary_10_1016_j_jhazmat_2024_135285
crossref_primary_10_1016_j_jwpe_2025_108341
crossref_primary_10_1016_j_scitotenv_2024_175451
crossref_primary_10_1016_j_scitotenv_2025_179481
crossref_primary_10_1016_j_asoc_2024_112352
crossref_primary_10_1016_j_algal_2024_103779
crossref_primary_10_1007_s12145_025_01796_y
crossref_primary_10_1016_j_envres_2025_122500
crossref_primary_10_1016_j_jhydrol_2025_133485
crossref_primary_10_3390_jmse13010151
crossref_primary_10_3390_rs17101684
crossref_primary_10_1016_j_scitotenv_2024_171009
crossref_primary_10_1016_j_scitotenv_2024_175407
Cites_doi 10.1016/j.ijforecast.2021.03.012
10.1016/j.uclim.2023.101458
10.2166/hydro.2017.010
10.1007/s11270-010-0695-3
10.1038/s41598-021-96633-9
10.1007/s11269-015-1103-y
10.1098/rspl.1895.0041
10.3390/w13233328
10.1016/0304-3800(94)90075-2
10.1016/j.jclepro.2022.131724
10.1016/j.ijsrc.2016.02.001
10.1016/j.scitotenv.2014.09.005
10.1016/j.jhydrol.2021.126455
10.3390/ijerph15071322
10.1109/ACCESS.2020.2993874
10.1007/s00477-020-01776-2
10.1007/s12205-011-1052-9
10.1016/j.jenvman.2021.113060
10.1016/j.jenvman.2019.07.021
10.3390/w10111543
10.1016/j.ecolmodel.2019.108835
10.2495/EID180141
10.1016/j.uclim.2021.100872
10.1016/j.watres.2021.117001
10.5194/hess-25-5517-2021
10.3390/w12061822
10.1145/3448250
10.1007/BF00020532
10.1007/BF00013459
10.1016/j.knosys.2018.06.015
10.1016/j.rse.2020.111974
10.1162/neco.1997.9.8.1735
10.1016/j.jhazmat.2020.123066
10.1098/rsta.2020.0209
10.1029/2000JD900719
10.1029/2018WR022580
10.1080/10402381.2018.1530318
10.1126/science.1155398
10.1016/j.watres.2020.116349
10.1016/j.jhydrol.2021.126196
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2023.130240
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
ExternalDocumentID 10_1016_j_jhydrol_2023_130240
S0022169423011824
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c342t-1068d723eed1b0ec4e45c06e210f5f43de18f8471e1449a30e652f318e88fb053
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001091732100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Thu Oct 02 21:45:14 EDT 2025
Sat Nov 29 07:30:58 EST 2025
Tue Nov 18 22:31:05 EST 2025
Sat Feb 17 16:12:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Explainable-AI
Chlorophyll-a
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c342t-1068d723eed1b0ec4e45c06e210f5f43de18f8471e1449a30e652f318e88fb053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153597412
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153597412
crossref_citationtrail_10_1016_j_jhydrol_2023_130240
crossref_primary_10_1016_j_jhydrol_2023_130240
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2023_130240
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kendall, M.G. (1946). The advanced theory of statistics. The advanced theory of statistics.
Park, Cho, Park, Cha, Kim (b0225) 2015; 502
Brown, Barnwell (b0035) 1987
Bengio, Lecun, Hinton (b0025) 2021; 64
Kindle (b0135) 1987; 9
Lee, Lee (b0155) 2018; 15
He, Luo, Xing, Yu, Zhang, Chen (b0080) 2019; 248
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., & Williams, J.R. (2011). Soil and water assessment tool theoretical documentation version 2009. In: Texas Water Resources Institute.
Barzegar, Aalami, Adamowski (b0020) 2021; 598
Hochreiter, Schmidhuber (b0085) 1997; 9
Lee, Woo, Kim, Kim, Pyo, Cho (b0160) 2021; 343
Yajima, Derot (b0275) 2018; 20
Gallagher, Williams, Lazzeri, Chennault, Jourdain, O’Leary, Condon, Maxwell (b0070) 2021; 13
Barzegar, Aalami, Adamowski (b0015) 2020; 34
Malek, Ahmad, Singh, Milow, Salleh (b0190) 2011
Pearson, K. (1895). Notes on Regression and Inheritance in the Case of Two Parents Proceedings of the Royal Society of London, 58, 240-242. In: ed.
O'Brien, Hershey, Hobbie, Hullar, Kipphut, Miller, Moller, Vestal (b0205) 1992; 240
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
LeCun, Bengio (b0145) 1995; 3361
Jang, Abbas, Kim, Shin, Kim, Cho (b0100) 2021; 196
Paerl, Huisman (b0215) 2008; 320
Cho, Choi, Park (b0045) 2018; 215
Zhang, Li, Jiang, Sun, Zhao, Yan, Wang (b0290) 2022; 354
Samal, Babu, Das (b0240) 2021; 38
Zheng, Wang, Liu, Zhang, Ding, Xie, Li, Wang (b0295) 2021; 295
Zang, Huang, Wu, Du, Scholz, Gao, Lin, Guo, Dong (b0280) 2011; 219
Kim, Jung, Tsang, Kwon (b0125) 2020; 400
Kayalvizhi, Jiavana, Suganthi, Malarvizhi (b0115) 2023; 49
Bai, S., Kolter, J.Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
Taylor (b0260) 2001; 106
Cole, T.M., & Buchak, E.M. (1995). CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0. User Manual. In: Army engineer waterways experiment station vicksburg ms environmental lab.
Fatehi, Amiri, Alizadeh, Adamowski (b0065) 2015; 29
Kim, Kim, Kim (b0130) 2019; 35
Cao, Ma, Duan, Pahlevan, Melack, Shen, Xue (b0040) 2020; 248
Zhang, Brett, Brattebo, Welch (b0285) 2018; 54
Du, Qin, Zhang, Liu (b0060) 2018; 160
Shin, Kim, Hong, Lee, Lee, Hong, Lee, Kim, Park, Park, Heo (b0245) 2020; 12
Pyo, Park, Pachepsky, Baek, Kim, Cho (b0235) 2020; 186
Ouyang, Lawson, Feng, Ye, Zhang, Shen (b0210) 2021; 599
Stefan, Fang (b0255) 1994; 71
Berend, Xie, Ma, Zhou, Liu, Xu, Zhao (b0030) 2020
Page, Kumar, Mishra (b0220) 2018; 66
Hutter, Hoos, Leyton-Brown (b0095) 2014
Lim, Arık, Loeff, Pfister (b0170) 2021; 37
Liu, Jiang, Mu, Wang (b0180) 2020; 8
Goodfellow, Bengio, Courville (b0075) 2016
Molnar (b0195) 2020
Chollet (b0050) 2018
Hu, Wu, Li, Jian, Li, Lou (b0090) 2018; 10
Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
Ji, Jang, Kim (b0110) 2016; 31
Snoek, Larochelle, Adams (b0250) 2012
Lee, Kim, Park, Stenstrom, Kang (b0150) 2020; 415
Wunsch, Liesch, Broda (b0270) 2020; 2020
Lees, Buechel, Anderson, Slater, Reece, Coxon, Dadson (b0165) 2021; 25
Lim, Zohren (b0175) 2021; 379
Umwali, Kurban, Isabwe, Mind’je, Azadi, Guo, Udahogora, Nyirarwasa, Umuhoza, Nzabarinda, Gasirabo, Sabirhazi (b0265) 2021; 11
Jeong, Kim, Shin, Yoon, Kim, Joo (b0105) 2011; 15
Kayalvizhi (10.1016/j.jhydrol.2023.130240_b0115) 2023; 49
He (10.1016/j.jhydrol.2023.130240_b0080) 2019; 248
LeCun (10.1016/j.jhydrol.2023.130240_b0145) 1995; 3361
Park (10.1016/j.jhydrol.2023.130240_b0225) 2015; 502
Samal (10.1016/j.jhydrol.2023.130240_b0240) 2021; 38
Kim (10.1016/j.jhydrol.2023.130240_b0125) 2020; 400
Zheng (10.1016/j.jhydrol.2023.130240_b0295) 2021; 295
Barzegar (10.1016/j.jhydrol.2023.130240_b0015) 2020; 34
Kindle (10.1016/j.jhydrol.2023.130240_b0135) 1987; 9
10.1016/j.jhydrol.2023.130240_b0200
10.1016/j.jhydrol.2023.130240_b0005
Hu (10.1016/j.jhydrol.2023.130240_b0090) 2018; 10
Hochreiter (10.1016/j.jhydrol.2023.130240_b0085) 1997; 9
10.1016/j.jhydrol.2023.130240_b0120
Yajima (10.1016/j.jhydrol.2023.130240_b0275) 2018; 20
Zhang (10.1016/j.jhydrol.2023.130240_b0290) 2022; 354
Cho (10.1016/j.jhydrol.2023.130240_b0045) 2018; 215
Goodfellow (10.1016/j.jhydrol.2023.130240_b0075) 2016
Zang (10.1016/j.jhydrol.2023.130240_b0280) 2011; 219
Lee (10.1016/j.jhydrol.2023.130240_b0155) 2018; 15
Snoek (10.1016/j.jhydrol.2023.130240_b0250) 2012
Taylor (10.1016/j.jhydrol.2023.130240_b0260) 2001; 106
Jeong (10.1016/j.jhydrol.2023.130240_b0105) 2011; 15
Malek (10.1016/j.jhydrol.2023.130240_b0190) 2011
Berend (10.1016/j.jhydrol.2023.130240_b0030) 2020
10.1016/j.jhydrol.2023.130240_b0230
Brown (10.1016/j.jhydrol.2023.130240_b0035) 1987
Gallagher (10.1016/j.jhydrol.2023.130240_b0070) 2021; 13
Zhang (10.1016/j.jhydrol.2023.130240_b0285) 2018; 54
Lees (10.1016/j.jhydrol.2023.130240_b0165) 2021; 25
Stefan (10.1016/j.jhydrol.2023.130240_b0255) 1994; 71
Pyo (10.1016/j.jhydrol.2023.130240_b0235) 2020; 186
Hutter (10.1016/j.jhydrol.2023.130240_b0095) 2014
O'Brien (10.1016/j.jhydrol.2023.130240_b0205) 1992; 240
Bengio (10.1016/j.jhydrol.2023.130240_b0025) 2021; 64
Lim (10.1016/j.jhydrol.2023.130240_b0175) 2021; 379
Molnar (10.1016/j.jhydrol.2023.130240_b0195) 2020
10.1016/j.jhydrol.2023.130240_b0140
Fatehi (10.1016/j.jhydrol.2023.130240_b0065) 2015; 29
Chollet (10.1016/j.jhydrol.2023.130240_b0050) 2018
Lim (10.1016/j.jhydrol.2023.130240_b0170) 2021; 37
Page (10.1016/j.jhydrol.2023.130240_b0220) 2018; 66
Wunsch (10.1016/j.jhydrol.2023.130240_b0270) 2020; 2020
Liu (10.1016/j.jhydrol.2023.130240_b0180) 2020; 8
Umwali (10.1016/j.jhydrol.2023.130240_b0265) 2021; 11
Lee (10.1016/j.jhydrol.2023.130240_b0160) 2021; 343
Shin (10.1016/j.jhydrol.2023.130240_b0245) 2020; 12
Jang (10.1016/j.jhydrol.2023.130240_b0100) 2021; 196
Paerl (10.1016/j.jhydrol.2023.130240_b0215) 2008; 320
Ji (10.1016/j.jhydrol.2023.130240_b0110) 2016; 31
Barzegar (10.1016/j.jhydrol.2023.130240_b0020) 2021; 598
10.1016/j.jhydrol.2023.130240_b0010
Du (10.1016/j.jhydrol.2023.130240_b0060) 2018; 160
10.1016/j.jhydrol.2023.130240_b0055
Kim (10.1016/j.jhydrol.2023.130240_b0130) 2019; 35
Cao (10.1016/j.jhydrol.2023.130240_b0040) 2020; 248
Lee (10.1016/j.jhydrol.2023.130240_b0150) 2020; 415
Ouyang (10.1016/j.jhydrol.2023.130240_b0210) 2021; 599
References_xml – volume: 598
  year: 2021
  ident: b0020
  article-title: Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting
  publication-title: J. Hydrol.
– volume: 31
  start-page: 257
  year: 2016
  end-page: 263
  ident: b0110
  article-title: Numerical modeling of sedimentation control scenarios in the approach channel of the Nakdong River Estuary Barrage, South Korea
  publication-title: Int. J. Sedim. Res.
– volume: 35
  start-page: 64
  year: 2019
  end-page: 76
  ident: b0130
  article-title: Simulation of eutrophication in a reservoir by CE-QUAL-W2 for the evaluation of the importance of point sources and summer monsoon
  publication-title: Lake Reservoir Manage.
– volume: 160
  start-page: 61
  year: 2018
  end-page: 70
  ident: b0060
  article-title: Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network
  publication-title: Knowl.-Based Syst.
– volume: 215
  start-page: 157
  year: 2018
  end-page: 163
  ident: b0045
  article-title: Deep learning application to time-series prediction of daily chlorophyll-a concentration
  publication-title: WIT Trans. Ecol. Environ.
– volume: 354
  year: 2022
  ident: b0290
  article-title: Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model
  publication-title: J. Clean. Prod.
– start-page: 1
  year: 2011
  end-page: 11
  ident: b0190
  article-title: Assessment of predictive models for chlorophyll-a concentration of a tropical lake. In, BMC bioinformatics
– volume: 106
  start-page: 7183
  year: 2001
  end-page: 7192
  ident: b0260
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res. Atmos.
– volume: 248
  year: 2020
  ident: b0040
  article-title: A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 1748
  year: 2021
  end-page: 1764
  ident: b0170
  article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting
  publication-title: Int. J. Forecast.
– volume: 599
  year: 2021
  ident: b0210
  article-title: Continental-scale streamflow modeling of basins with reservoirs: towards a coherent deep-learning-based strategy
  publication-title: J. Hydrol.
– volume: 400
  year: 2020
  ident: b0125
  article-title: Stochastic modeling of chlorophyll-a for probabilistic assessment and monitoring of algae blooms in the Lower Nakdong River, South Korea
  publication-title: J. Hazard. Mater.
– volume: 38
  year: 2021
  ident: b0240
  article-title: Temporal convolutional denoising autoencoder network for air pollution prediction with missing values
  publication-title: Urban Clim.
– year: 2018
  ident: b0050
  article-title: Deep learning with Python
– reference: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
– volume: 11
  year: 2021
  ident: b0265
  article-title: Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi
  publication-title: Sci. Rep.
– year: 2020
  ident: b0195
  article-title: Interpretable machine learning
  publication-title: Lulu. Com.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 23
  ident: b0270
  article-title: Groundwater level forecasting with artificial neural networks: a comparison of LSTM, CNN and NARX
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 379
  start-page: 20200209
  year: 2021
  ident: b0175
  article-title: Time-series forecasting with deep learning: a survey
  publication-title: Phil. Trans. R. Soc. A
– reference: Cole, T.M., & Buchak, E.M. (1995). CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 2.0. User Manual. In: Army engineer waterways experiment station vicksburg ms environmental lab.
– start-page: 25
  year: 2012
  ident: b0250
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 186
  year: 2020
  ident: b0235
  article-title: Using convolutional neural network for predicting cyanobacteria concentrations in river water
  publication-title: Water Res.
– volume: 12
  start-page: 1822
  year: 2020
  ident: b0245
  article-title: Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods
  publication-title: Water
– volume: 71
  start-page: 37
  year: 1994
  end-page: 68
  ident: b0255
  article-title: Dissolved oxygen model for regional lake analysis
  publication-title: Ecol. Model.
– year: 2016
  ident: b0075
  article-title: Deep learning
– volume: 66
  start-page: 69
  year: 2018
  end-page: 81
  ident: b0220
  article-title: A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 54
  start-page: 6609
  year: 2018
  end-page: 6624
  ident: b0285
  article-title: How well does the mechanistic water quality model CE-QUAL-W2 represent biogeochemical responses to climatic and hydrologic forcing?
  publication-title: Water Resour. Res.
– volume: 64
  start-page: 58
  year: 2021
  end-page: 65
  ident: b0025
  article-title: Deep learning for AI
  publication-title: Commun. ACM
– volume: 248
  year: 2019
  ident: b0080
  article-title: Effects of temperature-control curtain on algae biomass and dissolved oxygen in a large stratified reservoir: Sanbanxi Reservoir case study
  publication-title: J. Environ. Manage.
– volume: 13
  start-page: 3328
  year: 2021
  ident: b0070
  article-title: Sandtank-ML: an educational tool at the interface of hydrology and machine learning
  publication-title: Water
– volume: 3361
  start-page: 1995
  year: 1995
  ident: b0145
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– volume: 415
  year: 2020
  ident: b0150
  article-title: Automatic calibration and improvements on an instream chlorophyll a simulation in the HSPF model
  publication-title: Ecol. Model.
– volume: 219
  start-page: 157
  year: 2011
  end-page: 174
  ident: b0280
  article-title: Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters
  publication-title: Water Air Soil Pollut.
– reference: Bai, S., Kolter, J.Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.
– start-page: 1041
  year: 2020
  end-page: 1052
  ident: b0030
  article-title: Cats are not fish: Deep learning testing calls for out-of-distribution awareness
  publication-title: In, Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering
– volume: 15
  start-page: 1322
  year: 2018
  ident: b0155
  article-title: Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models
  publication-title: Int. J. Environ. Res. Public Health
– reference: Kingma, D.P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– volume: 25
  start-page: 5517
  year: 2021
  end-page: 5534
  ident: b0165
  article-title: Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 320
  start-page: 57
  year: 2008
  end-page: 58
  ident: b0215
  article-title: Blooms like it hot
  publication-title: Science
– volume: 29
  start-page: 5055
  year: 2015
  end-page: 5072
  ident: b0065
  article-title: Modeling the relationship between catchment attributes and in-stream water quality
  publication-title: Water Resour. Manag.
– volume: 240
  start-page: 143
  year: 1992
  end-page: 188
  ident: b0205
  article-title: Control mechanisms of arctic lake ecosystems: a limnocorral experiment
  publication-title: Hydrobiologia
– volume: 15
  start-page: 983
  year: 2011
  end-page: 994
  ident: b0105
  article-title: Impact of summer rainfall on the seasonal water quality variation (chlorophyll a) in the regulated Nakdong River
  publication-title: KSCE J. Civ. Eng.
– reference: Pearson, K. (1895). Notes on Regression and Inheritance in the Case of Two Parents Proceedings of the Royal Society of London, 58, 240-242. In: ed.
– volume: 49
  year: 2023
  ident: b0115
  article-title: Prediction of ground water quality in western regions of Tamil Nadu using deep auto encoders
  publication-title: Urban Clim.
– volume: 9
  start-page: 547
  year: 1987
  end-page: 563
  ident: b0135
  article-title: Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate
  publication-title: Plant Mol. Biol.
– start-page: 754
  year: 2014
  end-page: 762
  ident: b0095
  publication-title: An Efficient Approach for Assessing Hyperparameter Importance
– volume: 8
  start-page: 90069
  year: 2020
  end-page: 90086
  ident: b0180
  article-title: Streamflow prediction using deep learning neural network: case study of Yangtze River
  publication-title: IEEE Access
– year: 1987
  ident: b0035
  article-title: The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: Documentation and user model. Environmental Research Laboratory
– volume: 20
  start-page: 206
  year: 2018
  end-page: 220
  ident: b0275
  article-title: Application of the Random Forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases
  publication-title: J. Hydroinf.
– volume: 502
  start-page: 31
  year: 2015
  end-page: 41
  ident: b0225
  article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea
  publication-title: Sci. Total Environ.
– volume: 10
  start-page: 1543
  year: 2018
  ident: b0090
  article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation
  publication-title: Water
– reference: Neitsch, S.L., Arnold, J.G., Kiniry, J.R., & Williams, J.R. (2011). Soil and water assessment tool theoretical documentation version 2009. In: Texas Water Resources Institute.
– volume: 34
  start-page: 415
  year: 2020
  end-page: 433
  ident: b0015
  article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
  publication-title: Stoch. Env. Res. Risk A.
– reference: Kendall, M.G. (1946). The advanced theory of statistics. The advanced theory of statistics.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 196
  year: 2021
  ident: b0100
  article-title: Prediction of antibiotic-resistance genes occurrence at a recreational beach with deep learning models
  publication-title: Water Res.
– volume: 343
  year: 2021
  ident: b0160
  article-title: Dynamic calibration of phytoplankton blooms using the modified SWAT model
  publication-title: J. Clean. Prod.
– volume: 295
  year: 2021
  ident: b0295
  article-title: Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models
  publication-title: J. Environ. Manage.
– volume: 37
  start-page: 1748
  issue: 4
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0170
  article-title: Temporal fusion transformers for interpretable multi-horizon time series forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2021.03.012
– volume: 49
  year: 2023
  ident: 10.1016/j.jhydrol.2023.130240_b0115
  article-title: Prediction of ground water quality in western regions of Tamil Nadu using deep auto encoders
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2023.101458
– volume: 20
  start-page: 206
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130240_b0275
  article-title: Application of the Random Forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2017.010
– ident: 10.1016/j.jhydrol.2023.130240_b0055
– volume: 66
  start-page: 69
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130240_b0220
  article-title: A novel cross-satellite based assessment of the spatio-temporal development of a cyanobacterial harmful algal bloom
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 219
  start-page: 157
  issue: 1-4
  year: 2011
  ident: 10.1016/j.jhydrol.2023.130240_b0280
  article-title: Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-010-0695-3
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0265
  article-title: Spatio-seasonal variation of water quality influenced by land use and land cover in Lake Muhazi
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-96633-9
– volume: 29
  start-page: 5055
  issue: 14
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130240_b0065
  article-title: Modeling the relationship between catchment attributes and in-stream water quality
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1103-y
– ident: 10.1016/j.jhydrol.2023.130240_b0230
  doi: 10.1098/rspl.1895.0041
– volume: 13
  start-page: 3328
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0070
  article-title: Sandtank-ML: an educational tool at the interface of hydrology and machine learning
  publication-title: Water
  doi: 10.3390/w13233328
– volume: 71
  start-page: 37
  issue: 1-3
  year: 1994
  ident: 10.1016/j.jhydrol.2023.130240_b0255
  article-title: Dissolved oxygen model for regional lake analysis
  publication-title: Ecol. Model.
  doi: 10.1016/0304-3800(94)90075-2
– volume: 354
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130240_b0290
  article-title: Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131724
– volume: 31
  start-page: 257
  issue: 3
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130240_b0110
  article-title: Numerical modeling of sedimentation control scenarios in the approach channel of the Nakdong River Estuary Barrage, South Korea
  publication-title: Int. J. Sedim. Res.
  doi: 10.1016/j.ijsrc.2016.02.001
– volume: 502
  start-page: 31
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130240_b0225
  article-title: Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.09.005
– year: 1987
  ident: 10.1016/j.jhydrol.2023.130240_b0035
– year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0195
  article-title: Interpretable machine learning
  publication-title: Lulu. Com.
– volume: 599
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0210
  article-title: Continental-scale streamflow modeling of basins with reservoirs: towards a coherent deep-learning-based strategy
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126455
– year: 2016
  ident: 10.1016/j.jhydrol.2023.130240_b0075
– volume: 15
  start-page: 1322
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130240_b0155
  article-title: Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph15071322
– volume: 8
  start-page: 90069
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0180
  article-title: Streamflow prediction using deep learning neural network: case study of Yangtze River
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993874
– volume: 34
  start-page: 415
  issue: 2
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0015
  article-title: Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-020-01776-2
– volume: 15
  start-page: 983
  issue: 6
  year: 2011
  ident: 10.1016/j.jhydrol.2023.130240_b0105
  article-title: Impact of summer rainfall on the seasonal water quality variation (chlorophyll a) in the regulated Nakdong River
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-011-1052-9
– volume: 295
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0295
  article-title: Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.113060
– volume: 248
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130240_b0080
  article-title: Effects of temperature-control curtain on algae biomass and dissolved oxygen in a large stratified reservoir: Sanbanxi Reservoir case study
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2019.07.021
– volume: 10
  start-page: 1543
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130240_b0090
  article-title: Deep learning with a long short-term memory networks approach for rainfall-runoff simulation
  publication-title: Water
  doi: 10.3390/w10111543
– volume: 415
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0150
  article-title: Automatic calibration and improvements on an instream chlorophyll a simulation in the HSPF model
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2019.108835
– ident: 10.1016/j.jhydrol.2023.130240_b0140
– ident: 10.1016/j.jhydrol.2023.130240_b0010
– volume: 343
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0160
  article-title: Dynamic calibration of phytoplankton blooms using the modified SWAT model
  publication-title: J. Clean. Prod.
– volume: 215
  start-page: 157
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130240_b0045
  article-title: Deep learning application to time-series prediction of daily chlorophyll-a concentration
  publication-title: WIT Trans. Ecol. Environ.
  doi: 10.2495/EID180141
– volume: 38
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0240
  article-title: Temporal convolutional denoising autoencoder network for air pollution prediction with missing values
  publication-title: Urban Clim.
  doi: 10.1016/j.uclim.2021.100872
– ident: 10.1016/j.jhydrol.2023.130240_b0005
– volume: 196
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0100
  article-title: Prediction of antibiotic-resistance genes occurrence at a recreational beach with deep learning models
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117001
– volume: 25
  start-page: 5517
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0165
  article-title: Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-5517-2021
– volume: 3361
  start-page: 1995
  year: 1995
  ident: 10.1016/j.jhydrol.2023.130240_b0145
  article-title: Convolutional networks for images, speech, and time series
  publication-title: The Handbook of Brain Theory and Neural Networks
– ident: 10.1016/j.jhydrol.2023.130240_b0200
– volume: 12
  start-page: 1822
  issue: 6
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0245
  article-title: Prediction of chlorophyll-a concentrations in the Nakdong River using machine learning methods
  publication-title: Water
  doi: 10.3390/w12061822
– volume: 64
  start-page: 58
  issue: 7
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0025
  article-title: Deep learning for AI
  publication-title: Commun. ACM
  doi: 10.1145/3448250
– volume: 9
  start-page: 547
  issue: 6
  year: 1987
  ident: 10.1016/j.jhydrol.2023.130240_b0135
  article-title: Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate
  publication-title: Plant Mol. Biol.
  doi: 10.1007/BF00020532
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0270
  article-title: Groundwater level forecasting with artificial neural networks: a comparison of LSTM, CNN and NARX
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 240
  start-page: 143
  issue: 1-3
  year: 1992
  ident: 10.1016/j.jhydrol.2023.130240_b0205
  article-title: Control mechanisms of arctic lake ecosystems: a limnocorral experiment
  publication-title: Hydrobiologia
  doi: 10.1007/BF00013459
– volume: 160
  start-page: 61
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130240_b0060
  article-title: Multistep-ahead forecasting of chlorophyll a using a wavelet nonlinear autoregressive network
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.06.015
– ident: 10.1016/j.jhydrol.2023.130240_b0120
– start-page: 1041
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0030
  article-title: Cats are not fish: Deep learning testing calls for out-of-distribution awareness
– volume: 248
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0040
  article-title: A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111974
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.jhydrol.2023.130240_b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 400
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0125
  article-title: Stochastic modeling of chlorophyll-a for probabilistic assessment and monitoring of algae blooms in the Lower Nakdong River, South Korea
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123066
– volume: 379
  start-page: 20200209
  issue: 2194
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0175
  article-title: Time-series forecasting with deep learning: a survey
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0209
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  ident: 10.1016/j.jhydrol.2023.130240_b0260
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2000JD900719
– start-page: 25
  year: 2012
  ident: 10.1016/j.jhydrol.2023.130240_b0250
  article-title: Practical bayesian optimization of machine learning algorithms
– start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2023.130240_b0190
– volume: 54
  start-page: 6609
  issue: 9
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130240_b0285
  article-title: How well does the mechanistic water quality model CE-QUAL-W2 represent biogeochemical responses to climatic and hydrologic forcing?
  publication-title: Water Resour. Res.
  doi: 10.1029/2018WR022580
– volume: 35
  start-page: 64
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130240_b0130
  article-title: Simulation of eutrophication in a reservoir by CE-QUAL-W2 for the evaluation of the importance of point sources and summer monsoon
  publication-title: Lake Reservoir Manage.
  doi: 10.1080/10402381.2018.1530318
– year: 2018
  ident: 10.1016/j.jhydrol.2023.130240_b0050
– volume: 320
  start-page: 57
  issue: 5872
  year: 2008
  ident: 10.1016/j.jhydrol.2023.130240_b0215
  article-title: Blooms like it hot
  publication-title: Science
  doi: 10.1126/science.1155398
– volume: 186
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130240_b0235
  article-title: Using convolutional neural network for predicting cyanobacteria concentrations in river water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116349
– volume: 598
  year: 2021
  ident: 10.1016/j.jhydrol.2023.130240_b0020
  article-title: Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126196
– start-page: 754
  year: 2014
  ident: 10.1016/j.jhydrol.2023.130240_b0095
SSID ssj0000334
Score 2.568465
Snippet •We developed a deep learning-based framework for long-term Chl-a simulation.•The performance of six state of the art deep learning algorithms was...
Accurate estimation of harmful algal blooms is imperative for the protection of surface water. Chlorophyll-a (Chl-a) which is used as a proxy for estimating...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130240
SubjectTerms chlorophyll
Chlorophyll-a
climate
Deep learning
Explainable-AI
Machine learning
meteorological data
neural networks
poisonous algae
prediction
rivers
surface water
water quality
watersheds
Title Deep learning-based algorithms for long-term prediction of chlorophyll-a in catchment streams
URI https://dx.doi.org/10.1016/j.jhydrol.2023.130240
https://www.proquest.com/docview/3153597412
Volume 626
WOSCitedRecordID wos001091732100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhwQvEz-1MUBG4q1KSRzHcR4rGIxfExID9QVFruOsKSGpum5sT_zr3NVOsq2gARIvUZXKcer7evf57PtMyFNAAdNJpLzM15HHgYN7EEaExyXEJgHxXq02Y35-F-_vy_E4-dDr_WhqYU7KuKrk6Wky_6-mhntgbCyd_Qtztw-FG_AZjA5XMDtc_8jwL4yZN4dBHHoYpbKBKg_rRbGcWvWFQVnDN-iTUSIgK3TDGvUUZu81DHxZegozIRoc9XS1XQBrSpRTNl_nstOzbGHFnICwjr6h-EKGSOuyDJOJrRwbIeHs1q3sRu33RTUrupyq-Wpz1fCSH-u624Cwyuq-PQP3NNj7rs7nK1joCvfaJNpaIU1bVBAIe97x0FhfLOMEy-Xi885a2Pr6NcdvcxCz4cz-4CH2jCddMysGdUlTG5eoGXbH0L9Jxq-RDRZHieyTjdHr3fGbLpiHIW8E57FBVwT27Jed_Y7eXAr0K_ZycItsOlPRkYXLbdIz1R1y45VxguV3yReEDb0IG9rBhgJsaAsb2sGG1jm9ABtaVLSFDXWwuUc-vdw9eL7nuaM3PB1ytoTgLGQWsxAYVDDxjeaGR9oXhgV-HuU8zEwgcyQ2BibkiQp9IyKWQ3wwUuYTcOz3Sb-qK7NFqAgDMeEmThKV8chXUvEogXk6MxDzpRDbhDcjlmqnS4_Ho5RpswFxlrqBTnGgUzvQ22TYNptbYZarGsjGHKljl5Y1poChq5o-acyXgvfFJTVVmfr4KA2BMOCUPGAP_v3xO-Rm90d5SPrLxbF5RK7rk2VxtHjsEPkTzt6scw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+algorithms+for+long-term+prediction+of+chlorophyll-a+in+catchment+streams&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Abbas%2C+Ather&rft.au=Park%2C+Minji&rft.au=Baek%2C+Sang-Soo&rft.au=Cho%2C+Kyung+Hwa&rft.date=2023-11-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=626&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.130240&rft.externalDocID=S0022169423011824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon