Coverage‐Limiting Factors Affecting the Monitoring of Urban Emissions With the Orbiting Carbon Observatory Missions

A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ concentrations with high accuracy and precision. With the original goal of constraining n...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:AGU advances Ročník 6; číslo 3
Hlavní autori: Roten, Dustin, Chatterjee, Abhishek
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Wiley 01.06.2025
Predmet:
ISSN:2576-604X, 2576-604X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ concentrations with high accuracy and precision. With the original goal of constraining natural CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ fluxes at regional to global scales, these instruments have now become popular tools for studying anthropogenic emissions from cities around the world. As signatories of the Paris Climate Agreement are expected to produce nationally determined contributions (NDC) to global carbon emissions, continued monitoring, reporting, and verification (MRV) of these estimates will be essential. While the use of OCO‐2 and OCO‐3 missions for MRV purposes is increasing, several physical and environmental factors limit data collection. Using the continental United States as a test case, the influences of orbital mechanics and environmental factors on local‐ and national‐level emissions estimates are explored through a series of linear and multi‐linear regressions to predict each instrument's effective revisit time. Results suggest that, due to environmental factors, western regions of the U.S. are more likely to be constrained at a sub‐annual scale than eastern regions, with effective instrument revisit times <30 ${< } 30$ days. East coast cities have effective revisit times >30 ${ >} 30$ days; however, this varies seasonally. The characteristics of the instruments' orbits also vary the frequency of urban observations in both space and time. Implications for observation‐derived emission estimates at local and national scales and remedies for such shortcomings in future missions are discussed. Plain Language Summary Carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ is a key driver of global climate change and the ability to monitor human‐based emissions of this gas is crucial for quantifying the effectiveness of carbon‐reduction policies. In recent years, space‐based platforms have provided atmospheric CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ observations with near‐global coverage and efforts to ingest these data into local, regional, and national carbon accounting methodologies have been successful. However, space‐based observations are influenced by physical and environmental factors that affect their coverage. This study investigated these factors and determined that the time needed to constrain emissions varies among cities within the United States. Key factors that affect these space‐based platforms include the type of orbit they are in, the location of clouds in Earth's atmosphere, and the distribution of atmospheric aerosols. Results show that cities on the west coast are more frequently observed than cities in the northeast. These limitations should be considered when cities are seeking to monitor their emission reduction efforts with space‐based technologies. Key Points Orbital mechanics and environmental factors limit the ability of OCO‐2 and OCO‐3 to collect data in space and time Understanding when and where these effects are most prevalent informs city‐level monitoring, reporting, and verification (MRV) goals Our findings can inform local MRV efforts around the world, providing more realistic spatiotemporal resolutions when using space‐based data
AbstractList A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ concentrations with high accuracy and precision. With the original goal of constraining natural CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ fluxes at regional to global scales, these instruments have now become popular tools for studying anthropogenic emissions from cities around the world. As signatories of the Paris Climate Agreement are expected to produce nationally determined contributions (NDC) to global carbon emissions, continued monitoring, reporting, and verification (MRV) of these estimates will be essential. While the use of OCO‐2 and OCO‐3 missions for MRV purposes is increasing, several physical and environmental factors limit data collection. Using the continental United States as a test case, the influences of orbital mechanics and environmental factors on local‐ and national‐level emissions estimates are explored through a series of linear and multi‐linear regressions to predict each instrument's effective revisit time. Results suggest that, due to environmental factors, western regions of the U.S. are more likely to be constrained at a sub‐annual scale than eastern regions, with effective instrument revisit times <30 ${< } 30$ days. East coast cities have effective revisit times >30 ${ >} 30$ days; however, this varies seasonally. The characteristics of the instruments' orbits also vary the frequency of urban observations in both space and time. Implications for observation‐derived emission estimates at local and national scales and remedies for such shortcomings in future missions are discussed. Plain Language Summary Carbon dioxide CO2 $\left(\mathrm{C}{\mathrm{O}}_{\mathrm{2}}\right)$ is a key driver of global climate change and the ability to monitor human‐based emissions of this gas is crucial for quantifying the effectiveness of carbon‐reduction policies. In recent years, space‐based platforms have provided atmospheric CO2 $\mathrm{C}{\mathrm{O}}_{\mathrm{2}}$ observations with near‐global coverage and efforts to ingest these data into local, regional, and national carbon accounting methodologies have been successful. However, space‐based observations are influenced by physical and environmental factors that affect their coverage. This study investigated these factors and determined that the time needed to constrain emissions varies among cities within the United States. Key factors that affect these space‐based platforms include the type of orbit they are in, the location of clouds in Earth's atmosphere, and the distribution of atmospheric aerosols. Results show that cities on the west coast are more frequently observed than cities in the northeast. These limitations should be considered when cities are seeking to monitor their emission reduction efforts with space‐based technologies. Key Points Orbital mechanics and environmental factors limit the ability of OCO‐2 and OCO‐3 to collect data in space and time Understanding when and where these effects are most prevalent informs city‐level monitoring, reporting, and verification (MRV) goals Our findings can inform local MRV efforts around the world, providing more realistic spatiotemporal resolutions when using space‐based data
A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide concentrations with high accuracy and precision. With the original goal of constraining natural fluxes at regional to global scales, these instruments have now become popular tools for studying anthropogenic emissions from cities around the world. As signatories of the Paris Climate Agreement are expected to produce nationally determined contributions (NDC) to global carbon emissions, continued monitoring, reporting, and verification (MRV) of these estimates will be essential. While the use of OCO‐2 and OCO‐3 missions for MRV purposes is increasing, several physical and environmental factors limit data collection. Using the continental United States as a test case, the influences of orbital mechanics and environmental factors on local‐ and national‐level emissions estimates are explored through a series of linear and multi‐linear regressions to predict each instrument's effective revisit time. Results suggest that, due to environmental factors, western regions of the U.S. are more likely to be constrained at a sub‐annual scale than eastern regions, with effective instrument revisit times days. East coast cities have effective revisit times days; however, this varies seasonally. The characteristics of the instruments' orbits also vary the frequency of urban observations in both space and time. Implications for observation‐derived emission estimates at local and national scales and remedies for such shortcomings in future missions are discussed. Carbon dioxide is a key driver of global climate change and the ability to monitor human‐based emissions of this gas is crucial for quantifying the effectiveness of carbon‐reduction policies. In recent years, space‐based platforms have provided atmospheric observations with near‐global coverage and efforts to ingest these data into local, regional, and national carbon accounting methodologies have been successful. However, space‐based observations are influenced by physical and environmental factors that affect their coverage. This study investigated these factors and determined that the time needed to constrain emissions varies among cities within the United States. Key factors that affect these space‐based platforms include the type of orbit they are in, the location of clouds in Earth's atmosphere, and the distribution of atmospheric aerosols. Results show that cities on the west coast are more frequently observed than cities in the northeast. These limitations should be considered when cities are seeking to monitor their emission reduction efforts with space‐based technologies. Orbital mechanics and environmental factors limit the ability of OCO‐2 and OCO‐3 to collect data in space and time Understanding when and where these effects are most prevalent informs city‐level monitoring, reporting, and verification (MRV) goals Our findings can inform local MRV efforts around the world, providing more realistic spatiotemporal resolutions when using space‐based data
Abstract A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2 concentrations with high accuracy and precision. With the original goal of constraining natural CO2 fluxes at regional to global scales, these instruments have now become popular tools for studying anthropogenic emissions from cities around the world. As signatories of the Paris Climate Agreement are expected to produce nationally determined contributions (NDC) to global carbon emissions, continued monitoring, reporting, and verification (MRV) of these estimates will be essential. While the use of OCO‐2 and OCO‐3 missions for MRV purposes is increasing, several physical and environmental factors limit data collection. Using the continental United States as a test case, the influences of orbital mechanics and environmental factors on local‐ and national‐level emissions estimates are explored through a series of linear and multi‐linear regressions to predict each instrument's effective revisit time. Results suggest that, due to environmental factors, western regions of the U.S. are more likely to be constrained at a sub‐annual scale than eastern regions, with effective instrument revisit times <30 days. East coast cities have effective revisit times >30 days; however, this varies seasonally. The characteristics of the instruments' orbits also vary the frequency of urban observations in both space and time. Implications for observation‐derived emission estimates at local and national scales and remedies for such shortcomings in future missions are discussed.
Author Chatterjee, Abhishek
Roten, Dustin
Author_xml – sequence: 1
  givenname: Dustin
  orcidid: 0000-0002-2706-0658
  surname: Roten
  fullname: Roten, Dustin
  email: droten@jpl.nasa.gov
  organization: California Institute of Technology
– sequence: 2
  givenname: Abhishek
  orcidid: 0000-0002-3680-0160
  surname: Chatterjee
  fullname: Chatterjee, Abhishek
  organization: California Institute of Technology
BookMark eNp9kUtOwzAQhi1UJMpjxwFyAArjsWM7y6jiUamoGwrsIiexi6s2RnYAdccROCMnIW0qxIrVzPz65tv8x2TQ-MYQck7hkgJmVwjI80cAKhgckCGmUowE8OfBn_2InMW4BACksntSQ_I29u8m6IX5_vyaurVrXbNIbnTV-hCT3FpT7ZL2xST3vnFdvD29Teah1E1yvXYxOt_E5Mm1LztsFsreMtah9E0yK6MJ77r73CT3e_qUHFq9iuZsP0_I_Ob6YXw3ms5uJ-N8OqoYRzVSGUClAGuR1paiSA2qlElktEpLo2urM8O5NJm1kqLhlbCorFCs1lZoztgJmfTe2utl8RrcWodN4bUrdoEPi0KH1lUrU3AlbcpLhnWpuQGhRFlrmloBKK1E7FwXvasKPsZg7K-PQrFtoPjbQIezHv9wK7P5ly3y2xwlAFPsB65OitU
Cites_doi 10.5194/essd‐15‐963‐2023
10.1029/2012jd018196
10.1002/wea.2072
10.1088/1748‐9326/acbb91
10.1175/bams‐d‐17‐0037.1
10.1088/1748‐9326/ab68eb
10.17595/20170411.001
10.1016/j.atmosenv.2024.120636
10.1016/j.jenvman.2020.111423
10.13020/5N0J‐WX73
10.1029/2003jd003965
10.5194/amt‐16‐3173‐2023
10.1117/12.2599613
10.1080/10095020.2023.2252017
10.1104/pp.109.141978
10.5194/amt‐12‐6695‐2019
10.1029/2021jd036181
10.1029/2019jd030528
10.1175/jcli‐d‐16‐0609.1
10.5194/acp‐16‐13449‐2016
10.1016/j.rse.2021.112579
10.1038/s41467‐020‐20871‐0
10.5194/essd‐11‐1291‐2019
10.1016/j.scitotenv.2022.159663
10.5194/amt‐12‐2341‐2019
10.21203/rs.3.rs‐4754270/v1
10.1029/2021rg000736
10.5194/acp‐18‐16271‐2018
10.5194/essd‐11‐1309‐2019
10.1016/j.atmosenv.2009.09.002
10.1088/1748‐9326/ab9cfe
10.1073/pnas.2216765120
10.5194/amt‐14‐1111‐2021
10.3389/fenvs.2018.00109
10.1029/2012gl051203
10.1038/s41597‐022‐01467‐3
10.5194/essd‐13‐1667‐2021
10.1016/j.asr.2003.08.062
10.5194/acp‐5‐941‐2005
10.1016/B978-0-12-814952-2.00002-2
10.5067/TVJ4MHBED39L
10.1175/bams‐d‐19‐0017.1
10.1007/s40641‐015‐0030‐6
10.5067/8E4VLCK16O6Q
10.5067/MODIS/MOD06_L2.061
10.1029/2023gl104376
10.1021/acs.est.0c04388
10.5281/ZENODO.7130245
10.1016/j.rse.2021.112314
10.1002/grl.50650
10.5194/acp‐11‐3581‐2011
10.1175/jcli‐d‐16‐0758.1
10.1007/s11027‐016‐9709‐9
10.5067/970BCC4DHH24
10.5194/essd‐10‐87‐2018
10.5194/amt‐10‐2209‐2017
ContentType Journal Article
Copyright 2025. The Author(s).
Copyright_xml – notice: 2025. The Author(s).
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1029/2024AV001630
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2576-604X
EndPage n/a
ExternalDocumentID oai_doaj_org_article_487f54b32dba4e0686bda15f6027f722
10_1029_2024AV001630
AGA270038
Genre researchArticle
GrantInformation_xml – fundername: NASA
  funderid: 80NM0018D0004
GroupedDBID 0R~
1OC
24P
AAHHS
ACCFJ
ACCMX
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BENPR
BHPHI
BKSAR
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IEP
IGS
ITC
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
AAFWJ
AAMMB
AAYXX
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
WIN
ID FETCH-LOGICAL-c3428-8900c802d65df1265e28537231c5beadfa9e447e9ff712e4c6f28f683daf6a433
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001499462100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2576-604X
IngestDate Fri Oct 03 12:25:21 EDT 2025
Sat Nov 29 07:41:08 EST 2025
Fri Jun 27 10:01:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3428-8900c802d65df1265e28537231c5beadfa9e447e9ff712e4c6f28f683daf6a433
Notes Peer Review
The peer review history for this article is available as a PDF in the Supporting Information.
ORCID 0000-0002-3680-0160
0000-0002-2706-0658
0000-0001-7697-7588
OpenAccessLink https://doaj.org/article/487f54b32dba4e0686bda15f6027f722
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_487f54b32dba4e0686bda15f6027f722
crossref_primary_10_1029_2024AV001630
wiley_primary_10_1029_2024AV001630_AGA270038
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle AGU advances
PublicationYear 2025
Publisher Wiley
Publisher_xml – name: Wiley
References 2015; 2
2009; 43
2023; 120
2019; 11
2023; 15
2013; 68
2023; 16
2013; 40
2019; 12
2008
2011; 11
2020; 15
2012; 39
2020; 101
2009; 151
2024
2020; 54
2021; 264
2020; 125
2004; 109
2016; 16
2021; 14
2021; 13
2018; 6
2018; 18
2017; 30
2021; 12
2023
2023; 28
2022; 60
2022
2021; 277
2021; 258
2021
2017; 10
2004; 34
2022; 9
2013; 118
2005; 5
2017
2015
2023; 857
2024; 333
2018; 99
2018; 10
2023; 50
2022; 127
2016; 22
EPA (e_1_2_9_12_1) 2024
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_54_1
Grandstrand O. (e_1_2_9_16_1) 2008
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_5_1
e_1_2_9_3_1
Crisp D. (e_1_2_9_7_1) 2015
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 34
  start-page: 700
  issue: 4
  year: 2004
  end-page: 709
  article-title: The orbiting carbon observatory (OCO) mission
  publication-title: Advances in Space Research
– volume: 15
  start-page: 963
  issue: 2
  year: 2023
  end-page: 1004
  article-title: National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake
  publication-title: Earth System Science Data
– volume: 9
  issue: 1
  year: 2022
  article-title: A multi‐city urban atmospheric greenhouse gas measurement data synthesis
  publication-title: Scientific Data
– volume: 40
  start-page: 3479
  issue: 13
  year: 2013
  end-page: 3483
  article-title: Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use
  publication-title: Geophysical Research Letters
– volume: 12
  start-page: 6695
  issue: 12
  year: 2019
  end-page: 6719
  article-title: Detectability of CO2 emission plumes of cities and power plants with the Copernicus anthropogenic CO2 monitoring (CO2M) mission
  publication-title: Atmospheric Measurement Techniques
– volume: 30
  start-page: 5419
  issue: 14
  year: 2017
  end-page: 5454
  article-title: The modern‐era retrospective analysis for research and applications, version 2 (MERRA‐2)
  publication-title: Journal of Climate
– volume: 11
  start-page: 1309
  issue: 3
  year: 2019
  end-page: 1335
  article-title: The Hestia fossil fuel CO2 emissions data product for the Los Angeles megacity (HESTIA‐La)
  publication-title: Earth System Science Data
– year: 2024
– volume: 6
  year: 2018
  article-title: The potential of the geostationary carbon cycle observatory (GEOCARB) to provide multi‐scale constraints on the carbon cycle in the Americas
  publication-title: Frontiers in Environmental Science
– start-page: 128
  year: 2021
– volume: 258
  year: 2021
  article-title: Urban‐focused satellite CO2 observations from the orbiting carbon observatory‐3: A first look at the Los Angeles megacity
  publication-title: Remote Sensing of Environment
– volume: 11
  start-page: 3581
  issue: 8
  year: 2011
  end-page: 3593
  article-title: Sources of variations in total column carbon dioxide
  publication-title: Atmospheric Chemistry and Physics
– volume: 2
  start-page: 39
  issue: 1
  year: 2015
  end-page: 47
  article-title: The transient response to cumulative CO2 emissions: A review
  publication-title: Current Climate Change Reports
– volume: 151
  start-page: 448
  issue: 1
  year: 2009
  end-page: 460
  article-title: Evidence that light, carbon dioxide, and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen
  publication-title: Plant Physiology
– volume: 39
  issue: 8
  year: 2012
  article-title: Global CO2 distributions over land from the greenhouse gases observing satellite (GOSAT)
  publication-title: Geophysical Research Letters
– volume: 60
  issue: 2
  year: 2022
  article-title: How well do we understand the land‐ocean‐atmosphere carbon cycle?
  publication-title: Reviews of Geophysics
– volume: 109
  issue: D11
  year: 2004
  article-title: A study of the NOx dependence of isoprene oxidation
  publication-title: Journal of Geophysical Research
– volume: 15
  issue: 9
  year: 2020
  article-title: Anthropogenic CO2 emissions assessment of Nile delta using XCO2 and SIF data from OCO‐2 satellite
  publication-title: Environmental Research Letters
– year: 2022
– volume: 10
  start-page: 2209
  issue: 6
  year: 2017
  end-page: 2238
  article-title: Comparisons of the orbiting carbon observatory‐2 (oco‐2) XCO2 measurements with tccon
  publication-title: Atmospheric Measurement Techniques
– volume: 118
  start-page: 917
  issue: 2
  year: 2013
  end-page: 933
  article-title: Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 16
  start-page: 3173
  issue: 12
  year: 2023
  end-page: 3209
  article-title: Evaluating the consistency between OCO‐2 and OCO‐3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm
  publication-title: Atmospheric Measurement Techniques
– year: 2015
– volume: 28
  start-page: 1
  year: 2023
  end-page: 14
  article-title: Inter‐comparison and evaluation of global satellite XCO2 products
  publication-title: Geo‐spatial Information Science
– volume: 54
  start-page: 15613
  issue: 24
  year: 2020
  end-page: 15621
  article-title: Constraining urban CO2 emissions using mobile observations from a light rail public transit platform
  publication-title: Environmental Science & Technology
– volume: 50
  issue: 21
  year: 2023
  article-title: Constraining sector‐specific CO2 fluxes using space‐based CO2 observations over the Los Angeles basin
  publication-title: Geophysical Research Letters
– volume: 12
  issue: 1
  year: 2021
  article-title: Under‐reporting of greenhouse gas emissions in U.S. cities
  publication-title: Nature Communications
– volume: 127
  issue: 5
  year: 2022
  article-title: Next‐generation isoprene measurements from space: Detecting daily variability at high resolution
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 5
  start-page: 941
  issue: 4
  year: 2005
  end-page: 962
  article-title: Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: Initial comparison with chemistry and transport models
  publication-title: Atmospheric Chemistry and Physics
– volume: 43
  start-page: 6121
  issue: 39
  year: 2009
  end-page: 6135
  article-title: Isoprene emissions and climate
  publication-title: Atmospheric Environment
– volume: 101
  start-page: E1439
  issue: 8
  year: 2020
  end-page: E1451
  article-title: Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity
  publication-title: Bulletin of the American Meteorological Society
– volume: 99
  start-page: 2325
  issue: 11
  year: 2018
  end-page: 2339
  article-title: CO2 and carbon emissions from cities: Linkages to air quality, socioeconomic activity, and stakeholders in the Salt Lake City urban area
  publication-title: Bulletin of the American Meteorological Society
– volume: 68
  start-page: 100
  issue: 4
  year: 2013
  end-page: 105
  article-title: The greenhouse effect and carbon dioxide
  publication-title: Weather
– volume: 22
  start-page: 947
  issue: 6
  year: 2016
  end-page: 972
  article-title: A comparison of five high‐resolution spatially‐explicit, fossil‐fuel, carbon dioxide emission inventories for the United States
  publication-title: Mitigation and Adaptation Strategies for Global Change
– year: 2023
  article-title: CO2 emissions from C40 cities: Citywide emission inventories and comparisons with global gridded emission datasets
  publication-title: Environmental Research Letters
– volume: 30
  start-page: 6823
  issue: 17
  year: 2017
  end-page: 6850
  article-title: The MERRA‐2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation
  publication-title: Journal of Climate
– volume: 13
  start-page: 1667
  issue: 4
  year: 2021
  end-page: 1680
  article-title: Cdiac‐ff: Global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017
  publication-title: Earth System Science Data
– volume: 18
  start-page: 16271
  issue: 22
  year: 2018
  end-page: 16291
  article-title: Southern California megacity CO2, CH4, and CO flux estimates using ground‐ and space‐based remote sensing and a Lagrangian model
  publication-title: Atmospheric Chemistry and Physics
– volume: 14
  start-page: 1111
  issue: 2
  year: 2021
  end-page: 1126
  article-title: Muccnet: Munich urban carbon column network
  publication-title: Atmospheric Measurement Techniques
– volume: 16
  start-page: 13449
  issue: 21
  year: 2016
  end-page: 13463
  article-title: The Berkeley atmospheric CO2 observation network: Initial evaluation
  publication-title: Atmospheric Chemistry and Physics
– volume: 857
  year: 2023
  article-title: Urban green space and albedo impacts on surface temperature across seven United States cities
  publication-title: Science of The Total Environment
– year: 2024
  article-title: The greenhouse gas observation mission with global observing satellite for greenhouse gases and water cycle (GOSAT‐GW)
  publication-title: Objectives, conceptual framework and scientific contributions
– volume: 120
  issue: 21
  year: 2023
  article-title: Urban effects on local cloud patterns
  publication-title: Proceedings of the National Academy of Sciences
– volume: 15
  issue: 3
  year: 2020
  article-title: Space‐based quantification of per capita CO2 emissions from cities
  publication-title: Environmental Research Letters
– start-page: 31
  year: 2022
  end-page: 57
– year: 2023
– volume: 264
  year: 2021
  article-title: Advances in quantifying power plant CO2 emissions with OCO‐2
  publication-title: Remote Sensing of Environment
– volume: 10
  start-page: 87
  issue: 1
  year: 2018
  end-page: 107
  article-title: The open‐source data inventory for anthropogenic CO2, version 2016 (ODIAC2016): A global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions
  publication-title: Earth System Science Data
– volume: 12
  start-page: 2341
  issue: 4
  year: 2019
  end-page: 2370
  article-title: The OCO‐3 mission: Measurement objectives and expected performance based on 1 year of simulated data
  publication-title: Atmospheric Measurement Techniques
– volume: 277
  year: 2021
  article-title: The potential of CO2 satellite monitoring for climate governance: A review
  publication-title: Journal of Environmental Management
– volume: 125
  issue: 8
  year: 2020
  article-title: Constraining fossil fuel CO2 emissions from urban area using oco‐2 observations of total column CO2
  publication-title: Journal of Geophysical Research: Atmospheres
– start-page: 179
  year: 2008
  end-page: 193
– volume: 333
  year: 2024
  article-title: Quantitative analysis of spatiotemporal coverage and uncertainty decomposition in OCO‐2/3 CO2 across China
  publication-title: Atmospheric Environment
– year: 2017
– volume: 11
  start-page: 1291
  issue: 3
  year: 2019
  end-page: 1308
  article-title: The Utah urban carbon dioxide (UUCON) and Uintah basin greenhouse gas networks: Instrumentation, data, and measurement uncertainty
  publication-title: Earth System Science Data
– ident: e_1_2_9_6_1
  doi: 10.5194/essd‐15‐963‐2023
– ident: e_1_2_9_33_1
  doi: 10.1029/2012jd018196
– ident: e_1_2_9_60_1
  doi: 10.1002/wea.2072
– ident: e_1_2_9_2_1
  doi: 10.1088/1748‐9326/acbb91
– ident: e_1_2_9_26_1
  doi: 10.1175/bams‐d‐17‐0037.1
– ident: e_1_2_9_55_1
  doi: 10.1088/1748‐9326/ab68eb
– ident: e_1_2_9_36_1
  doi: 10.17595/20170411.001
– ident: e_1_2_9_59_1
  doi: 10.1016/j.atmosenv.2024.120636
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jenvman.2020.111423
– ident: e_1_2_9_53_1
  doi: 10.13020/5N0J‐WX73
– ident: e_1_2_9_4_1
  doi: 10.1029/2003jd003965
– ident: e_1_2_9_50_1
  doi: 10.5194/amt‐16‐3173‐2023
– ident: e_1_2_9_46_1
  doi: 10.1117/12.2599613
– ident: e_1_2_9_57_1
  doi: 10.1080/10095020.2023.2252017
– ident: e_1_2_9_41_1
  doi: 10.1104/pp.109.141978
– ident: e_1_2_9_25_1
  doi: 10.5194/amt‐12‐6695‐2019
– ident: e_1_2_9_54_1
  doi: 10.1029/2021jd036181
– ident: e_1_2_9_58_1
  doi: 10.1029/2019jd030528
– ident: e_1_2_9_40_1
  doi: 10.1175/jcli‐d‐16‐0609.1
– ident: e_1_2_9_45_1
  doi: 10.5194/acp‐16‐13449‐2016
– ident: e_1_2_9_32_1
  doi: 10.1016/j.rse.2021.112579
– ident: e_1_2_9_17_1
  doi: 10.1038/s41467‐020‐20871‐0
– ident: e_1_2_9_3_1
  doi: 10.5194/essd‐11‐1291‐2019
– volume-title: Inventory of U.S. Greenhouse gas emissions and sinks: 1990‐2022
  year: 2024
  ident: e_1_2_9_12_1
– ident: e_1_2_9_47_1
  doi: 10.1016/j.scitotenv.2022.159663
– ident: e_1_2_9_11_1
  doi: 10.5194/amt‐12‐2341‐2019
– ident: e_1_2_9_49_1
  doi: 10.21203/rs.3.rs‐4754270/v1
– ident: e_1_2_9_9_1
  doi: 10.1029/2021rg000736
– ident: e_1_2_9_20_1
  doi: 10.5194/acp‐18‐16271‐2018
– ident: e_1_2_9_18_1
  doi: 10.5194/essd‐11‐1309‐2019
– ident: e_1_2_9_38_1
  doi: 10.1016/j.atmosenv.2009.09.002
– ident: e_1_2_9_44_1
  doi: 10.1088/1748‐9326/ab9cfe
– ident: e_1_2_9_52_1
  doi: 10.1073/pnas.2216765120
– ident: e_1_2_9_10_1
  doi: 10.5194/amt‐14‐1111‐2021
– ident: e_1_2_9_31_1
  doi: 10.3389/fenvs.2018.00109
– ident: e_1_2_9_19_1
  doi: 10.1029/2012gl051203
– ident: e_1_2_9_29_1
  doi: 10.1038/s41597‐022‐01467‐3
– ident: e_1_2_9_14_1
  doi: 10.5194/essd‐13‐1667‐2021
– ident: e_1_2_9_8_1
  doi: 10.1016/j.asr.2003.08.062
– ident: e_1_2_9_5_1
  doi: 10.5194/acp‐5‐941‐2005
– ident: e_1_2_9_43_1
  doi: 10.1016/B978-0-12-814952-2.00002-2
– ident: e_1_2_9_15_1
  doi: 10.5067/TVJ4MHBED39L
– ident: e_1_2_9_22_1
  doi: 10.1175/bams‐d‐19‐0017.1
– ident: e_1_2_9_27_1
  doi: 10.1007/s40641‐015‐0030‐6
– ident: e_1_2_9_34_1
  doi: 10.5067/8E4VLCK16O6Q
– ident: e_1_2_9_30_1
  doi: 10.5067/MODIS/MOD06_L2.061
– ident: e_1_2_9_42_1
  doi: 10.1029/2023gl104376
– ident: e_1_2_9_28_1
  doi: 10.1021/acs.est.0c04388
– ident: e_1_2_9_51_1
  doi: 10.5281/ZENODO.7130245
– ident: e_1_2_9_24_1
  doi: 10.1016/j.rse.2021.112314
– ident: e_1_2_9_48_1
  doi: 10.1002/grl.50650
– ident: e_1_2_9_23_1
  doi: 10.5194/acp‐11‐3581‐2011
– ident: e_1_2_9_13_1
  doi: 10.1175/jcli‐d‐16‐0758.1
– volume-title: Spie proceedings
  year: 2015
  ident: e_1_2_9_7_1
– start-page: 179
  volume-title: World energy outlook
  year: 2008
  ident: e_1_2_9_16_1
– ident: e_1_2_9_21_1
  doi: 10.1007/s11027‐016‐9709‐9
– ident: e_1_2_9_35_1
  doi: 10.5067/970BCC4DHH24
– ident: e_1_2_9_37_1
  doi: 10.5194/essd‐10‐87‐2018
– ident: e_1_2_9_56_1
  doi: 10.5194/amt‐10‐2209‐2017
SSID ssj0002171028
Score 2.2931514
Snippet A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide CO2...
A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide...
Abstract A growing number of space‐based platforms, like the Orbiting Carbon Observatory (OCO‐2 and OCO‐3) missions, observe Earth's atmospheric carbon dioxide...
SourceID doaj
crossref
wiley
SourceType Open Website
Index Database
Publisher
SubjectTerms carbon dioxide
effective revisit time
environmental factors
orbital mechanics
orbiting carbon observatory
urban emissions
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwELUQh0TDjbjlAjoi4iOJU4YVCwVXwbFdZCc2bJOg7IJExyfwjXwJM05YQYOEaK3ROIpnPG-e7RlC9kNtAIVaE0CwloFMkjTQSVwEWroi5CYpIn8Z8-48ubxUg0F63RFu-BamrQ8xIdzQM_x-jQ6uzagrNoA1MiFrl9kdQhYBKfsMY0Jh6wYuryccC8BtjJ_YXw5gdRCHctDdfQcVR98V_IhKvnj_T7Dqo01_8b_fuUQWOpxJs9YwlsmUrVbI3Knv4_u6Sp57eHUT9pKPt3f_xgkiGO23vXdo5u944AigQ9p6PdJ_tHb0tjG6oidgHUizjej9cPzoxa4a02rp6cbUFb0yLd9bN6_0opNeI7f9k5veWdB1YAgKAXlJoNIwLFTIyzgqHeNxZDmE9wQwYREZsEGnUytlYpH4ZdzKInZcuViJUrtYSyHWyXRVV3aDUJY6YUtmjWZCGqmMCgF5RYAnDUuN4Jvk4GsF8qe20EbuD8h5mn__hZvkGJdnIoPlsf1A3TzknbflkIW5SILW0mhp8RWMKTWLXAxJuEs4THbol-zXmfLsNMNjeaG2_ia-TeY5dgn2XM0OmR43z3aXzBYv4-Go2fMm-gkLJOQ8
  priority: 102
  providerName: Wiley-Blackwell
Title Coverage‐Limiting Factors Affecting the Monitoring of Urban Emissions With the Orbiting Carbon Observatory Missions
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024AV001630
https://doaj.org/article/487f54b32dba4e0686bda15f6027f722
Volume 6
WOSCitedRecordID wos001499462100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2576-604X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171028
  issn: 2576-604X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2576-604X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171028
  issn: 2576-604X
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2576-604X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171028
  issn: 2576-604X
  databaseCode: PCBAR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2576-604X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171028
  issn: 2576-604X
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2576-604X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171028
  issn: 2576-604X
  databaseCode: PIMPY
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2576-604X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171028
  issn: 2576-604X
  databaseCode: WIN
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2576-604X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171028
  issn: 2576-604X
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED5BAYkF8RTlUXmAjYjEcV5jWrUFCdoK0ZYtshNbdElR2iJ14yfwG_klnJ2AygILYyzLju5s33fnz3cAFzYXiEKlsNBYM4sFQWTxwE8tzlRqUxGkniFjju6CXi98eooGK6W-NCesTA9cCu4aAbXymHBpJjiT-kGDyLjjKR_9KRVQc_oi6llxpvQZjEBbW86K6W7TSDv5LB5phKMJzys2yKTq_wlNjW3p7MJOBQpJXP7MHqzJfB-2uqbo7vIAFi3Ns8SN__H2bh4kobkhnbJQDokNIUO3IJQj5RbVsToyVWRYCJ6TNqpSx8RmZDyZP5tu_UKUo7R4IaY56YsyODstluS-6n0Iw077sXVjVeUSrNRFJ8IKI9tOQ5tmvpcph_qepGiLAwRwqSdwwSgeScYCqaO0DpUs9RUNlR-6GVc-Z657BLV8mstjIE6kXJk5UnDHZYKFIrQRJnkI_oQToS7qcPklwOSlzIqRmNtsGiWrgq5DU0v3u4_OZW0aUMNJpeHkLw3X4cro5teZkrgb6zt0Nzz5jzlPYZvqQr8m3HIGtXmxkOewmb7OJ7OiAeuUDRpmxTVgY9Bqxg_4Nb7tfQLRA9nG
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQD8HCG_HGA2xEJLbzGkNFAVEKQwvdIjuxgSVBoSB14yfwG_kl3DmhogsSYrVO5yi-83332b4j5NCVClCoVg4Ea-GIMIwdGQaZI4XJXKbCzLeXMe86YbcbDQbxbdPnFN_C1PUhxoQbeobdr9HBkZBuqg1gkUxI20Vyh5iFQ84-IwBrYO-G-8vumGQBvI0BFBvMAa52AlcMmsvvoOLkp4KJsGSr90-iVRtu2kv__tBlstggTZrUprFCpnSxSubObSff0Rp5beHlTdhNPt8_7CsniGG0XXffoYm95YEjgA9p7fdIANLS0H6lZEHPwD6QaHuh90_DRyt2U6laS0tWqizojaoZ37Ia0etGep3022e91oXT9GBwMg6ZiRPFrptFLssDPzceC3zNIMCHgAozX4EVGhlrIUKN1K_HtMgCwyITRDyXJpCC8w0yXZSF3iTUiw3XuaeV9LhQIlKRC9jLB0SpvFhxtkWOvpcgfa5LbaT2iJzF6c9fuEVOcX3GMlgg2w6U1UPa-FsKeZjxBWjNlRQa38GoXHq-CSANNyGDyY7tmv06U5qcJ3gwz6Ptv4kfkPmL3nUn7Vx2r3bIAsOewZa52SXTw-pV75HZ7G349FLtW3v9Ak3V6JQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwELYQC4jLLk9t9wE-wI2IxHbi5JjttoAopQcevUV2YrO9JCi0SL3tT9jfuL9kZ5xQlctKiKs1GkfxjOeb8TwIOfKVBhRqtAfGWnhCysRTMso9JWzuMy3z0CVj3g3kcBiPx8monXOKtTBNf4hFwA01w93XqODmsbBttwFskgluu0jvELNw8Nk_iFAGKNZMjBZBFsDbaEBxwBzgai_yxbhNfgcWp8sMXpkl173_NVp15qb_6d0fukU-tkiTpo1obJMVU-6Q9TM3yXe-S2ZdTN6E2-Tv7z-uyglsGO0303do6rI8cAXwIW30HgOAtLL0ttaqpD2QDwy0PdH7yfSXI7uudcOlq2pdlfRaNxHfqp7Tq5Z6j9z2ezfdc6-dweDlHDwTL058P499VkRhYQMWhYaBgZeACvNQgxRalRghpMHQb8CMyCPLYhvFvFA2UoLzfbJaVqX5TGiQWG6KwGgVcKFFrGMfsFcIiFIHieasQ45fjiB7bFptZO6JnCXZ8i_skB94PgsabJDtFqr6IWv1LQM_zIYCuBZaCYN1MLpQQWgjcMOtZLDZiTuz_-6UpWcpPszz-MvbyA_JxuhnPxtcDC-_kk2GI4Nd4OYbWZ3WM_OdrOXP08lTfeDE9R-CGeer
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coverage%E2%80%90Limiting+Factors+Affecting+the+Monitoring+of+Urban+Emissions+With+the+Orbiting+Carbon+Observatory+Missions&rft.jtitle=AGU+advances&rft.au=Roten%2C+Dustin&rft.au=Chatterjee%2C+Abhishek&rft.date=2025-06-01&rft.issn=2576-604X&rft.eissn=2576-604X&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1029%2F2024AV001630&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2024AV001630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-604X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-604X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-604X&client=summon