Does agroecosystem management mitigate historic climate impacts on dryland winter wheat yields?

Global studies that quantify climate effects on crop yields using top‐down spatial frameworks are invaluable for assessing generalized effects on world food supplies, yet do not contain the resolution necessary to identify local mediating effects of management. Our objectives were to identify (a) wh...

Full description

Saved in:
Bibliographic Details
Published in:Agronomy journal Vol. 114; no. 6; pp. 3515 - 3530
Main Authors: Miner, Grace L., Stewart, Catherine E., Vigil, Merle F., Poss, David J., Haley, Scott D., Jones‐Diamond, Sally M., Mason, R. Esten
Format: Journal Article
Language:English
Published: 01.11.2022
Subjects:
ISSN:0002-1962, 1435-0645
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Global studies that quantify climate effects on crop yields using top‐down spatial frameworks are invaluable for assessing generalized effects on world food supplies, yet do not contain the resolution necessary to identify local mediating effects of management. Our objectives were to identify (a) what climate factors have historically affected winter wheat (Triticum aestivum L.) yields in eastern Colorado, (b) how management may mitigate climate impacts, and (c) the potential for varietal selection to climate extremes. We paired long‐term yield data for wheat in rotations that varied in management (tillage intensity, with and without fallow) with robust on‐site weather data. We also used data from colocated variety trials to investigate trade‐offs between mean yields and the ability to withstand water and temperature stress. Precipitation in April–June was nearly as predictive of yields as full growing season precipitation. While precipitation and air temperatures are tightly linked in this agroecosystem, temperatures were more predictive of yields than precipitation. Increases in minimum May temperatures positively affected yields, likely because of minimizing freeze damage, but did not offset detrimental effects of warmer daytime spring and summer temperatures. The largest negative temperature effects were caused by extreme maximum temperatures in June. No‐till with fallow maximized yields. Low‐ and high‐yielding varieties did not differ in yield responses to high temperatures, suggesting that future advancements in heat stress resistance will not necessarily require yield trade‐offs. Climate pressures will likely require producers to balance yield goals with maintaining soil cover, underscoring the difficulty of identifying win–win climate adaptations. Core Ideas Precipitation in a 90‐d window (April–June) was nearly as predictive of yields as full growing season precipitation. Information on monthly air temperatures (April–June) was more predictive of wheat grain yields than precipitation. Daytime temperatures in May and June are already above optimum in most years, negatively affecting grain yields. Both no‐till and fallow increased the intercept of the yield response to precipitation and temperature. The slope of the yield responses to high temperatures did not differ between low‐ and high‐yielding varieties.
AbstractList Global studies that quantify climate effects on crop yields using top‐down spatial frameworks are invaluable for assessing generalized effects on world food supplies, yet do not contain the resolution necessary to identify local mediating effects of management. Our objectives were to identify (a) what climate factors have historically affected winter wheat (Triticum aestivum L.) yields in eastern Colorado, (b) how management may mitigate climate impacts, and (c) the potential for varietal selection to climate extremes. We paired long‐term yield data for wheat in rotations that varied in management (tillage intensity, with and without fallow) with robust on‐site weather data. We also used data from colocated variety trials to investigate trade‐offs between mean yields and the ability to withstand water and temperature stress. Precipitation in April–June was nearly as predictive of yields as full growing season precipitation. While precipitation and air temperatures are tightly linked in this agroecosystem, temperatures were more predictive of yields than precipitation. Increases in minimum May temperatures positively affected yields, likely because of minimizing freeze damage, but did not offset detrimental effects of warmer daytime spring and summer temperatures. The largest negative temperature effects were caused by extreme maximum temperatures in June. No‐till with fallow maximized yields. Low‐ and high‐yielding varieties did not differ in yield responses to high temperatures, suggesting that future advancements in heat stress resistance will not necessarily require yield trade‐offs. Climate pressures will likely require producers to balance yield goals with maintaining soil cover, underscoring the difficulty of identifying win–win climate adaptations.
Global studies that quantify climate effects on crop yields using top‐down spatial frameworks are invaluable for assessing generalized effects on world food supplies, yet do not contain the resolution necessary to identify local mediating effects of management. Our objectives were to identify (a) what climate factors have historically affected winter wheat (Triticum aestivum L.) yields in eastern Colorado, (b) how management may mitigate climate impacts, and (c) the potential for varietal selection to climate extremes. We paired long‐term yield data for wheat in rotations that varied in management (tillage intensity, with and without fallow) with robust on‐site weather data. We also used data from colocated variety trials to investigate trade‐offs between mean yields and the ability to withstand water and temperature stress. Precipitation in April–June was nearly as predictive of yields as full growing season precipitation. While precipitation and air temperatures are tightly linked in this agroecosystem, temperatures were more predictive of yields than precipitation. Increases in minimum May temperatures positively affected yields, likely because of minimizing freeze damage, but did not offset detrimental effects of warmer daytime spring and summer temperatures. The largest negative temperature effects were caused by extreme maximum temperatures in June. No‐till with fallow maximized yields. Low‐ and high‐yielding varieties did not differ in yield responses to high temperatures, suggesting that future advancements in heat stress resistance will not necessarily require yield trade‐offs. Climate pressures will likely require producers to balance yield goals with maintaining soil cover, underscoring the difficulty of identifying win–win climate adaptations. Core Ideas Precipitation in a 90‐d window (April–June) was nearly as predictive of yields as full growing season precipitation. Information on monthly air temperatures (April–June) was more predictive of wheat grain yields than precipitation. Daytime temperatures in May and June are already above optimum in most years, negatively affecting grain yields. Both no‐till and fallow increased the intercept of the yield response to precipitation and temperature. The slope of the yield responses to high temperatures did not differ between low‐ and high‐yielding varieties.
Global studies that quantify climate effects on crop yields using top‐down spatial frameworks are invaluable for assessing generalized effects on world food supplies, yet do not contain the resolution necessary to identify local mediating effects of management. Our objectives were to identify (a) what climate factors have historically affected winter wheat ( Triticum aestivum L.) yields in eastern Colorado, (b) how management may mitigate climate impacts, and (c) the potential for varietal selection to climate extremes. We paired long‐term yield data for wheat in rotations that varied in management (tillage intensity, with and without fallow) with robust on‐site weather data. We also used data from colocated variety trials to investigate trade‐offs between mean yields and the ability to withstand water and temperature stress. Precipitation in April–June was nearly as predictive of yields as full growing season precipitation. While precipitation and air temperatures are tightly linked in this agroecosystem, temperatures were more predictive of yields than precipitation. Increases in minimum May temperatures positively affected yields, likely because of minimizing freeze damage, but did not offset detrimental effects of warmer daytime spring and summer temperatures. The largest negative temperature effects were caused by extreme maximum temperatures in June. No‐till with fallow maximized yields. Low‐ and high‐yielding varieties did not differ in yield responses to high temperatures, suggesting that future advancements in heat stress resistance will not necessarily require yield trade‐offs. Climate pressures will likely require producers to balance yield goals with maintaining soil cover, underscoring the difficulty of identifying win–win climate adaptations. Precipitation in a 90‐d window (April–June) was nearly as predictive of yields as full growing season precipitation. Information on monthly air temperatures (April–June) was more predictive of wheat grain yields than precipitation. Daytime temperatures in May and June are already above optimum in most years, negatively affecting grain yields. Both no‐till and fallow increased the intercept of the yield response to precipitation and temperature. The slope of the yield responses to high temperatures did not differ between low‐ and high‐yielding varieties.
Author Poss, David J.
Vigil, Merle F.
Jones‐Diamond, Sally M.
Mason, R. Esten
Haley, Scott D.
Miner, Grace L.
Stewart, Catherine E.
Author_xml – sequence: 1
  givenname: Grace L.
  orcidid: 0000-0001-5936-2979
  surname: Miner
  fullname: Miner, Grace L.
  email: Grace.Miner@usda.gov
  organization: USDA‐ARS
– sequence: 2
  givenname: Catherine E.
  orcidid: 0000-0003-1216-0450
  surname: Stewart
  fullname: Stewart, Catherine E.
  organization: USDA‐ARS
– sequence: 3
  givenname: Merle F.
  surname: Vigil
  fullname: Vigil, Merle F.
  organization: USDA‐ARS
– sequence: 4
  givenname: David J.
  surname: Poss
  fullname: Poss, David J.
  organization: USDA‐ARS
– sequence: 5
  givenname: Scott D.
  surname: Haley
  fullname: Haley, Scott D.
  organization: Colorado State Univ.ersity
– sequence: 6
  givenname: Sally M.
  surname: Jones‐Diamond
  fullname: Jones‐Diamond, Sally M.
  organization: Colorado State Univ.ersity
– sequence: 7
  givenname: R. Esten
  surname: Mason
  fullname: Mason, R. Esten
  organization: Colorado State Univ.ersity
BookMark eNp9kE1LAzEQhoNUsK1e_AU5irA1H9vd7UlK1aoUvOg5ZLOTbcrupiYpZf-9qetJxNPAzPMOM88EjTrbAULXlMwoIexO1js2Y5QuijM0pimfJyRL5yM0JnGa0EXGLtDE-x0hkUnpGIkHCx7L2llQ1vc-QItb2ckaWugCbk0wtQyAt8YH64zCqjHtqWHavVTBY9vhyvWN7Cp8NF0Ah49bkAH3BprK31-icy0bD1c_dYo-nh7fV8_J5m39slpuEsVTViTxZFZWRJe6ymWhMl4CU3qRLzjMi1yXiuWyklRzpaSuOKfANI98BryIaMmn6GbYu3f28wA-iNZ4BU08DOzBC1bEh3NaMBpRMqDKWe8daKFMkMHYLjhpGkGJOLkUJ5fi22WM3P6K7F3U4Pq_YTrAR9NA_w8plutXNmS-APFWiQA
CitedBy_id crossref_primary_10_1016_j_fcr_2024_109338
crossref_primary_10_3390_agronomy15061304
crossref_primary_10_1016_j_agsy_2024_104182
Cites_doi 10.2135/cropsci2018.04.0249
10.2134/agronj2002.0962
10.2134/agronj2018.12.0766
10.1073/pnas.0912953109
10.1073/pnas.1222463110
10.1016/j.eja.2020.126227
10.2134/1983.limitationstoefficientwateruse.c26
10.1016/j.agrformet.2021.108513
10.1002/agj2.20168
10.2134/agronj2009.0348
10.3389/fpls.2019.01786
10.2134/agronj2005.0364
10.2134/agronj2017.07.0407
10.1111/j.1600-0587.2012.07348.x
10.1038/s43016‐021‐00365‐y
10.1038/NCLIMATE3115
10.2135/cropsci2007.12.0717
10.2134/agronj2012.0243
10.3389/fpls.2018.00224
10.1016/j.gfs.2017.01.002
10.1111/gcb.13009
10.1073/pnas.0701890104
10.1088/1748‐9326/2/1/014002
10.1073/pnas.0906865106
10.1073/pnas.1415181112
10.1098/rstb.2005.1752
10.1016/j.agrformet.2010.07.008
10.3389/fagro.2022.903340
10.1016/j.envexpbot.2012.01.002
10.1016/j.fcr.2006.07.010
10.1126/science.1204531
10.2489/jswc.75.1.112
10.1016/j.fcr.2012.02.021
10.1029/2008wr007600
10.2134/agronj2002.1120
10.2134/agronj2011.0212
10.1104/pp.110.161349
10.1016/S1161‐0301(98)00047‐1
10.1146/annurev‐publhealth‐031816‐044356
10.2134/agronj2016.07.0406
10.1094/CM‐2011‐1229‐01‐RS
10.1016/j.fcr.2020.107848
10.1111/j.1439‐037X.1996.tb00454.x
10.2134/agronj2006.0209
10.1016/j.fcr.2018.03.009
10.2135/cropsci2001.4151412x
10.1002/joc.3704
10.1093/reep/ret016
10.1017/S0021859600056495
10.1038/Nclimate2470
10.1038/nplants.2017.102
10.1002/joc.706
10.2135/cropsci2009.11.0685
10.1111/j.1365‐3040.2012.02588.x
10.1016/j.fcr.2016.12.014
10.1071/AR05359
10.1016/j.fcr.2013.12.020
10.1016/j.agee.2008.10.025
10.1002/csc2.20139
10.1073/pnas.1701762114
10.1111/pce.14050
10.1088/1748‐9326/aa8d27
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Society of Agronomy.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC on behalf of American Society of Agronomy.
DBID 24P
AAYXX
CITATION
7S9
L.6
DOI 10.1002/agj2.21198
DatabaseName Open Access: Wiley-Blackwell Open Access Journals
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1435-0645
EndPage 3530
ExternalDocumentID 10_1002_agj2_21198
AGJ221198
Genre article
GeographicLocations Colorado
GeographicLocations_xml – name: Colorado
GroupedDBID -~X
.86
.~0
0R~
186
1OB
1OC
23M
24P
2WC
33P
3V.
5GY
6J9
6KN
7X2
7XC
88I
8FE
8FG
8FH
8FW
8G5
8R4
8R5
AABCJ
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
ABCQX
ABCUV
ABEFU
ABJCF
ABJNI
ABRSH
ABUWG
ACAWQ
ACCFJ
ACCZN
ACGFO
ACGOD
ACIWK
ACPOU
ACQAM
ACXQS
ADFRT
ADKYN
ADMHG
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFFPM
AFKRA
AFRAH
AFWVQ
AHBTC
AI.
AIDBO
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BFHJK
BGLVJ
BHPHI
BLC
BPHCQ
C1A
CCPQU
D0L
DCZOG
DROCM
DWQXO
E3Z
EBS
ECGQY
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
HF~
HGLYW
L6V
L7B
LAS
LATKE
LEEKS
LPU
M0K
M2O
M2P
M7S
MEWTI
MV1
NEJ
NHAZY
NHB
O9-
P2P
PATMY
PEA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
QF4
QM4
QN7
ROL
RPX
RWL
S0X
SAMSI
SJFOW
SJN
SUPJJ
TAE
TR2
TWZ
U2A
VH1
VOH
WOQ
WXSBR
Y6R
YR5
YYP
ZCG
~02
~KM
AAMMB
AAYXX
ABUFD
AEFGJ
AETEA
AEYWJ
AFFHD
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
LH4
PHGZM
PHGZT
PQGLB
XRW
7S9
L.6
ID FETCH-LOGICAL-c3428-2112bd0fbfd7a8c63be2cf9793e587fbc27ada1f3ccafd331e2f3d0f6e38be2b3
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000888921100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0002-1962
IngestDate Fri Sep 05 17:27:05 EDT 2025
Sat Nov 29 07:20:43 EST 2025
Tue Nov 18 21:49:14 EST 2025
Wed Jan 22 16:20:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3428-2112bd0fbfd7a8c63be2cf9793e587fbc27ada1f3ccafd331e2f3d0f6e38be2b3
Notes Assigned to Associate Editor Rajan Ghimire.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1216-0450
0000-0001-5936-2979
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagj2.21198
PQID 2811971821
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2811971821
crossref_citationtrail_10_1002_agj2_21198
crossref_primary_10_1002_agj2_21198
wiley_primary_10_1002_agj2_21198_AGJ221198
PublicationCentury 2000
PublicationDate November/December 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November/December 2022
PublicationDecade 2020
PublicationTitle Agronomy journal
PublicationYear 2022
References 2009; 45
2007; 104
2017; 3
2021; 124
2002; 94
2016; 108
2020; 60
2007; 100
2019; 59
2010; 102
2011; 10
2020; 10
2013; 7
2017; 114
2001; 41
2018; 9
2012; 132
2017; 38
2010; 154
1999; 10
2010; 150
2020; 255
1983
1996; 176
2007; 2
2009; 129
2017; 203
2019; 111
2021; 307
2011; 333
2015; 5
2021; 44
2021; 2
2006; 57
2013; 105
2018; 222
1985; 105
2012; 79
2012; 104
2012; 35
2014; 111
2007; 99
2014; 158
2012; 109
2016; 6
2018; 110
2013; 36
2005; 360
2020; 75
2017; 14
2022; 4
2022
2021
2015; 112
2015; 21
2002; 22
2017; 12
2008; 48
2005; 97
2020; 112
2014
2014; 34
2010; 50
2009; 106
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
Fischer R. (e_1_2_9_13_1) 2014
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
USDA National Agriculture Statistics Service (USDA‐NASS) (e_1_2_9_63_1) 2022
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
R Core Team (e_1_2_9_50_1) 2021
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
Lukas J. (e_1_2_9_33_1) 2014
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 10
  start-page: 1786
  year: 2020
  article-title: Changes in the phenotype of winter wheat varieties released between 1920 and 2016 in response to in‐furrow fertilizer: Biomass allocation, yield, and grain protein concentration
  publication-title: Frontiers in Plant Science
– volume: 112
  start-page: 6931
  issue: 22
  year: 2015
  end-page: 6936
  article-title: Effect of warming temperatures on us wheat yields
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 21
  start-page: 4153
  issue: 11
  year: 2015
  end-page: 4164
  article-title: High night temperatures during grain number determination reduce wheat and barley grain yield: A field study
  publication-title: Global Change Biology
– volume: 158
  start-page: 34
  year: 2014
  end-page: 42
  article-title: Searching for synergism in dryland cropping systems in the central Great Plains
  publication-title: Field Crops Research
– volume: 36
  start-page: 27
  issue: 1
  year: 2013
  end-page: 46
  article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
– year: 2021
– volume: 75
  start-page: 112
  issue: 1
  year: 2020
  end-page: 122
  article-title: Winter wheat response to climate change under irrigated and dryland conditions in the us southern High Plains
  publication-title: Journal of Soil and Water Conservation
– volume: 255
  year: 2020
  article-title: Exploring long‐term variety performance trials to improve environment‐specific genotype x management recommendations: A case‐study for winter wheat
  publication-title: Field Crops Research
– volume: 6
  start-page: 1130
  issue: 12
  year: 2016
  end-page: 1136
  article-title: Similar estimates of temperature impacts on global wheat yield by three independent methods
  publication-title: Nature Climate Change
– volume: 132
  start-page: 196
  year: 2012
  end-page: 203
  article-title: Research achievements and adoption of no‐till, dryland cropping in the semi‐arid us great plains
  publication-title: Field Crops Research
– volume: 150
  start-page: 1443
  issue: 11
  year: 2010
  end-page: 1452
  article-title: On the use of statistical models to predict crop yield responses to climate change
  publication-title: Agricultural and Forest Meteorology
– volume: 154
  start-page: 526
  issue: 2
  year: 2010
  end-page: 530
  article-title: How do we improve crop production in a warming world?
  publication-title: Plant Physiology
– volume: 99
  start-page: 469
  issue: 2
  year: 2007
  end-page: 477
  article-title: Impacts of day versus night temperatures on spring wheat yields: A comparison of empirical and ceres model predictions in three locations
  publication-title: Agronomy Journal
– year: 2014
– volume: 109
  start-page: 12302
  issue: 31
  year: 2012
  end-page: 12308
  article-title: Green revolution: Impacts, limits, and the path ahead
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 111
  start-page: 1728
  issue: 4
  year: 2019
  end-page: 1740
  article-title: Plant traits to increase winter wheat yield in semiarid and subhumid environments
  publication-title: Agronomy Journal
– start-page: 419
  year: 1983
  end-page: 460
– volume: 41
  start-page: 1412
  issue: 5
  year: 2001
  end-page: 1419
  article-title: Genetic gain in yield attributes of winter wheat in the great plains
  publication-title: Crop Science
– volume: 44
  start-page: 1992
  issue: 7
  year: 2021
  end-page: 2005
  article-title: Plant heat stress: Concepts directing future research
  publication-title: Plant, Cell & Environment
– volume: 4
  year: 2022
  article-title: Temperature‐driven developmental modulation of yield response to nitrogen in wheat and maize
  publication-title: Frontiers in Agronomy
– volume: 35
  start-page: 1799
  issue: 10
  year: 2012
  end-page: 1823
  article-title: Achieving yield gains in wheat
  publication-title: Plant, Cell, & Environment
– volume: 3
  start-page: 1
  issue: 8
  year: 2017
  end-page: 13
  article-title: The uncertainty of crop yield projections is reduced by improved temperature response functions
  publication-title: Nature Plants
– volume: 2
  issue: 1
  year: 2007
  article-title: Global scale climate–crop yield relationships and the impacts of recent warming
  publication-title: Environmental Research Letters
– volume: 79
  start-page: 11
  year: 2012
  end-page: 20
  article-title: Effects of drought preconditioning on freezing tolerance of perennial ryegrass
  publication-title: Environmental and Experimental Botany
– volume: 10
  start-page: 1
  issue: 1
  year: 2011
  end-page: 10
  article-title: Influence of precipitation, temperature, and 56 years on winter wheat yields in western kansas
  publication-title: Crop Management
– volume: 9
  start-page: 224
  year: 2018
  article-title: Agroclimatology and wheat production: Coping with climate change
  publication-title: Frontiers in Plant Science
– volume: 102
  start-page: 537
  issue: 2
  year: 2010
  end-page: 543
  article-title: Precipitation storage efficiency during fallow in wheat–fallow systems
  publication-title: Agronomy Journal
– year: 2022
– volume: 129
  start-page: 547
  issue: 4
  year: 2009
  end-page: 548
  article-title: Comments on a report of regression‐based evidence for impact of recent climate change on winter wheat yields
  publication-title: Agriculture Ecosystems & Environment
– volume: 5
  start-page: 143
  issue: 2
  year: 2015
  end-page: 147
  article-title: Rising temperatures reduce global wheat production
  publication-title: Nature Climate Change
– volume: 34
  start-page: 518
  issue: 2
  year: 2014
  end-page: 528
  article-title: Year patterns of climate impact on wheat yields
  publication-title: International Journal of Climatology
– volume: 108
  start-page: 2391
  issue: 6
  year: 2016
  end-page: 2405
  article-title: Evaluating potential dryland cropping systems adapted to climate change in the central Great Plains
  publication-title: Agronomy Journal
– volume: 94
  start-page: 1120
  issue: 5
  year: 2002
  end-page: 1130
  article-title: Climate change and winter survival of perennial forage crops in eastern Canada
  publication-title: Agronomy Journal
– volume: 176
  start-page: 119
  issue: 2
  year: 1996
  end-page: 129
  article-title: Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate
  publication-title: Journal of Agronomy and Crop Science
– volume: 94
  start-page: 962
  issue: 5
  year: 2002
  end-page: 967
  article-title: Cropping system influence on planting water content and yield of winter wheat
  publication-title: Agronomy Journal
– volume: 104
  start-page: 7
  issue: 1
  year: 2012
  end-page: 16
  article-title: Wheat growth response to increased temperature from varied planting dates and supplemental infrared heating
  publication-title: Agronomy Journal
– volume: 124
  year: 2021
  article-title: Nitrogen and water supply modulate the effect of elevated temperature on wheat yield
  publication-title: European Journal of Agronomy
– volume: 22
  start-page: 421
  issue: 4
  year: 2002
  end-page: 434
  article-title: Problems in evaluating regional and local trends in temperature: An example from eastern Colorado, USA
  publication-title: International Journal of Climatology
– volume: 48
  start-page: 2372
  issue: 6
  year: 2008
  end-page: 2380
  article-title: Impact of nighttime temperature on physiology and growth of spring wheat
  publication-title: Crop Science
– volume: 203
  start-page: 212
  year: 2017
  end-page: 226
  article-title: Meteorological limits to winter wheat productivity in the US southern Great Plains
  publication-title: Field Crops Research
– volume: 333
  start-page: 616
  issue: 6042
  year: 2011
  end-page: 620
  article-title: Climate trends and global crop production since 1980
  publication-title: Science
– volume: 112
  start-page: 2132
  issue: 3
  year: 2020
  end-page: 2151
  article-title: Climate‐risk assessment for winter wheat using long‐term weather data
  publication-title: Agronomy Journal
– volume: 110
  start-page: 594
  issue: 2
  year: 2018
  end-page: 601
  article-title: Wheat yield and yield stability of eight dryland crop rotations
  publication-title: Agronomy Journal
– volume: 222
  start-page: 143
  year: 2018
  end-page: 152
  article-title: Prominent winter wheat varieties response to post‐flowering heat stress under controlled chambers and field based heat tents
  publication-title: Field Crops Research
– volume: 104
  start-page: 19691
  issue: 50
  year: 2007
  end-page: 19696
  article-title: Adapting agriculture to climate change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 10
  start-page: 23
  issue: 1
  year: 1999
  end-page: 36
  article-title: Temperatures and the growth and development of wheat: A review
  publication-title: European Journal of Agronomy
– volume: 105
  start-page: 447
  issue: 2
  year: 1985
  end-page: 461
  article-title: Number of kernels in wheat crops and the influence of solar radiation and temperature
  publication-title: The Journal of Agricultural Science
– volume: 100
  start-page: 240
  issue: 2‐3
  year: 2007
  end-page: 248
  article-title: Grain weight and grain number responsiveness to pre‐anthesis temperature in wheat, barley and triticale
  publication-title: Field Crops Research
– volume: 59
  start-page: 333
  issue: 1
  year: 2019
  end-page: 350
  article-title: Agronomic practices for reducing wheat yield gaps: A quantitative appraisal of progressive producers
  publication-title: Crop Science
– volume: 60
  start-page: 1617
  issue: 3
  year: 2020
  end-page: 1633
  article-title: Soft winter wheat outyields hard winter wheat in a subhumid environment: Weather drivers, yield plasticity, and rates of yield gain
  publication-title: Crop Science
– volume: 57
  start-page: 847
  issue: 8
  year: 2006
  end-page: 856
  article-title: Benchmarking water‐use efficiency of rainfed wheat in dry environments
  publication-title: Australian Journal of Agricultural Research
– volume: 7
  start-page: 181
  issue: 2
  year: 2013
  end-page: 198
  article-title: Using weather data and climate model output in economic analyses of climate change
  publication-title: Review of Environmental Economics and Policy
– volume: 360
  start-page: 2021
  issue: 1463
  year: 2005
  end-page: 2035
  article-title: Crop responses to climatic variation
  publication-title: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
– volume: 307
  year: 2021
  article-title: Assessing environment types for maize, soybean, and wheat in the United States as determined by spatio‐temporal variation in drought and heat stress
  publication-title: Agricultural and Forest Meteorology
– volume: 12
  issue: 11
  year: 2017
  article-title: Irrigation offsets wheat yield reductions from warming temperatures
  publication-title: Environmental Research Letters
– volume: 14
  start-page: 18
  year: 2017
  end-page: 22
  article-title: Robust spatial frameworks for leveraging research on sustainable crop intensification
  publication-title: Global Food Security‐Agriculture Policy Economics and Environment
– volume: 45
  issue: 8
  year: 2009
  article-title: Albedo effect on radiative errors in air temperature measurements
  publication-title: Water Resources Research
– volume: 106
  start-page: 15594
  issue: 37
  year: 2009
  end-page: 15598
  article-title: Nonlinear temperature effects indicate severe damages to us crop yields under climate change
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 8
  year: 2014
  end-page: 11
– volume: 111
  start-page: 3268
  issue: 9
  year: 2014
  end-page: 3273
  article-title: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 2
  start-page: 773
  issue: 10
  year: 2021
  end-page: 779
  article-title: Spatial frameworks for robust estimation of yield gaps
  publication-title: Nature Food
– volume: 50
  start-page: 1882
  issue: 5
  year: 2010
  end-page: 1890
  article-title: Genetic improvement in winter wheat yields in the great plains of north america, 1959‐2008
  publication-title: Crop Science
– volume: 105
  start-page: 364
  issue: 2
  year: 2013
  end-page: 376
  article-title: Constraints of no‐till dryland agroecosystems as bioenergy production systems
  publication-title: Agronomy Journal
– volume: 97
  start-page: 364
  issue: 2
  year: 2005
  end-page: 372
  article-title: Efficient water use in dryland cropping systems in the great plains
  publication-title: Agronomy Journal
– volume: 38
  start-page: 259
  issue: 1
  year: 2017
  end-page: 277
  article-title: Climate change and global food systems: Potential impacts on food security and undernutrition
  publication-title: Annual Review of Public Health
– volume: 114
  start-page: 9326
  issue: 35
  year: 2017
  end-page: 9331
  article-title: Temperature increase reduces global yields of major crops in four independent estimates
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– ident: e_1_2_9_30_1
  doi: 10.2135/cropsci2018.04.0249
– ident: e_1_2_9_42_1
  doi: 10.2134/agronj2002.0962
– ident: e_1_2_9_57_1
  doi: 10.2134/agronj2018.12.0766
– volume-title: Climate change in Colorado: A synthesis to support water resources management and adaptation
  year: 2014
  ident: e_1_2_9_33_1
– ident: e_1_2_9_46_1
  doi: 10.1073/pnas.0912953109
– ident: e_1_2_9_53_1
  doi: 10.1073/pnas.1222463110
– ident: e_1_2_9_8_1
  doi: 10.1016/j.eja.2020.126227
– ident: e_1_2_9_62_1
  doi: 10.2134/1983.limitationstoefficientwateruse.c26
– ident: e_1_2_9_9_1
  doi: 10.1016/j.agrformet.2021.108513
– volume-title: R: A language and environment for statistical computing
  year: 2021
  ident: e_1_2_9_50_1
– ident: e_1_2_9_29_1
  doi: 10.1002/agj2.20168
– ident: e_1_2_9_39_1
  doi: 10.2134/agronj2009.0348
– ident: e_1_2_9_34_1
  doi: 10.3389/fpls.2019.01786
– ident: e_1_2_9_38_1
  doi: 10.2134/agronj2005.0364
– ident: e_1_2_9_41_1
  doi: 10.2134/agronj2017.07.0407
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1600-0587.2012.07348.x
– ident: e_1_2_9_51_1
  doi: 10.1038/s43016‐021‐00365‐y
– ident: e_1_2_9_24_1
  doi: 10.1038/NCLIMATE3115
– ident: e_1_2_9_49_1
  doi: 10.2135/cropsci2007.12.0717
– ident: e_1_2_9_35_1
  doi: 10.2134/agronj2012.0243
– ident: e_1_2_9_18_1
  doi: 10.3389/fpls.2018.00224
– ident: e_1_2_9_15_1
  doi: 10.1016/j.gfs.2017.01.002
– ident: e_1_2_9_14_1
  doi: 10.1111/gcb.13009
– ident: e_1_2_9_21_1
  doi: 10.1073/pnas.0701890104
– ident: e_1_2_9_26_1
  doi: 10.1088/1748‐9326/2/1/014002
– ident: e_1_2_9_56_1
  doi: 10.1073/pnas.0906865106
– ident: e_1_2_9_60_1
  doi: 10.1073/pnas.1415181112
– ident: e_1_2_9_48_1
  doi: 10.1098/rstb.2005.1752
– ident: e_1_2_9_25_1
  doi: 10.1016/j.agrformet.2010.07.008
– ident: e_1_2_9_55_1
  doi: 10.3389/fagro.2022.903340
– ident: e_1_2_9_19_1
  doi: 10.1016/j.envexpbot.2012.01.002
– ident: e_1_2_9_61_1
  doi: 10.1016/j.fcr.2006.07.010
– ident: e_1_2_9_28_1
  doi: 10.1126/science.1204531
– ident: e_1_2_9_58_1
  doi: 10.2489/jswc.75.1.112
– ident: e_1_2_9_17_1
  doi: 10.1016/j.fcr.2012.02.021
– ident: e_1_2_9_22_1
  doi: 10.1029/2008wr007600
– ident: e_1_2_9_6_1
  doi: 10.2134/agronj2002.1120
– ident: e_1_2_9_44_1
  doi: 10.2134/agronj2011.0212
– ident: e_1_2_9_2_1
  doi: 10.1104/pp.110.161349
– ident: e_1_2_9_47_1
  doi: 10.1016/S1161‐0301(98)00047‐1
– ident: e_1_2_9_37_1
  doi: 10.1146/annurev‐publhealth‐031816‐044356
– ident: e_1_2_9_43_1
  doi: 10.2134/agronj2016.07.0406
– ident: e_1_2_9_20_1
  doi: 10.1094/CM‐2011‐1229‐01‐RS
– volume-title: Colorado winter wheat varieties 2022 crop (News Release)
  year: 2022
  ident: e_1_2_9_63_1
– ident: e_1_2_9_36_1
  doi: 10.1016/j.fcr.2020.107848
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1439‐037X.1996.tb00454.x
– ident: e_1_2_9_27_1
  doi: 10.2134/agronj2006.0209
– ident: e_1_2_9_7_1
  doi: 10.1016/j.fcr.2018.03.009
– ident: e_1_2_9_10_1
  doi: 10.2135/cropsci2001.4151412x
– ident: e_1_2_9_66_1
  doi: 10.1002/joc.3704
– ident: e_1_2_9_5_1
  doi: 10.1093/reep/ret016
– ident: e_1_2_9_12_1
  doi: 10.1017/S0021859600056495
– ident: e_1_2_9_4_1
  doi: 10.1038/Nclimate2470
– ident: e_1_2_9_64_1
  doi: 10.1038/nplants.2017.102
– ident: e_1_2_9_45_1
  doi: 10.1002/joc.706
– ident: e_1_2_9_16_1
  doi: 10.2135/cropsci2009.11.0685
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1365‐3040.2012.02588.x
– ident: e_1_2_9_31_1
  doi: 10.1016/j.fcr.2016.12.014
– ident: e_1_2_9_54_1
  doi: 10.1071/AR05359
– ident: e_1_2_9_40_1
  doi: 10.1016/j.fcr.2013.12.020
– ident: e_1_2_9_65_1
  doi: 10.1016/j.agee.2008.10.025
– ident: e_1_2_9_32_1
  doi: 10.1002/csc2.20139
– ident: e_1_2_9_67_1
  doi: 10.1073/pnas.1701762114
– start-page: 8
  volume-title: Crop yields and global food security
  year: 2014
  ident: e_1_2_9_13_1
– ident: e_1_2_9_23_1
  doi: 10.1111/pce.14050
– ident: e_1_2_9_59_1
  doi: 10.1088/1748‐9326/aa8d27
SSID ssj0011941
Score 2.3947535
Snippet Global studies that quantify climate effects on crop yields using top‐down spatial frameworks are invaluable for assessing generalized effects on world food...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3515
SubjectTerms agroecosystems
agronomy
air
arid lands
climate
Colorado
fallow
frost injury
heat stress
meteorological data
no-tillage
soil
spring
stress tolerance
summer
temperature
Triticum aestivum
winter wheat
Title Does agroecosystem management mitigate historic climate impacts on dryland winter wheat yields?
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fagj2.21198
https://www.proquest.com/docview/2811971821
Volume 114
WOSCitedRecordID wos000888921100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1435-0645
  dateEnd: 20240609
  omitProxy: false
  ssIdentifier: ssj0011941
  issn: 0002-1962
  databaseCode: M0K
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1435-0645
  dateEnd: 20240609
  omitProxy: false
  ssIdentifier: ssj0011941
  issn: 0002-1962
  databaseCode: BENPR
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1435-0645
  dateEnd: 20240609
  omitProxy: false
  ssIdentifier: ssj0011941
  issn: 0002-1962
  databaseCode: M2P
  dateStart: 20011101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3da9RAEMCH2vpgH2yrlp62ZUVfFGKzu3fZPRDK9cvix3GISt_Cfp4nvUSS1tL_3p1NLqcggvgSkjAJy-7MZiaz81uA53QgKTcqS4xKdYII9ERlVidcepmKodM-Zky_vBfjsby4GE5W4PWiFqbhQ3Q_3NAy4nyNBq50fbCEhqrpN_YK-WTyDqxRygXqNOtPuhxCCM_pwvkNesY6OCk7WD77--do6WP-6qnGT83Zxv81chPuty4mGTU6sQUrrngA66Np1WI23EPIT0pXEzWtyhB9NjBnMu8WwpD5LJI3HPnaQkSIuZzN8UZTVFmTsiC2usVVkeQGiRMVucFZndzigrj68BF8Pjv9dHyetFstJIaHACQJTWTapl57K5Q0GdeOGT8MxusGUnhtmFBWUc_DgHvLOXXM8yCfOS6DqObbsFqUhdsBgoB5Q4Wl1qn-UFvtg4DI-tYN0tQJ14MXix7PTcshx-0wLvOGoMxy7LQ8dloPnnWy3xv6xh-lni4GLg_GgRkPVbjyus6ZxCxpCKFoD17GcfrLa_LRm7csnj3-F-EncI9hSUSsT9yF1avq2u3BXfPjalZX-1El92Ht6HQ8-RiuPqTv8MgmPwH2belI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dT9swEMBPo5sEe2AfDK1jH562FyZlJHabuE9TtY2xrat4AMSb5c9SRJMpKSD-e3xOmoKEJqG9RdElsmyffee7-xngY9LnCdMyjbSMVYQI9EimRkWMOx5nA6tciJgejbLxmB8fD_ab3Byshan5EO2BG2pGWK9RwfFAemdJDZWTU_oZAWV8BR72_DaDFxjQ3n4bRPD-ebKwfv1Eoy2dlO4sv729Hy2NzJumathrdp_8ZyufwnpjZJJhPSuewQObP4fHw0nZgDbsBohvha2InJSF9z9rnDOZtakwZDYN7A1LThqMCNFn0xm-qMsqK1LkxJRXmBdJLpE5UZJLXNfJFabEVV9ewOHu94Ove1Fz2UKkmXdBIt9EqkzslDOZ5DplylLtBl59bZ9nTmmaSSMTx_yQO8NYYqljXj61jHtRxTahkxe5fQkEEfM6yUxirOwNlFHOC2Rpz9h-HNvMdmF70eVCNyRyvBDjTNQMZSqw00TotC58aGX_1vyNO6XeL0ZOePXAmIfMbXFeCcoxTuqdqKQLn8JA_eM3YvjjFw1Pr-4j_A5W9w7-jMTo5_j3FqxRLJAI1YqvoTMvz-0beKQv5tOqfBvm5zV91em3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3db9MwEMBPMBCCBz6HKAwwgheQsiV2m7hPU8UoX1PVB0B7s_xx7orWZEo2pv33-Jw0BQkhId6i6BxZts--y939DPAqG8lMWJ0nVqcmIQR6onNnEiG9TIsxGh8jpt8Oi9lMHh2N511uDtXCtHyI_ocbaUbcr0nB8dT5vQ01VC--810ClMmrcG04CpssgZ2H8z6IEPzzbG39hoXGezop39u0_f082hiZv5qq8ayZ3vnPXt6F252RySbtqrgHV7C8D7cmi7oDbeADUAcVNkwv6ir4ny3Oma36VBi2Wkb2BrLjDiPC7MlyRS_assqGVSVz9SXlRbILYk7U7IL2dXZJKXHN_jZ8nb778vZD0l22kFgRXJAkdJEbl3rjXaGlzYVBbv04qC-OZOGN5YV2OvMiTLl3QmTIvQjyOQoZRI14CFtlVeIjYISYt1nhMod6ODbO-CBQ5EOHozTFAgfwej3kynYkcroQ40S1DGWuaNBUHLQBvOxlT1v-xh-lXqxnTgX1oJiHLrE6bxSXFCcNTlQ2gDdxov7yGTV5_4nHp8f_IvwcbswPpurw4-zzE7jJqT4iFivuwNZZfY5P4br9cbZs6mdxef4EQjLpOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+agroecosystem+management+mitigate+historic+climate+impacts+on+dryland+winter+wheat+yields%3F&rft.jtitle=Agronomy+journal&rft.au=Miner%2C+Grace+L&rft.au=Stewart%2C+Catherine+E.&rft.au=Vigil%2C+Merle+F&rft.au=Poss%2C+David+J&rft.date=2022-11-01&rft.issn=0002-1962&rft.volume=114&rft.issue=6+p.3515-3530&rft.spage=3515&rft.epage=3530&rft_id=info:doi/10.1002%2Fagj2.21198&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-1962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-1962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-1962&client=summon