Small biochar particles added to coarse sandy subsoil greatly increase water retention and affect hydraulic conductivity

Sandy soils can benefit greatly from the addition of biochar, but the benefits depend on the properties of both the soil and the biochar. This study investigated the role of biochar particle size in controlling pore size distribution, hydraulic conductivity and water retention after careful mixing w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of soil science Jg. 74; H. 6
Hauptverfasser: Bruun, E. W., Ravenni, G., Müller‐Stöver, D., Petersen, C. T.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford, UK Blackwell Publishing Ltd 01.11.2023
Schlagworte:
ISSN:1351-0754, 1365-2389
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Sandy soils can benefit greatly from the addition of biochar, but the benefits depend on the properties of both the soil and the biochar. This study investigated the role of biochar particle size in controlling pore size distribution, hydraulic conductivity and water retention after careful mixing with coarse sandy subsoil. Intact commercial pellets of straw biochar (SB; approx. 8 × 5 mm) and ground pellets separated into 6 size fractions (median diameter 15, 33, 44, 81, 135 and 205 μm) were investigated at two concentrations (1.50 and 3.00 wt%). The results were compared with effects obtained with another feedstock (wood; WB) and another soil. Light microscopy and water retention measurements showed that smaller biochar particles settled into large existing soil pores, creating smaller interstitial pores to a much greater extent than larger particles. Accordingly, small particles (≤44 μm) had large enhancing effects on water retention and hydraulic conductivity in the medium suction range (pF1.7‐pF3.0), which were not found to a similar extent after the addition of larger particles (>81 μm). It was not possible to systematically distinguish the effects obtained with the three smallest particle fractions (SB15, WB18 and SB33). All effects measured were greatest at the highest biochar concentration level. In one soil, amendment with 3.00 wt% of SB15 decreased the fractional volume of drainable pores with an equivalent diameter of ≥60 μm from 31.3 vol% in the control to 19.1 vol%, while increasing the volume of pores in the 0.2–60 μm range that could potentially retain plant‐available water from 8.7 vol% to 20.1 vol%. Hydraulic conductivity at pF1.7 was increased by a factor of 10 (from 2.3 to 22.5 cm/day) and at pF3.0 by a factor of 14 (from 0.1*10−3 to 1.4*10−3 cm/day). Similar effects were observed in the other soil but at slightly different levels. The PDI version of the bimodal van Genuchten model was successfully fitted to measured water retention and log‐transformed hydraulic conductivity data (RMSE values in the interval 0.0011–0.0029 and 0.024–0.215, respectively). Dynamic simulation under variable field conditions including the hydraulic properties of biochar‐amended soil layers could be a useful method to investigate the effects on crop water supply, water and fertilizer utilization and yields.
AbstractList Sandy soils can benefit greatly from the addition of biochar, but the benefits depend on the properties of both the soil and the biochar. This study investigated the role of biochar particle size in controlling pore size distribution, hydraulic conductivity and water retention after careful mixing with coarse sandy subsoil. Intact commercial pellets of straw biochar (SB; approx. 8 × 5 mm) and ground pellets separated into 6 size fractions (median diameter 15, 33, 44, 81, 135 and 205 μm) were investigated at two concentrations (1.50 and 3.00 wt%). The results were compared with effects obtained with another feedstock (wood; WB) and another soil. Light microscopy and water retention measurements showed that smaller biochar particles settled into large existing soil pores, creating smaller interstitial pores to a much greater extent than larger particles. Accordingly, small particles (≤44 μm) had large enhancing effects on water retention and hydraulic conductivity in the medium suction range (pF1.7‐pF3.0), which were not found to a similar extent after the addition of larger particles (>81 μm). It was not possible to systematically distinguish the effects obtained with the three smallest particle fractions (SB15, WB18 and SB33). All effects measured were greatest at the highest biochar concentration level. In one soil, amendment with 3.00 wt% of SB15 decreased the fractional volume of drainable pores with an equivalent diameter of ≥60 μm from 31.3 vol% in the control to 19.1 vol%, while increasing the volume of pores in the 0.2–60 μm range that could potentially retain plant‐available water from 8.7 vol% to 20.1 vol%. Hydraulic conductivity at pF1.7 was increased by a factor of 10 (from 2.3 to 22.5 cm/day) and at pF3.0 by a factor of 14 (from 0.1*10−3 to 1.4*10−3 cm/day). Similar effects were observed in the other soil but at slightly different levels. The PDI version of the bimodal van Genuchten model was successfully fitted to measured water retention and log‐transformed hydraulic conductivity data (RMSE values in the interval 0.0011–0.0029 and 0.024–0.215, respectively). Dynamic simulation under variable field conditions including the hydraulic properties of biochar‐amended soil layers could be a useful method to investigate the effects on crop water supply, water and fertilizer utilization and yields.
Sandy soils can benefit greatly from the addition of biochar, but the benefits depend on the properties of both the soil and the biochar. This study investigated the role of biochar particle size in controlling pore size distribution, hydraulic conductivity and water retention after careful mixing with coarse sandy subsoil. Intact commercial pellets of straw biochar (SB; approx. 8 × 5 mm) and ground pellets separated into 6 size fractions (median diameter 15, 33, 44, 81, 135 and 205 μm) were investigated at two concentrations (1.50 and 3.00 wt%). The results were compared with effects obtained with another feedstock (wood; WB) and another soil. Light microscopy and water retention measurements showed that smaller biochar particles settled into large existing soil pores, creating smaller interstitial pores to a much greater extent than larger particles. Accordingly, small particles (≤44 μm) had large enhancing effects on water retention and hydraulic conductivity in the medium suction range (pF1.7‐pF3.0), which were not found to a similar extent after the addition of larger particles (>81 μm). It was not possible to systematically distinguish the effects obtained with the three smallest particle fractions (SB15, WB18 and SB33). All effects measured were greatest at the highest biochar concentration level. In one soil, amendment with 3.00 wt% of SB15 decreased the fractional volume of drainable pores with an equivalent diameter of ≥60 μm from 31.3 vol% in the control to 19.1 vol%, while increasing the volume of pores in the 0.2–60 μm range that could potentially retain plant‐available water from 8.7 vol% to 20.1 vol%. Hydraulic conductivity at pF1.7 was increased by a factor of 10 (from 2.3 to 22.5 cm/day) and at pF3.0 by a factor of 14 (from 0.1*10⁻³ to 1.4*10⁻³ cm/day). Similar effects were observed in the other soil but at slightly different levels. The PDI version of the bimodal van Genuchten model was successfully fitted to measured water retention and log‐transformed hydraulic conductivity data (RMSE values in the interval 0.0011–0.0029 and 0.024–0.215, respectively). Dynamic simulation under variable field conditions including the hydraulic properties of biochar‐amended soil layers could be a useful method to investigate the effects on crop water supply, water and fertilizer utilization and yields.
Sandy soils can benefit greatly from the addition of biochar, but the benefits depend on the properties of both the soil and the biochar. This study investigated the role of biochar particle size in controlling pore size distribution, hydraulic conductivity and water retention after careful mixing with coarse sandy subsoil. Intact commercial pellets of straw biochar (SB; approx. 8 × 5 mm) and ground pellets separated into 6 size fractions (median diameter 15, 33, 44, 81, 135 and 205 μm) were investigated at two concentrations (1.50 and 3.00 wt%). The results were compared with effects obtained with another feedstock (wood; WB) and another soil. Light microscopy and water retention measurements showed that smaller biochar particles settled into large existing soil pores, creating smaller interstitial pores to a much greater extent than larger particles. Accordingly, small particles (≤44 μm) had large enhancing effects on water retention and hydraulic conductivity in the medium suction range (pF1.7‐pF3.0), which were not found to a similar extent after the addition of larger particles (>81 μm). It was not possible to systematically distinguish the effects obtained with the three smallest particle fractions (SB15, WB18 and SB33). All effects measured were greatest at the highest biochar concentration level. In one soil, amendment with 3.00 wt% of SB15 decreased the fractional volume of drainable pores with an equivalent diameter of ≥60 μm from 31.3 vol% in the control to 19.1 vol%, while increasing the volume of pores in the 0.2–60 μm range that could potentially retain plant‐available water from 8.7 vol% to 20.1 vol%. Hydraulic conductivity at pF1.7 was increased by a factor of 10 (from 2.3 to 22.5 cm/day) and at pF3.0 by a factor of 14 (from 0.1*10 −3 to 1.4*10 −3 cm/day). Similar effects were observed in the other soil but at slightly different levels. The PDI version of the bimodal van Genuchten model was successfully fitted to measured water retention and log‐transformed hydraulic conductivity data (RMSE values in the interval 0.0011–0.0029 and 0.024–0.215, respectively). Dynamic simulation under variable field conditions including the hydraulic properties of biochar‐amended soil layers could be a useful method to investigate the effects on crop water supply, water and fertilizer utilization and yields.
Author Ravenni, G.
Petersen, C. T.
Bruun, E. W.
Müller‐Stöver, D.
Author_xml – sequence: 1
  givenname: E. W.
  orcidid: 0000-0001-8409-8428
  surname: Bruun
  fullname: Bruun, E. W.
  email: ewb@plen.ku.dk
  organization: University of Copenhagen
– sequence: 2
  givenname: G.
  surname: Ravenni
  fullname: Ravenni, G.
  organization: Technical University of Denmark
– sequence: 3
  givenname: D.
  surname: Müller‐Stöver
  fullname: Müller‐Stöver, D.
  organization: University of Copenhagen
– sequence: 4
  givenname: C. T.
  surname: Petersen
  fullname: Petersen, C. T.
  organization: University of Copenhagen
BookMark eNp9kM1LAzEQxYMo2KoX_4IcRVjN1267RxE_KXio92U2mWgk3dQka93_3q31JOJcZuD93oN5U7LfhQ4JOeXsgo9ziW8pXXCplNgjEy6rshByXu9v75IXbFaqQzJN6Y0xLnldT8jncgXe09YF_QqRriFmpz0mCsagoTlQHSAmpAk6M9DUtyk4T18iQvYDdZ0er1HeQMZII2bssgsdHWkK1qLO9HUwEXrv9BjVmV5n9-HycEwOLPiEJz_7iCxvb56v74vF093D9dWi0FIJURhRgZlVyPXcWGaqGpXkTLPalqAsqwy3rWiFrudWVxKEBClHQYAVykp5RM52qesY3ntMuVm5pNF76DD0qZFMMTljqhYjer5DdQwpRbTNOroVxKHhrNmW22zLbb7LHWH2C9Yuw_bzHMH5vy18Z9k4j8M_4c3N43K583wBrQaSOA
CitedBy_id crossref_primary_10_1111_sum_70081
crossref_primary_10_1016_j_geoderma_2025_117318
crossref_primary_10_1016_j_trgeo_2024_101437
crossref_primary_10_3390_pr12081603
Cites_doi 10.1371/journal.pone.0179079
10.1007/s11104-010-0464-5
10.1111/sum.12102
10.1016/J.SCITOTENV.2018.08.415
10.1016/j.geoderma.2021.114978
10.1021/acs.est.1c02425
10.1016/S0167-1987(99)00095-1
10.1111/ejss.12383
10.3389/fpls.2020.00949
10.1016/j.jenvman.2016.10.041
10.4067/S0718-95162013005000078
10.1016/j.biombioe.2012.01.033
10.1016/j.chemosphere.2022.133586
10.1021/ie201309r
10.1002/ldr.2906
10.3390/agronomy9040165
10.3390/w12030896
10.1111/ejss.13138
10.2136/sssaj2005.0183
10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6
10.1016/j.geoderma.2016.03.029
10.1016/j.still.2021.105215
10.2136/sssabookser5.3.c34
10.1007/s10163-017-0666-5
10.15414/afz.2018.21.01.11-19
10.1016/S0022-1694(00)00183-9
10.2166/nh.1983.0021
10.1016/0016-7061(88)90007-9
10.2136/sssaj1994.03615995005800060028x
10.2136/sssaj2017.01.0017
10.1029/93WR02676
10.1371/journal.pone.0086388
10.1007/s11104-013-1980-x
10.2136/sssaj1980.03615995004400050002x
10.1002/wrcr.20548
10.1016/J.JSCS.2020.11.003
10.2136/sssaj2011.0101
10.13031/2013.42244
ContentType Journal Article
Copyright 2023 British Society of Soil Science.
Copyright_xml – notice: 2023 British Society of Soil Science.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1111/ejss.13442
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1365-2389
EndPage n/a
ExternalDocumentID 10_1111_ejss_13442
EJSS13442
Genre researchArticle
GrantInformation_xml – fundername: Green Development and Demonstration Programme, GUDP
  funderid: 34009‐20‐1731
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TWZ
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
XOL
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7S9
L.6
ID FETCH-LOGICAL-c3422-d26ad76e1c8df0d69e4310c09f5a4f06d1fb2b2c98fc63a23a33a4f2af24f33
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001126735700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1351-0754
IngestDate Fri Jul 11 18:31:39 EDT 2025
Sat Nov 29 06:56:58 EST 2025
Tue Nov 18 22:45:21 EST 2025
Wed Jan 22 16:19:26 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3422-d26ad76e1c8df0d69e4310c09f5a4f06d1fb2b2c98fc63a23a33a4f2af24f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8409-8428
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/ejss.13442
PQID 3040370492
PQPubID 24069
PageCount 19
ParticipantIDs proquest_miscellaneous_3040370492
crossref_primary_10_1111_ejss_13442
crossref_citationtrail_10_1111_ejss_13442
wiley_primary_10_1111_ejss_13442_EJSS13442
PublicationCentury 2000
PublicationDate November–December 2023
2023-11-00
20231101
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November–December 2023
PublicationDecade 2020
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle European journal of soil science
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2006; 70
2018; 29
2019; 9
2017; 81
2013; 49
2022; 293
2019; 649
1980; 44
1976
1996
2020; 12
2004
2020; 11
1992
2002
2018; 21
2021; 73
2012; 55
2018; 20
2012; 76
1998; 23
2022; 215
1979
1983; 14
2014; 376
2012; 51
2021; 55
2013; 13
2010; 337
2000; 53
2017; 12
1986
1994; 58
2021; 392
2020; 24
2000; 231–232
2015
2017; 186
1988; 42
2014; 30
2014; 9
1994; 30
2016; 274
1989
2012; 41
2016; 67
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
Hillel D. (e_1_2_10_22_1) 2004
e_1_2_10_3_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Hansen S. (e_1_2_10_19_1) 1986
Gee G. W. (e_1_2_10_15_1) 2002
(e_1_2_10_26_1) 1976
e_1_2_10_29_1
Peters A. (e_1_2_10_38_1) 2015
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_47_1
References_xml – volume: 9
  issue: 1
  year: 2014
  article-title: Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial
  publication-title: PLoS One
– volume: 337
  start-page: 1
  issue: 1
  year: 2010
  end-page: 18
  article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review
  publication-title: Plant and Soil
– volume: 70
  start-page: 718
  issue: 3
  year: 2006
  end-page: 727
  article-title: Assessing soil hydrophobicity and its variability through the soil profile using two different methods
  publication-title: Soil Science Society of America Journal
– start-page: 961
  year: 1996
  end-page: 1010
– volume: 73
  year: 2021
  article-title: The role of biochar particle size and hydrophobicity in improving soil hydraulic properties
  publication-title: European Journal of Soil Science
– volume: 12
  start-page: 896
  year: 2020
  article-title: Studying unimodal, bimodal, PDI and bimodal‐PDI variants of multiple soil water retention models: II. Evaluation of parametric Pedotransfer functions against direct fits
  publication-title: Water
– volume: 12
  issue: 6
  year: 2017
  article-title: Biochar particle size, shape, and porosity act together to influence soil water properties
  publication-title: PLoS One
– volume: 293
  year: 2022
  article-title: Biochar considerably increases the easily available water and nutrient content in low‐organic soils amended with compost and manure
  publication-title: Chemosphere
– volume: 24
  start-page: 1042
  issue: 12
  year: 2020
  end-page: 1050
  article-title: Effect of biochar particle size on water retention and availability in a sandy loam soil
  publication-title: Journal of Saudi Chemical Society
– year: 1989
– volume: 55
  start-page: 14795
  issue: 21
  year: 2021
  end-page: 14805
  article-title: Greenhouse gas inventory model for biochar additions to soil
  publication-title: Environmental Science and Technology
– year: 1979
– year: 1992
– volume: 51
  start-page: 3587
  year: 2012
  end-page: 3597
  article-title: Multiple controls on the chemical and physical structure of biochars
  publication-title: Industrial and Engineering Chemistry Research
– volume: 215
  year: 2022
  article-title: Texture and degree of compactness effect on the pore size distribution in weathered tropical soils
  publication-title: Soil & Tillage Research
– volume: 649
  start-page: 1403
  year: 2019
  end-page: 1413
  article-title: Impacts of biochar application rates and particle sizes on runoff and soil loss in small cultivated loess plots under simulated rainfall
  publication-title: Science of the Total Environment
– volume: 49
  start-page: 6765
  year: 2013
  end-page: 6780
  article-title: Simple consistent models for water retention and hydraulic conductivity in the complete moisture range
  publication-title: Water Resources Research
– volume: 30
  start-page: 211
  year: 1994
  end-page: 223
  article-title: Hydraulic conductivity estimation for soils with heterogeneous pore structure
  publication-title: Water Resources Research
– year: 1986
– volume: 76
  start-page: 1142
  issue: 4
  year: 2012
  end-page: 1148
  article-title: Nitrogen and carbon leaching in repacked Sandy soil with added fine particulate biochar
  publication-title: Soil Science Society of America Journal
– volume: 53
  start-page: 71
  year: 2000
  end-page: 85
  article-title: A review of the usefulness of relative bulk density values in studies of soil structure and compaction
  publication-title: Soil Tillage Resources
– volume: 392
  year: 2021
  article-title: Variation in matric potential at field capacity in stony soils of fluvial and alluvial fans
  publication-title: Geoderma
– start-page: 494
  year: 2004
– volume: 42
  start-page: 295
  issue: 3–4
  year: 1988
  end-page: 316
  article-title: Constituents of some widely distributed soils in Denmark
  publication-title: Geoderma
– volume: 13
  start-page: 991
  issue: 4
  year: 2013
  end-page: 1002
  article-title: Effects of biochar amendment on soil aggregates and hydraulic properties
  publication-title: Journal of Soil Science and Plant Nutrition
– volume: 231–232
  start-page: 61
  year: 2000
  end-page: 65
  article-title: Approaches to characterize the degree of water repellency
  publication-title: Journal of Hydrology
– volume: 274
  start-page: 28
  year: 2016
  end-page: 34
  article-title: Quantification of biochar effects on soil hydrological properties using meta‐analysis of literature data
  publication-title: Geoderma
– volume: 29
  start-page: 884
  issue: 4
  year: 2018
  end-page: 893
  article-title: Dynamic effects of biochar concentration and particle size on hydraulic properties of sand
  publication-title: Land Degradation and Development
– volume: 30
  start-page: 109
  issue: 1
  year: 2014
  end-page: 118
  article-title: Biochar amendment to coarse sandy subsoil improves root growth and increases water retention
  publication-title: Soil Use and Management
– volume: 21
  start-page: 11
  issue: 1
  year: 2018
  end-page: 19
  article-title: Effect of biochar on soil structure – review
  publication-title: Acta Fytotechnica et Zootechnica
– volume: 41
  start-page: 34
  year: 2012
  end-page: 43
  article-title: Hydrologic properties of biochars produced at different temperatures
  publication-title: Biomass and Bioenergy
– volume: 9
  issue: 4
  year: 2019
  article-title: Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils
  publication-title: Agronomy
– volume: 58
  start-page: 1775
  year: 1994
  end-page: 1781
  article-title: Characterization of the least limiting water range of soils
  publication-title: Soil Science Society of America Journal
– volume: 23
  start-page: 663
  issue: 7
  year: 1998
  end-page: 668
  article-title: On standardizing the “water drop penetration time” and the “molarity of an ethanol droplet” techniques to classify soil hydrophobicity: A case study using medium textured soils
  publication-title: Earth Surface Processes and Landforms
– volume: 14
  start-page: 267
  year: 1983
  end-page: 276
  article-title: Land use planning in Denmark
  publication-title: Nordic Hydrology
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  article-title: A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Science Society of America Journal
– volume: 20
  start-page: 1036
  year: 2018
  end-page: 1049
  article-title: Morphology, pore size distribution, and nutrient characteristics in biochars under different pyrolysis temperatures
  publication-title: Journal of Material Cycles and Waste Management
– volume: 11
  year: 2020
  article-title: New Rootsnap sensor reveals the ameliorating effect of biochar on in situ root growth dynamics of maize in Sandy soil
  publication-title: Frontiers in Plant Science
– volume: 186
  start-page: 88
  year: 2017
  end-page: 95
  article-title: The effects of straw or straw‐derived gasification biochar applications on soil quality and crop productivity: A farm case study
  publication-title: Journal of Environmental Management
– volume: 67
  start-page: 726
  issue: 6
  year: 2016
  end-page: 736
  article-title: Pore‐size distribution and compressibility of coarse sandy subsoil with added biochar
  publication-title: European Journal of Soil Science
– year: 1976
– volume: 55
  start-page: 1317
  issue: 4
  year: 2012
  end-page: 1333
  article-title: Daisy: Model use, calibration, and validation
  publication-title: Transactions of the ASABE
– start-page: 255
  year: 2002
  end-page: 293
– year: 2015
– volume: 81
  start-page: 687
  issue: 4
  year: 2017
  end-page: 711
  article-title: Biochar and soil physical properties
  publication-title: Soil Science Society of America Journal
– volume: 376
  start-page: 347
  year: 2014
  end-page: 361
  article-title: Does biochar influence soil physical properties and soil water availability?
  publication-title: Plant and Soil
– ident: e_1_2_10_29_1
  doi: 10.1371/journal.pone.0179079
– ident: e_1_2_10_4_1
  doi: 10.1007/s11104-010-0464-5
– ident: e_1_2_10_7_1
  doi: 10.1111/sum.12102
– ident: e_1_2_10_28_1
  doi: 10.1016/J.SCITOTENV.2018.08.415
– ident: e_1_2_10_41_1
  doi: 10.1016/j.geoderma.2021.114978
– ident: e_1_2_10_47_1
  doi: 10.1021/acs.est.1c02425
– ident: e_1_2_10_17_1
  doi: 10.1016/S0167-1987(99)00095-1
– ident: e_1_2_10_30_1
– volume-title: SHYPFIT 2.0 User's manual
  year: 2015
  ident: e_1_2_10_38_1
– ident: e_1_2_10_39_1
  doi: 10.1111/ejss.12383
– ident: e_1_2_10_2_1
  doi: 10.3389/fpls.2020.00949
– ident: e_1_2_10_20_1
  doi: 10.1016/j.jenvman.2016.10.041
– ident: e_1_2_10_36_1
  doi: 10.4067/S0718-95162013005000078
– ident: e_1_2_10_25_1
  doi: 10.1016/j.biombioe.2012.01.033
– ident: e_1_2_10_42_1
  doi: 10.1016/j.chemosphere.2022.133586
– ident: e_1_2_10_43_1
  doi: 10.1021/ie201309r
– ident: e_1_2_10_45_1
  doi: 10.1002/ldr.2906
– ident: e_1_2_10_10_1
  doi: 10.3390/agronomy9040165
– ident: e_1_2_10_16_1
  doi: 10.3390/w12030896
– ident: e_1_2_10_14_1
  doi: 10.1111/ejss.13138
– ident: e_1_2_10_8_1
  doi: 10.2136/sssaj2005.0183
– ident: e_1_2_10_12_1
  doi: 10.1002/(SICI)1096-9837(199807)23:7<663::AID-ESP909>3.0.CO;2-6
– ident: e_1_2_10_35_1
  doi: 10.1016/j.geoderma.2016.03.029
– ident: e_1_2_10_23_1
– start-page: 255
  volume-title: Methods of soil analysis: Physical methods
  year: 2002
  ident: e_1_2_10_15_1
– ident: e_1_2_10_11_1
  doi: 10.1016/j.still.2021.105215
– ident: e_1_2_10_34_1
  doi: 10.2136/sssabookser5.3.c34
– ident: e_1_2_10_44_1
  doi: 10.1007/s10163-017-0666-5
– ident: e_1_2_10_24_1
  doi: 10.15414/afz.2018.21.01.11-19
– ident: e_1_2_10_27_1
  doi: 10.1016/S0022-1694(00)00183-9
– ident: e_1_2_10_32_1
  doi: 10.2166/nh.1983.0021
– ident: e_1_2_10_33_1
  doi: 10.1016/0016-7061(88)90007-9
– volume-title: Spatial variability of soil physical properties. Theoretical and experimental analyses
  year: 1986
  ident: e_1_2_10_19_1
– ident: e_1_2_10_31_1
– ident: e_1_2_10_9_1
  doi: 10.2136/sssaj1994.03615995005800060028x
– ident: e_1_2_10_5_1
  doi: 10.2136/sssaj2017.01.0017
– start-page: 494
  volume-title: Introduction to environmental soil physics
  year: 2004
  ident: e_1_2_10_22_1
– ident: e_1_2_10_13_1
  doi: 10.1029/93WR02676
– volume-title: Teknisk redegørelse
  year: 1976
  ident: e_1_2_10_26_1
– ident: e_1_2_10_40_1
  doi: 10.1371/journal.pone.0086388
– ident: e_1_2_10_21_1
  doi: 10.1007/s11104-013-1980-x
– ident: e_1_2_10_46_1
  doi: 10.2136/sssaj1980.03615995004400050002x
– ident: e_1_2_10_37_1
  doi: 10.1002/wrcr.20548
– ident: e_1_2_10_3_1
  doi: 10.1016/J.JSCS.2020.11.003
– ident: e_1_2_10_6_1
  doi: 10.2136/sssaj2011.0101
– ident: e_1_2_10_18_1
  doi: 10.13031/2013.42244
SSID ssj0013199
Score 2.4361858
Snippet Sandy soils can benefit greatly from the addition of biochar, but the benefits depend on the properties of both the soil and the biochar. This study...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms bimodal van Genuchten model
biochar
dynamic simulation
feedstocks
fertilizers
hydraulic conductivity
hydraulic model parameters
interstitial pores
inter‐porosity
intra‐porosity
light microscopy
particle size
particle size distribution
plant available water
porosity
static equilibrium
straw
subsoil
unsaturated hydraulic conductivity
water supply
wood
Title Small biochar particles added to coarse sandy subsoil greatly increase water retention and affect hydraulic conductivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejss.13442
https://www.proquest.com/docview/3040370492
Volume 74
WOSCitedRecordID wos001126735700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013199
  issn: 1351-0754
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFA4y44M-uKvr4m2XiL6s0KVt0nQK-zK4DiIi4rjiWznNRSu1lXZGd_79nvTiuCCC-NbS01Byck6-r0m-Q8i-CQzX4BqHKwCHI3xzQIR4C0g3gkgLUat9Xp2GZ2eD6-vofIH86s7CNPoQzz_cbGTU-doGOCTViyDXd1X102OcYwLu-zhwgx7p_74Y_TmdryI09SNtEToHp0beypPanTzzt_-fkOYo8yVWrSeb0aePfeZnstKCTDpsRsUqWdD5Glke3pSt0Ib-Qv6O7yHLaJIW9twVfeg2yFGbiRSdFFQWyHk1rSBXM1phfinSjN5YjJnNaJpbtImPnxCrlrS00Nu6mKI1hXqPCL2dqRKmWSqxqdzKytZ1KtbJeHR0eXjstFUYHMk4MlXlC1Ch0J4cKOMqEWnEHK50IxMAN65Qnkn8xJfRwEjBwGfAGD7wwfjcMPaV9PIi1xuE-hIwYYARIdIybC7x0EEi4Z7xFNKWYJP86BwRy1ag3NbJyOKOqNi-jOu-3CR7z7YPjSzHq1a7nT9jjBq7FAK5LqZVzDB3sRDZEdoc1O57o5n46GQ8rq-23mO8TZZsbfrm4OIO6U3Kqf5GFuXjJK3K7-1Y_Qf2l_Cg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS9xAFB6KFloftBeL905pXyykJJnZyeZR1MW226V0bfEtnMxFIzGRZFe7_77nJFlXoRSkbwlzMoQ5l_nOzLkw9sH1nLTgO08aAE8ifPNARfgK6G70YqtUU-3z1zAajfpnZ_H3LjaHcmHa-hB3B26kGY29JgWnA-l7Wm4v6_pTIKREC7wsUY5QwJePfgx-DhfXCG0DSepC5-HeKLv6pBTKs_j64Y60gJn3wWqz2wzW_vM_X7DVDmbyg1YuXrIntnjFVg7Oq67Uhn3Nfo-vIM95mpWUecWv5yFynGyR4ZOS6xK9XstrKMyM12hhyizn54Qy8xnPCsKbOHyLaLXiFYFvYjJHag5NlAi_mJkKpnmmcaqCCss2nSrW2XhwfHp44nV9GDwtJPqqJlRgImUD3TfONyq2iDp87ceuB9L5ygQuDdNQx32nlYBQgBA4EIILpRPiDVsqysJuMB5qQJMBTkXomOF0aYAcUqkMXGDQceltsv05JxLdlSinThl5MndVaC2TZi032fs72uu2MMdfqd7NGZqg3tBlCBS2nNaJQOslIvSPkOZjw79_TJMcfxmPm6etxxC_Zc9OTr8Nk-Hn0ddt9pw61bdpjDtsaVJN7S57qm8mWV3tdYL7B1WF9JA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELemMk3bw2AfCDYGnsbLJgUlses0jwioNlZVaB0Tb9HFHxCUJVXSwvrfc5eklEnTpGlviXyxIp_v_PvZ5zvG9l3fSQu-86QB8CTCNw9UhK-AdKMfW6WabJ8_RtF4PLi4iM-62By6C9Pmh7jfcCPLaPw1GbidGvfAyu11XR8EQkr0wGuSqsj02Nrxt-H5aHWM0BaQpCp0Hq6NsstPSqE8q69_X5FWMPMhWG1Wm-H6f_7nBnvewUx-2M6LF-yRLV6yZ4eXVZdqw75ivyY_Ic95mpV084pPlyFynHyR4bOS6xJZr-U1FGbBa_QwZZbzS0KZ-YJnBeFNbL5FtFrxisA3KZmjNIcmSoRfLUwF8zzT2FVBiWWbShWv2WR48v3os9fVYfC0kMhVTajARMoGemCcb1RsEXX42o9dH6TzlQlcGqahjgdOKwGhACGwIQQXSifEJusVZWG3GA81oMsApyIkZthdGqCGVCoDFxgkLv1t9nGpiUR3KcqpUkaeLKkKjWXSjOU2-3AvO20Tc_xR6v1SoQnaDR2GQGHLeZ0I9F4iQn6EMp8a_f2lm-TkdDJpnt78i_Aee3J2PExGX8Zf37KnVKi-vcW4w3qzam7fscf6ZpbV1W43b-8A8wz0Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+biochar+particles+added+to+coarse+sandy+subsoil+greatly+increase+water+retention+and+affect+hydraulic+conductivity&rft.jtitle=European+journal+of+soil+science&rft.au=Bruun%2C+E.+W.&rft.au=Ravenni%2C+G.&rft.au=M%C3%BCller%E2%80%90St%C3%B6ver%2C+D.&rft.au=Petersen%2C+C.+T.&rft.date=2023-11-01&rft.issn=1351-0754&rft.eissn=1365-2389&rft.volume=74&rft.issue=6&rft_id=info:doi/10.1111%2Fejss.13442&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_ejss_13442
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1351-0754&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1351-0754&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1351-0754&client=summon