Coverage‐Limiting Factors Affecting the Monitoring of Urban Emissions With the Orbiting Carbon Observatory Missions
A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ concentrations with high accuracy and precision. With the original goal of constraining n...
Uložené v:
| Vydané v: | AGU advances Ročník 6; číslo 3 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Wiley
01.06.2025
|
| Predmet: | |
| ISSN: | 2576-604X, 2576-604X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ concentrations with high accuracy and precision. With the original goal of constraining natural CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ fluxes at regional to global scales, these instruments have now become popular tools for studying anthropogenic emissions from cities around the world. As signatories of the Paris Climate Agreement are expected to produce nationally determined contributions (NDC) to global carbon emissions, continued monitoring, reporting, and verification (MRV) of these estimates will be essential. While the use of OCO‐2 and OCO‐3 missions for MRV purposes is increasing, several physical and environmental factors limit data collection. Using the continental United States as a test case, the influences of orbital mechanics and environmental factors on local‐ and national‐level emissions estimates are explored through a series of linear and multi‐linear regressions to predict each instrument's effective revisit time. Results suggest that, due to environmental factors, western regions of the U.S. are more likely to be constrained at a sub‐annual scale than eastern regions, with effective instrument revisit times <30 ${< } 30$ days. East coast cities have effective revisit times >30 ${ >} 30$ days; however, this varies seasonally. The characteristics of the instruments' orbits also vary the frequency of urban observations in both space and time. Implications for observation‐derived emission estimates at local and national scales and remedies for such shortcomings in future missions are discussed.
Plain Language Summary
Carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ is a key driver of global climate change and the ability to monitor human‐based emissions of this gas is crucial for quantifying the effectiveness of carbon‐reduction policies. In recent years, space‐based platforms have provided atmospheric CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ observations with near‐global coverage and efforts to ingest these data into local, regional, and national carbon accounting methodologies have been successful. However, space‐based observations are influenced by physical and environmental factors that affect their coverage. This study investigated these factors and determined that the time needed to constrain emissions varies among cities within the United States. Key factors that affect these space‐based platforms include the type of orbit they are in, the location of clouds in Earth's atmosphere, and the distribution of atmospheric aerosols. Results show that cities on the west coast are more frequently observed than cities in the northeast. These limitations should be considered when cities are seeking to monitor their emission reduction efforts with space‐based technologies.
Key Points
Orbital mechanics and environmental factors limit the ability of OCO‐2 and OCO‐3 to collect data in space and time
Understanding when and where these effects are most prevalent informs city‐level monitoring, reporting, and verification (MRV) goals
Our findings can inform local MRV efforts around the world, providing more realistic spatiotemporal resolutions when using space‐based data |
|---|---|
| AbstractList | A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ concentrations with high accuracy and precision. With the original goal of constraining natural CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ fluxes at regional to global scales, these instruments have now become popular tools for studying anthropogenic emissions from cities around the world. As signatories of the Paris Climate Agreement are expected to produce nationally determined contributions (NDC) to global carbon emissions, continued monitoring, reporting, and verification (MRV) of these estimates will be essential. While the use of OCO‐2 and OCO‐3 missions for MRV purposes is increasing, several physical and environmental factors limit data collection. Using the continental United States as a test case, the influences of orbital mechanics and environmental factors on local‐ and national‐level emissions estimates are explored through a series of linear and multi‐linear regressions to predict each instrument's effective revisit time. Results suggest that, due to environmental factors, western regions of the U.S. are more likely to be constrained at a sub‐annual scale than eastern regions, with effective instrument revisit times <30 ${< } 30$ days. East coast cities have effective revisit times >30 ${ >} 30$ days; however, this varies seasonally. The characteristics of the instruments' orbits also vary the frequency of urban observations in both space and time. Implications for observation‐derived emission estimates at local and national scales and remedies for such shortcomings in future missions are discussed.
Plain Language Summary
Carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ is a key driver of global climate change and the ability to monitor human‐based emissions of this gas is crucial for quantifying the effectiveness of carbon‐reduction policies. In recent years, space‐based platforms have provided atmospheric CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ observations with near‐global coverage and efforts to ingest these data into local, regional, and national carbon accounting methodologies have been successful. However, space‐based observations are influenced by physical and environmental factors that affect their coverage. This study investigated these factors and determined that the time needed to constrain emissions varies among cities within the United States. Key factors that affect these space‐based platforms include the type of orbit they are in, the location of clouds in Earth's atmosphere, and the distribution of atmospheric aerosols. Results show that cities on the west coast are more frequently observed than cities in the northeast. These limitations should be considered when cities are seeking to monitor their emission reduction efforts with space‐based technologies.
Key Points
Orbital mechanics and environmental factors limit the ability of OCO‐2 and OCO‐3 to collect data in space and time
Understanding when and where these effects are most prevalent informs city‐level monitoring, reporting, and verification (MRV) goals
Our findings can inform local MRV efforts around the world, providing more realistic spatiotemporal resolutions when using space‐based data A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide concentrations with high accuracy and precision. With the original goal of constraining natural fluxes at regional to global scales, these instruments have now become popular tools for studying anthropogenic emissions from cities around the world. As signatories of the Paris Climate Agreement are expected to produce nationally determined contributions (NDC) to global carbon emissions, continued monitoring, reporting, and verification (MRV) of these estimates will be essential. While the use of OCO‐2 and OCO‐3 missions for MRV purposes is increasing, several physical and environmental factors limit data collection. Using the continental United States as a test case, the influences of orbital mechanics and environmental factors on local‐ and national‐level emissions estimates are explored through a series of linear and multi‐linear regressions to predict each instrument's effective revisit time. Results suggest that, due to environmental factors, western regions of the U.S. are more likely to be constrained at a sub‐annual scale than eastern regions, with effective instrument revisit times days. East coast cities have effective revisit times days; however, this varies seasonally. The characteristics of the instruments' orbits also vary the frequency of urban observations in both space and time. Implications for observation‐derived emission estimates at local and national scales and remedies for such shortcomings in future missions are discussed. Carbon dioxide is a key driver of global climate change and the ability to monitor human‐based emissions of this gas is crucial for quantifying the effectiveness of carbon‐reduction policies. In recent years, space‐based platforms have provided atmospheric observations with near‐global coverage and efforts to ingest these data into local, regional, and national carbon accounting methodologies have been successful. However, space‐based observations are influenced by physical and environmental factors that affect their coverage. This study investigated these factors and determined that the time needed to constrain emissions varies among cities within the United States. Key factors that affect these space‐based platforms include the type of orbit they are in, the location of clouds in Earth's atmosphere, and the distribution of atmospheric aerosols. Results show that cities on the west coast are more frequently observed than cities in the northeast. These limitations should be considered when cities are seeking to monitor their emission reduction efforts with space‐based technologies. Orbital mechanics and environmental factors limit the ability of OCO‐2 and OCO‐3 to collect data in space and time Understanding when and where these effects are most prevalent informs city‐level monitoring, reporting, and verification (MRV) goals Our findings can inform local MRV efforts around the world, providing more realistic spatiotemporal resolutions when using space‐based data Abstract A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2 concentrations with high accuracy and precision. With the original goal of constraining natural CO2 fluxes at regional to global scales, these instruments have now become popular tools for studying anthropogenic emissions from cities around the world. As signatories of the Paris Climate Agreement are expected to produce nationally determined contributions (NDC) to global carbon emissions, continued monitoring, reporting, and verification (MRV) of these estimates will be essential. While the use of OCO‐2 and OCO‐3 missions for MRV purposes is increasing, several physical and environmental factors limit data collection. Using the continental United States as a test case, the influences of orbital mechanics and environmental factors on local‐ and national‐level emissions estimates are explored through a series of linear and multi‐linear regressions to predict each instrument's effective revisit time. Results suggest that, due to environmental factors, western regions of the U.S. are more likely to be constrained at a sub‐annual scale than eastern regions, with effective instrument revisit times <30 days. East coast cities have effective revisit times >30 days; however, this varies seasonally. The characteristics of the instruments' orbits also vary the frequency of urban observations in both space and time. Implications for observation‐derived emission estimates at local and national scales and remedies for such shortcomings in future missions are discussed. |
| Author | Chatterjee, Abhishek Roten, Dustin |
| Author_xml | – sequence: 1 givenname: Dustin orcidid: 0000-0002-2706-0658 surname: Roten fullname: Roten, Dustin email: droten@jpl.nasa.gov organization: California Institute of Technology – sequence: 2 givenname: Abhishek orcidid: 0000-0002-3680-0160 surname: Chatterjee fullname: Chatterjee, Abhishek organization: California Institute of Technology |
| BookMark | eNp9kUtOwzAQhi1UJMpjxwFyAArjsWM7y6jiUamoGwrsIiexi6s2RnYAdccROCMnIW0qxIrVzPz65tv8x2TQ-MYQck7hkgJmVwjI80cAKhgckCGmUowE8OfBn_2InMW4BACksntSQ_I29u8m6IX5_vyaurVrXbNIbnTV-hCT3FpT7ZL2xST3vnFdvD29Teah1E1yvXYxOt_E5Mm1LztsFsreMtah9E0yK6MJ77r73CT3e_qUHFq9iuZsP0_I_Ob6YXw3ms5uJ-N8OqoYRzVSGUClAGuR1paiSA2qlElktEpLo2urM8O5NJm1kqLhlbCorFCs1lZoztgJmfTe2utl8RrcWodN4bUrdoEPi0KH1lUrU3AlbcpLhnWpuQGhRFlrmloBKK1E7FwXvasKPsZg7K-PQrFtoPjbQIezHv9wK7P5ly3y2xwlAFPsB65OitU |
| Cites_doi | 10.5194/essd‐15‐963‐2023 10.1029/2012jd018196 10.1002/wea.2072 10.1088/1748‐9326/acbb91 10.1175/bams‐d‐17‐0037.1 10.1088/1748‐9326/ab68eb 10.17595/20170411.001 10.1016/j.atmosenv.2024.120636 10.1016/j.jenvman.2020.111423 10.13020/5N0J‐WX73 10.1029/2003jd003965 10.5194/amt‐16‐3173‐2023 10.1117/12.2599613 10.1080/10095020.2023.2252017 10.1104/pp.109.141978 10.5194/amt‐12‐6695‐2019 10.1029/2021jd036181 10.1029/2019jd030528 10.1175/jcli‐d‐16‐0609.1 10.5194/acp‐16‐13449‐2016 10.1016/j.rse.2021.112579 10.1038/s41467‐020‐20871‐0 10.5194/essd‐11‐1291‐2019 10.1016/j.scitotenv.2022.159663 10.5194/amt‐12‐2341‐2019 10.21203/rs.3.rs‐4754270/v1 10.1029/2021rg000736 10.5194/acp‐18‐16271‐2018 10.5194/essd‐11‐1309‐2019 10.1016/j.atmosenv.2009.09.002 10.1088/1748‐9326/ab9cfe 10.1073/pnas.2216765120 10.5194/amt‐14‐1111‐2021 10.3389/fenvs.2018.00109 10.1029/2012gl051203 10.1038/s41597‐022‐01467‐3 10.5194/essd‐13‐1667‐2021 10.1016/j.asr.2003.08.062 10.5194/acp‐5‐941‐2005 10.1016/B978-0-12-814952-2.00002-2 10.5067/TVJ4MHBED39L 10.1175/bams‐d‐19‐0017.1 10.1007/s40641‐015‐0030‐6 10.5067/8E4VLCK16O6Q 10.5067/MODIS/MOD06_L2.061 10.1029/2023gl104376 10.1021/acs.est.0c04388 10.5281/ZENODO.7130245 10.1016/j.rse.2021.112314 10.1002/grl.50650 10.5194/acp‐11‐3581‐2011 10.1175/jcli‐d‐16‐0758.1 10.1007/s11027‐016‐9709‐9 10.5067/970BCC4DHH24 10.5194/essd‐10‐87‐2018 10.5194/amt‐10‐2209‐2017 |
| ContentType | Journal Article |
| Copyright | 2025. The Author(s). |
| Copyright_xml | – notice: 2025. The Author(s). |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1029/2024AV001630 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2576-604X |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_487f54b32dba4e0686bda15f6027f722 10_1029_2024AV001630 AGA270038 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: NASA funderid: 80NM0018D0004 |
| GroupedDBID | 0R~ 1OC 24P AAHHS ACCFJ ACCMX ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AEUYN AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BENPR BHPHI BKSAR CCPQU EBS GROUPED_DOAJ HCIFZ IAO IEP IGS ITC M~E OK1 PCBAR PHGZM PHGZT PIMPY AAFWJ AAMMB AAYXX AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION WIN |
| ID | FETCH-LOGICAL-c3428-8900c802d65df1265e28537231c5beadfa9e447e9ff712e4c6f28f683daf6a433 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499462100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2576-604X |
| IngestDate | Fri Oct 03 12:25:21 EDT 2025 Sat Nov 29 07:41:08 EST 2025 Fri Jun 27 10:01:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3428-8900c802d65df1265e28537231c5beadfa9e447e9ff712e4c6f28f683daf6a433 |
| Notes | Peer Review The peer review history for this article is available as a PDF in the Supporting Information. |
| ORCID | 0000-0002-3680-0160 0000-0002-2706-0658 0000-0001-7697-7588 |
| OpenAccessLink | https://doaj.org/article/487f54b32dba4e0686bda15f6027f722 |
| PageCount | 18 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_487f54b32dba4e0686bda15f6027f722 crossref_primary_10_1029_2024AV001630 wiley_primary_10_1029_2024AV001630_AGA270038 |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 2025-06-00 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | AGU advances |
| PublicationYear | 2025 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2015; 2 2009; 43 2023; 120 2019; 11 2023; 15 2013; 68 2023; 16 2013; 40 2019; 12 2008 2011; 11 2020; 15 2012; 39 2020; 101 2009; 151 2024 2020; 54 2021; 264 2020; 125 2004; 109 2016; 16 2021; 14 2021; 13 2018; 6 2018; 18 2017; 30 2021; 12 2023 2023; 28 2022; 60 2022 2021; 277 2021; 258 2021 2017; 10 2004; 34 2022; 9 2013; 118 2005; 5 2017 2015 2023; 857 2024; 333 2018; 99 2018; 10 2023; 50 2022; 127 2016; 22 EPA (e_1_2_9_12_1) 2024 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_54_1 Grandstrand O. (e_1_2_9_16_1) 2008 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_5_1 e_1_2_9_3_1 Crisp D. (e_1_2_9_7_1) 2015 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 34 start-page: 700 issue: 4 year: 2004 end-page: 709 article-title: The orbiting carbon observatory (OCO) mission publication-title: Advances in Space Research – volume: 15 start-page: 963 issue: 2 year: 2023 end-page: 1004 article-title: National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake publication-title: Earth System Science Data – volume: 9 issue: 1 year: 2022 article-title: A multi‐city urban atmospheric greenhouse gas measurement data synthesis publication-title: Scientific Data – volume: 40 start-page: 3479 issue: 13 year: 2013 end-page: 3483 article-title: Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use publication-title: Geophysical Research Letters – volume: 12 start-page: 6695 issue: 12 year: 2019 end-page: 6719 article-title: Detectability of CO2 emission plumes of cities and power plants with the Copernicus anthropogenic CO2 monitoring (CO2M) mission publication-title: Atmospheric Measurement Techniques – volume: 30 start-page: 5419 issue: 14 year: 2017 end-page: 5454 article-title: The modern‐era retrospective analysis for research and applications, version 2 (MERRA‐2) publication-title: Journal of Climate – volume: 11 start-page: 1309 issue: 3 year: 2019 end-page: 1335 article-title: The Hestia fossil fuel CO2 emissions data product for the Los Angeles megacity (HESTIA‐La) publication-title: Earth System Science Data – year: 2024 – volume: 6 year: 2018 article-title: The potential of the geostationary carbon cycle observatory (GEOCARB) to provide multi‐scale constraints on the carbon cycle in the Americas publication-title: Frontiers in Environmental Science – start-page: 128 year: 2021 – volume: 258 year: 2021 article-title: Urban‐focused satellite CO2 observations from the orbiting carbon observatory‐3: A first look at the Los Angeles megacity publication-title: Remote Sensing of Environment – volume: 11 start-page: 3581 issue: 8 year: 2011 end-page: 3593 article-title: Sources of variations in total column carbon dioxide publication-title: Atmospheric Chemistry and Physics – volume: 2 start-page: 39 issue: 1 year: 2015 end-page: 47 article-title: The transient response to cumulative CO2 emissions: A review publication-title: Current Climate Change Reports – volume: 151 start-page: 448 issue: 1 year: 2009 end-page: 460 article-title: Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen publication-title: Plant Physiology – volume: 39 issue: 8 year: 2012 article-title: Global CO2 distributions over land from the greenhouse gases observing satellite (GOSAT) publication-title: Geophysical Research Letters – volume: 60 issue: 2 year: 2022 article-title: How well do we understand the land‐ocean‐atmosphere carbon cycle? publication-title: Reviews of Geophysics – volume: 109 issue: D11 year: 2004 article-title: A study of the NOx dependence of isoprene oxidation publication-title: Journal of Geophysical Research – volume: 15 issue: 9 year: 2020 article-title: Anthropogenic CO2 emissions assessment of Nile delta using XCO2 and SIF data from OCO‐2 satellite publication-title: Environmental Research Letters – year: 2022 – volume: 10 start-page: 2209 issue: 6 year: 2017 end-page: 2238 article-title: Comparisons of the orbiting carbon observatory‐2 (oco‐2) XCO2 measurements with tccon publication-title: Atmospheric Measurement Techniques – volume: 118 start-page: 917 issue: 2 year: 2013 end-page: 933 article-title: Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets publication-title: Journal of Geophysical Research: Atmospheres – volume: 16 start-page: 3173 issue: 12 year: 2023 end-page: 3209 article-title: Evaluating the consistency between OCO‐2 and OCO‐3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm publication-title: Atmospheric Measurement Techniques – year: 2015 – volume: 28 start-page: 1 year: 2023 end-page: 14 article-title: Inter‐comparison and evaluation of global satellite XCO2 products publication-title: Geo‐spatial Information Science – volume: 54 start-page: 15613 issue: 24 year: 2020 end-page: 15621 article-title: Constraining urban CO2 emissions using mobile observations from a light rail public transit platform publication-title: Environmental Science & Technology – volume: 50 issue: 21 year: 2023 article-title: Constraining sector‐specific CO2 fluxes using space‐based CO2 observations over the Los Angeles basin publication-title: Geophysical Research Letters – volume: 12 issue: 1 year: 2021 article-title: Under‐reporting of greenhouse gas emissions in U.S. cities publication-title: Nature Communications – volume: 127 issue: 5 year: 2022 article-title: Next‐generation isoprene measurements from space: Detecting daily variability at high resolution publication-title: Journal of Geophysical Research: Atmospheres – volume: 5 start-page: 941 issue: 4 year: 2005 end-page: 962 article-title: Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models publication-title: Atmospheric Chemistry and Physics – volume: 43 start-page: 6121 issue: 39 year: 2009 end-page: 6135 article-title: Isoprene emissions and climate publication-title: Atmospheric Environment – volume: 101 start-page: E1439 issue: 8 year: 2020 end-page: E1451 article-title: Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity publication-title: Bulletin of the American Meteorological Society – volume: 99 start-page: 2325 issue: 11 year: 2018 end-page: 2339 article-title: CO2 and carbon emissions from cities: Linkages to air quality, socioeconomic activity, and stakeholders in the Salt Lake City urban area publication-title: Bulletin of the American Meteorological Society – volume: 68 start-page: 100 issue: 4 year: 2013 end-page: 105 article-title: The greenhouse effect and carbon dioxide publication-title: Weather – volume: 22 start-page: 947 issue: 6 year: 2016 end-page: 972 article-title: A comparison of five high‐resolution spatially‐explicit, fossil‐fuel, carbon dioxide emission inventories for the United States publication-title: Mitigation and Adaptation Strategies for Global Change – year: 2023 article-title: CO2 emissions from C40 cities: Citywide emission inventories and comparisons with global gridded emission datasets publication-title: Environmental Research Letters – volume: 30 start-page: 6823 issue: 17 year: 2017 end-page: 6850 article-title: The MERRA‐2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation publication-title: Journal of Climate – volume: 13 start-page: 1667 issue: 4 year: 2021 end-page: 1680 article-title: Cdiac‐ff: Global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017 publication-title: Earth System Science Data – volume: 18 start-page: 16271 issue: 22 year: 2018 end-page: 16291 article-title: Southern California megacity CO2, CH4, and CO flux estimates using ground‐ and space‐based remote sensing and a Lagrangian model publication-title: Atmospheric Chemistry and Physics – volume: 14 start-page: 1111 issue: 2 year: 2021 end-page: 1126 article-title: Muccnet: Munich urban carbon column network publication-title: Atmospheric Measurement Techniques – volume: 16 start-page: 13449 issue: 21 year: 2016 end-page: 13463 article-title: The Berkeley atmospheric CO2 observation network: Initial evaluation publication-title: Atmospheric Chemistry and Physics – volume: 857 year: 2023 article-title: Urban green space and albedo impacts on surface temperature across seven United States cities publication-title: Science of The Total Environment – year: 2024 article-title: The greenhouse gas observation mission with global observing satellite for greenhouse gases and water cycle (GOSAT‐GW) publication-title: Objectives, conceptual framework and scientific contributions – volume: 120 issue: 21 year: 2023 article-title: Urban effects on local cloud patterns publication-title: Proceedings of the National Academy of Sciences – volume: 15 issue: 3 year: 2020 article-title: Space‐based quantification of per capita CO2 emissions from cities publication-title: Environmental Research Letters – start-page: 31 year: 2022 end-page: 57 – year: 2023 – volume: 264 year: 2021 article-title: Advances in quantifying power plant CO2 emissions with OCO‐2 publication-title: Remote Sensing of Environment – volume: 10 start-page: 87 issue: 1 year: 2018 end-page: 107 article-title: The open‐source data inventory for anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions publication-title: Earth System Science Data – volume: 12 start-page: 2341 issue: 4 year: 2019 end-page: 2370 article-title: The OCO‐3 mission: Measurement objectives and expected performance based on 1 year of simulated data publication-title: Atmospheric Measurement Techniques – volume: 277 year: 2021 article-title: The potential of CO2 satellite monitoring for climate governance: A review publication-title: Journal of Environmental Management – volume: 125 issue: 8 year: 2020 article-title: Constraining fossil fuel CO2 emissions from urban area using oco‐2 observations of total column CO2 publication-title: Journal of Geophysical Research: Atmospheres – start-page: 179 year: 2008 end-page: 193 – volume: 333 year: 2024 article-title: Quantitative analysis of spatiotemporal coverage and uncertainty decomposition in OCO‐2/3 CO2 across China publication-title: Atmospheric Environment – year: 2017 – volume: 11 start-page: 1291 issue: 3 year: 2019 end-page: 1308 article-title: The Utah urban carbon dioxide (UUCON) and Uintah basin greenhouse gas networks: Instrumentation, data, and measurement uncertainty publication-title: Earth System Science Data – ident: e_1_2_9_6_1 doi: 10.5194/essd‐15‐963‐2023 – ident: e_1_2_9_33_1 doi: 10.1029/2012jd018196 – ident: e_1_2_9_60_1 doi: 10.1002/wea.2072 – ident: e_1_2_9_2_1 doi: 10.1088/1748‐9326/acbb91 – ident: e_1_2_9_26_1 doi: 10.1175/bams‐d‐17‐0037.1 – ident: e_1_2_9_55_1 doi: 10.1088/1748‐9326/ab68eb – ident: e_1_2_9_36_1 doi: 10.17595/20170411.001 – ident: e_1_2_9_59_1 doi: 10.1016/j.atmosenv.2024.120636 – ident: e_1_2_9_39_1 doi: 10.1016/j.jenvman.2020.111423 – ident: e_1_2_9_53_1 doi: 10.13020/5N0J‐WX73 – ident: e_1_2_9_4_1 doi: 10.1029/2003jd003965 – ident: e_1_2_9_50_1 doi: 10.5194/amt‐16‐3173‐2023 – ident: e_1_2_9_46_1 doi: 10.1117/12.2599613 – ident: e_1_2_9_57_1 doi: 10.1080/10095020.2023.2252017 – ident: e_1_2_9_41_1 doi: 10.1104/pp.109.141978 – ident: e_1_2_9_25_1 doi: 10.5194/amt‐12‐6695‐2019 – ident: e_1_2_9_54_1 doi: 10.1029/2021jd036181 – ident: e_1_2_9_58_1 doi: 10.1029/2019jd030528 – ident: e_1_2_9_40_1 doi: 10.1175/jcli‐d‐16‐0609.1 – ident: e_1_2_9_45_1 doi: 10.5194/acp‐16‐13449‐2016 – ident: e_1_2_9_32_1 doi: 10.1016/j.rse.2021.112579 – ident: e_1_2_9_17_1 doi: 10.1038/s41467‐020‐20871‐0 – ident: e_1_2_9_3_1 doi: 10.5194/essd‐11‐1291‐2019 – volume-title: Inventory of U.S. Greenhouse gas emissions and sinks: 1990‐2022 year: 2024 ident: e_1_2_9_12_1 – ident: e_1_2_9_47_1 doi: 10.1016/j.scitotenv.2022.159663 – ident: e_1_2_9_11_1 doi: 10.5194/amt‐12‐2341‐2019 – ident: e_1_2_9_49_1 doi: 10.21203/rs.3.rs‐4754270/v1 – ident: e_1_2_9_9_1 doi: 10.1029/2021rg000736 – ident: e_1_2_9_20_1 doi: 10.5194/acp‐18‐16271‐2018 – ident: e_1_2_9_18_1 doi: 10.5194/essd‐11‐1309‐2019 – ident: e_1_2_9_38_1 doi: 10.1016/j.atmosenv.2009.09.002 – ident: e_1_2_9_44_1 doi: 10.1088/1748‐9326/ab9cfe – ident: e_1_2_9_52_1 doi: 10.1073/pnas.2216765120 – ident: e_1_2_9_10_1 doi: 10.5194/amt‐14‐1111‐2021 – ident: e_1_2_9_31_1 doi: 10.3389/fenvs.2018.00109 – ident: e_1_2_9_19_1 doi: 10.1029/2012gl051203 – ident: e_1_2_9_29_1 doi: 10.1038/s41597‐022‐01467‐3 – ident: e_1_2_9_14_1 doi: 10.5194/essd‐13‐1667‐2021 – ident: e_1_2_9_8_1 doi: 10.1016/j.asr.2003.08.062 – ident: e_1_2_9_5_1 doi: 10.5194/acp‐5‐941‐2005 – ident: e_1_2_9_43_1 doi: 10.1016/B978-0-12-814952-2.00002-2 – ident: e_1_2_9_15_1 doi: 10.5067/TVJ4MHBED39L – ident: e_1_2_9_22_1 doi: 10.1175/bams‐d‐19‐0017.1 – ident: e_1_2_9_27_1 doi: 10.1007/s40641‐015‐0030‐6 – ident: e_1_2_9_34_1 doi: 10.5067/8E4VLCK16O6Q – ident: e_1_2_9_30_1 doi: 10.5067/MODIS/MOD06_L2.061 – ident: e_1_2_9_42_1 doi: 10.1029/2023gl104376 – ident: e_1_2_9_28_1 doi: 10.1021/acs.est.0c04388 – ident: e_1_2_9_51_1 doi: 10.5281/ZENODO.7130245 – ident: e_1_2_9_24_1 doi: 10.1016/j.rse.2021.112314 – ident: e_1_2_9_48_1 doi: 10.1002/grl.50650 – ident: e_1_2_9_23_1 doi: 10.5194/acp‐11‐3581‐2011 – ident: e_1_2_9_13_1 doi: 10.1175/jcli‐d‐16‐0758.1 – volume-title: Spie proceedings year: 2015 ident: e_1_2_9_7_1 – start-page: 179 volume-title: World energy outlook year: 2008 ident: e_1_2_9_16_1 – ident: e_1_2_9_21_1 doi: 10.1007/s11027‐016‐9709‐9 – ident: e_1_2_9_35_1 doi: 10.5067/970BCC4DHH24 – ident: e_1_2_9_37_1 doi: 10.5194/essd‐10‐87‐2018 – ident: e_1_2_9_56_1 doi: 10.5194/amt‐10‐2209‐2017 |
| SSID | ssj0002171028 |
| Score | 2.2931514 |
| Snippet | A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2... A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide... Abstract A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Index Database Publisher |
| SubjectTerms | carbon dioxide effective revisit time environmental factors orbital mechanics orbiting carbon observatory urban emissions |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELUQh0TDjbjlAjoi4iOJU4YVCwVXwbFdZCc2bJOg7IJExyfwjXwJM05YQYOEaK3ROIpnPG-e7RlC9kNtAIVaE0CwloFMkjTQSVwEWroi5CYpIn8Z8-48ubxUg0F63RFu-BamrQ8xIdzQM_x-jQ6uzagrNoA1MiFrl9kdQhYBKfsMY0Jh6wYuryccC8BtjJ_YXw5gdRCHctDdfQcVR98V_IhKvnj_T7Dqo01_8b_fuUQWOpxJs9YwlsmUrVbI3Knv4_u6Sp57eHUT9pKPt3f_xgkiGO23vXdo5u944AigQ9p6PdJ_tHb0tjG6oidgHUizjej9cPzoxa4a02rp6cbUFb0yLd9bN6_0opNeI7f9k5veWdB1YAgKAXlJoNIwLFTIyzgqHeNxZDmE9wQwYREZsEGnUytlYpH4ZdzKInZcuViJUrtYSyHWyXRVV3aDUJY6YUtmjWZCGqmMCgF5RYAnDUuN4Jvk4GsF8qe20EbuD8h5mn__hZvkGJdnIoPlsf1A3TzknbflkIW5SILW0mhp8RWMKTWLXAxJuEs4THbol-zXmfLsNMNjeaG2_ia-TeY5dgn2XM0OmR43z3aXzBYv4-Go2fMm-gkLJOQ8 priority: 102 providerName: Wiley-Blackwell |
| Title | Coverage‐Limiting Factors Affecting the Monitoring of Urban Emissions With the Orbiting Carbon Observatory Missions |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024AV001630 https://doaj.org/article/487f54b32dba4e0686bda15f6027f722 |
| Volume | 6 |
| WOSCitedRecordID | wos001499462100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2576-604X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171028 issn: 2576-604X databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2576-604X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171028 issn: 2576-604X databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2576-604X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171028 issn: 2576-604X databaseCode: PCBAR dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2576-604X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171028 issn: 2576-604X databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2576-604X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171028 issn: 2576-604X databaseCode: PIMPY dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2576-604X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171028 issn: 2576-604X databaseCode: WIN dateStart: 20200101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2576-604X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171028 issn: 2576-604X databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BAYkF8RTlUXmAjYjEcV5jWrUFCdoK0ZYtshNbdElR2iJ14yfwG_klnJ2AygILYyzLju5s33fnz3cAFzYXiEKlsNBYM4sFQWTxwE8tzlRqUxGkniFjju6CXi98eooGK6W-NCesTA9cCu4aAbXymHBpJjiT-kGDyLjjKR_9KRVQc_oi6llxpvQZjEBbW86K6W7TSDv5LB5phKMJzys2yKTq_wlNjW3p7MJOBQpJXP7MHqzJfB-2uqbo7vIAFi3Ns8SN__H2bh4kobkhnbJQDokNIUO3IJQj5RbVsToyVWRYCJ6TNqpSx8RmZDyZP5tu_UKUo7R4IaY56YsyODstluS-6n0Iw077sXVjVeUSrNRFJ8IKI9tOQ5tmvpcph_qepGiLAwRwqSdwwSgeScYCqaO0DpUs9RUNlR-6GVc-Z657BLV8mstjIE6kXJk5UnDHZYKFIrQRJnkI_oQToS7qcPklwOSlzIqRmNtsGiWrgq5DU0v3u4_OZW0aUMNJpeHkLw3X4cro5teZkrgb6zt0Nzz5jzlPYZvqQr8m3HIGtXmxkOewmb7OJ7OiAeuUDRpmxTVgY9Bqxg_4Nb7tfQLRA9nG |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQD8HCG_HGA2xEJLbzGkNFAVEKQwvdIjuxgSVBoSB14yfwG_kl3DmhogsSYrVO5yi-83332b4j5NCVClCoVg4Ea-GIMIwdGQaZI4XJXKbCzLeXMe86YbcbDQbxbdPnFN_C1PUhxoQbeobdr9HBkZBuqg1gkUxI20Vyh5iFQ84-IwBrYO-G-8vumGQBvI0BFBvMAa52AlcMmsvvoOLkp4KJsGSr90-iVRtu2kv__tBlstggTZrUprFCpnSxSubObSff0Rp5beHlTdhNPt8_7CsniGG0XXffoYm95YEjgA9p7fdIANLS0H6lZEHPwD6QaHuh90_DRyt2U6laS0tWqizojaoZ37Ia0etGep3022e91oXT9GBwMg6ZiRPFrptFLssDPzceC3zNIMCHgAozX4EVGhlrIUKN1K_HtMgCwyITRDyXJpCC8w0yXZSF3iTUiw3XuaeV9LhQIlKRC9jLB0SpvFhxtkWOvpcgfa5LbaT2iJzF6c9fuEVOcX3GMlgg2w6U1UPa-FsKeZjxBWjNlRQa38GoXHq-CSANNyGDyY7tmv06U5qcJ3gwz6Ptv4kfkPmL3nUn7Vx2r3bIAsOewZa52SXTw-pV75HZ7G349FLtW3v9Ak3V6JQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQC4jLLk9t9wE-wI2IxHbi5JjttoAopQcevUV2YrO9JCi0SL3tT9jfuL9kZ5xQlctKiKs1GkfxjOeb8TwIOfKVBhRqtAfGWnhCysRTMso9JWzuMy3z0CVj3g3kcBiPx8monXOKtTBNf4hFwA01w93XqODmsbBttwFskgluu0jvELNw8Nk_iFAGKNZMjBZBFsDbaEBxwBzgai_yxbhNfgcWp8sMXpkl173_NVp15qb_6d0fukU-tkiTpo1obJMVU-6Q9TM3yXe-S2ZdTN6E2-Tv7z-uyglsGO0303do6rI8cAXwIW30HgOAtLL0ttaqpD2QDwy0PdH7yfSXI7uudcOlq2pdlfRaNxHfqp7Tq5Z6j9z2ezfdc6-dweDlHDwTL058P499VkRhYQMWhYaBgZeACvNQgxRalRghpMHQb8CMyCPLYhvFvFA2UoLzfbJaVqX5TGiQWG6KwGgVcKFFrGMfsFcIiFIHieasQ45fjiB7bFptZO6JnCXZ8i_skB94PgsabJDtFqr6IWv1LQM_zIYCuBZaCYN1MLpQQWgjcMOtZLDZiTuz_-6UpWcpPszz-MvbyA_JxuhnPxtcDC-_kk2GI4Nd4OYbWZ3WM_OdrOXP08lTfeDE9R-CGeer |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coverage%E2%80%90Limiting+Factors+Affecting+the+Monitoring+of+Urban+Emissions+With+the+Orbiting+Carbon+Observatory+Missions&rft.jtitle=AGU+advances&rft.au=Roten%2C+Dustin&rft.au=Chatterjee%2C+Abhishek&rft.date=2025-06-01&rft.issn=2576-604X&rft.eissn=2576-604X&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1029%2F2024AV001630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024AV001630 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-604X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-604X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-604X&client=summon |