End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet

Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in deep feature representation and nonlinear problem modeling, deep learning is becoming increasingly popular to solve CD tasks in remote-sensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Jg. 11; H. 11; S. 1382
Hauptverfasser: Peng, Daifeng, Zhang, Yongjun, Guan, Haiyan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 10.06.2019
Schlagworte:
ISSN:2072-4292, 2072-4292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in deep feature representation and nonlinear problem modeling, deep learning is becoming increasingly popular to solve CD tasks in remote-sensing community. However, most existing deep learning-based CD methods are implemented by either generating difference images using deep features or learning change relations between pixel patches, which leads to error accumulation problems since many intermediate processing steps are needed to obtain final change maps. To address the above-mentioned issues, a novel end-to-end CD method is proposed based on an effective encoder-decoder architecture for semantic segmentation named UNet++, where change maps could be learned from scratch using available annotated datasets. Firstly, co-registered image pairs are concatenated as an input for the improved UNet++ network, where both global and fine-grained information can be utilized to generate feature maps with high spatial accuracy. Then, the fusion strategy of multiple side outputs is adopted to combine change maps from different semantic levels, thereby generating a final change map with high accuracy. The effectiveness and reliability of our proposed CD method are verified on very-high-resolution (VHR) satellite image datasets. Extensive experimental results have shown that our proposed approach outperforms the other state-of-the-art CD methods.
AbstractList Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in deep feature representation and nonlinear problem modeling, deep learning is becoming increasingly popular to solve CD tasks in remote-sensing community. However, most existing deep learning-based CD methods are implemented by either generating difference images using deep features or learning change relations between pixel patches, which leads to error accumulation problems since many intermediate processing steps are needed to obtain final change maps. To address the above-mentioned issues, a novel end-to-end CD method is proposed based on an effective encoder-decoder architecture for semantic segmentation named UNet++, where change maps could be learned from scratch using available annotated datasets. Firstly, co-registered image pairs are concatenated as an input for the improved UNet++ network, where both global and fine-grained information can be utilized to generate feature maps with high spatial accuracy. Then, the fusion strategy of multiple side outputs is adopted to combine change maps from different semantic levels, thereby generating a final change map with high accuracy. The effectiveness and reliability of our proposed CD method are verified on very-high-resolution (VHR) satellite image datasets. Extensive experimental results have shown that our proposed approach outperforms the other state-of-the-art CD methods.
Author Zhang, Yongjun
Peng, Daifeng
Guan, Haiyan
Author_xml – sequence: 1
  givenname: Daifeng
  surname: Peng
  fullname: Peng, Daifeng
– sequence: 2
  givenname: Yongjun
  surname: Zhang
  fullname: Zhang, Yongjun
– sequence: 3
  givenname: Haiyan
  surname: Guan
  fullname: Guan, Haiyan
BookMark eNptUU1rGzEQFSWFJm4u_QULvRW2kTSydvdY3LQxhBba-Cwm0mgjs1klklzov68cpySEzGVmHm_efJ2woznOxNgHwT8DDPwsZbE36OUbdix5J1slB3n0LH7HTnPe8moAYuDqmF2dz64tsa2uWd3gPFLzlQrZEuLc-JiaizDeNL8ox2n3gP3GQtMUCjXrWxwpN5sc5rEmdyn-IddsflB5z956nDKdPvoF23w7v1pdtJc_v69XXy5bC0rKdgDJfceVcCS05p11QLy_7kl7jYCwdA607LoOxbIHZa3X1gn0jmuvoBIWbH3QdRG35i6FW0x_TcRgHoCYRoOpBDuR8V4Kjc4KL0FpgGsr_dJ2YpCDR4HLqvXxoFX3uN9RLmYbd2mu4xsJXHEFfe25YPzAsinmnMgbGwruD1MShskIbvavME-vqCWfXpT8H_QV8j9oQokF
CitedBy_id crossref_primary_10_1109_TGRS_2022_3169479
crossref_primary_10_1109_TGRS_2024_3369059
crossref_primary_10_1109_TGRS_2025_3608816
crossref_primary_10_1007_s10489_024_06000_0
crossref_primary_10_1016_j_jag_2022_102950
crossref_primary_10_1016_j_isprsjprs_2024_05_022
crossref_primary_10_1088_1555_6611_ad0ebf
crossref_primary_10_1109_TGRS_2025_3545040
crossref_primary_10_1109_ACCESS_2022_3160163
crossref_primary_10_1007_s40808_024_02068_2
crossref_primary_10_1016_j_inffus_2025_103276
crossref_primary_10_3390_rs15102645
crossref_primary_10_1007_s12145_022_00914_4
crossref_primary_10_1109_LGRS_2022_3144304
crossref_primary_10_1109_TSM_2025_3532897
crossref_primary_10_1109_TGRS_2023_3298037
crossref_primary_10_1109_JSTARS_2023_3260006
crossref_primary_10_3390_rs14153562
crossref_primary_10_3390_rs14122838
crossref_primary_10_1016_j_isprsjprs_2022_08_012
crossref_primary_10_3390_rs17132249
crossref_primary_10_1007_s00521_022_07928_5
crossref_primary_10_1109_TGRS_2025_3550973
crossref_primary_10_3390_land12051050
crossref_primary_10_1109_TGRS_2023_3320288
crossref_primary_10_3390_rs17132121
crossref_primary_10_3390_jmse13091700
crossref_primary_10_1080_01431161_2021_2022241
crossref_primary_10_1109_TGRS_2023_3235917
crossref_primary_10_1109_TGRS_2023_3300533
crossref_primary_10_3390_app11041491
crossref_primary_10_1109_ACCESS_2022_3227069
crossref_primary_10_3390_rs13081440
crossref_primary_10_1016_j_isprsjprs_2023_11_004
crossref_primary_10_1016_j_rse_2020_111970
crossref_primary_10_1109_JSTARS_2020_3046838
crossref_primary_10_3390_rs12244145
crossref_primary_10_1155_2020_8360361
crossref_primary_10_1080_22797254_2022_2047795
crossref_primary_10_3390_ijgi10090591
crossref_primary_10_1080_07038992_2021_1922880
crossref_primary_10_1109_TGRS_2024_3374421
crossref_primary_10_3390_rs11232740
crossref_primary_10_1109_JSTARS_2025_3528185
crossref_primary_10_1109_TGRS_2024_3362795
crossref_primary_10_3233_JIFS_211432
crossref_primary_10_1080_01431161_2023_2285737
crossref_primary_10_1155_2022_3404858
crossref_primary_10_1155_2023_4200153
crossref_primary_10_1016_j_isprsjprs_2024_04_012
crossref_primary_10_1109_TGRS_2025_3536473
crossref_primary_10_3390_rs14153548
crossref_primary_10_1016_j_jag_2022_102940
crossref_primary_10_1109_TGRS_2024_3440001
crossref_primary_10_3390_app13106167
crossref_primary_10_1109_TGRS_2021_3099522
crossref_primary_10_1109_TGRS_2024_3419790
crossref_primary_10_1109_TGRS_2020_2994150
crossref_primary_10_1016_j_engappai_2024_108960
crossref_primary_10_1109_TGRS_2021_3095166
crossref_primary_10_3390_rs16081387
crossref_primary_10_1016_j_isprsjprs_2023_11_023
crossref_primary_10_1080_01431161_2024_2334778
crossref_primary_10_3390_rs15164095
crossref_primary_10_1016_j_engappai_2023_106324
crossref_primary_10_1109_TGRS_2024_3470808
crossref_primary_10_1007_s00170_024_13034_8
crossref_primary_10_1109_TGRS_2024_3368168
crossref_primary_10_1007_s10489_023_04535_2
crossref_primary_10_1080_15481603_2023_2257980
crossref_primary_10_1109_TIP_2022_3226418
crossref_primary_10_3390_diagnostics11030534
crossref_primary_10_1016_j_scitotenv_2022_160622
crossref_primary_10_1109_JSTARS_2025_3531658
crossref_primary_10_1109_JSTARS_2025_3601214
crossref_primary_10_3390_rs13244971
crossref_primary_10_3390_rs14174355
crossref_primary_10_1109_TGRS_2023_3336791
crossref_primary_10_1109_JSTARS_2023_3328315
crossref_primary_10_3390_ijgi12110454
crossref_primary_10_3390_rs17111849
crossref_primary_10_1080_2150704X_2024_2411067
crossref_primary_10_1109_JSTARS_2024_3522910
crossref_primary_10_3390_s22124626
crossref_primary_10_1016_j_compag_2025_109973
crossref_primary_10_1109_TGRS_2024_3402391
crossref_primary_10_1109_JSTARS_2022_3157648
crossref_primary_10_1109_TGRS_2024_3398820
crossref_primary_10_1117_1_JRS_17_034501
crossref_primary_10_3390_rs13204171
crossref_primary_10_3390_rs16050844
crossref_primary_10_1109_JSTARS_2023_3314133
crossref_primary_10_1109_TGRS_2021_3066802
crossref_primary_10_3390_rs14040957
crossref_primary_10_1109_JSTARS_2025_3579330
crossref_primary_10_1007_s11069_024_07094_y
crossref_primary_10_1109_JSTARS_2025_3594716
crossref_primary_10_1175_BAMS_D_20_0097_1
crossref_primary_10_1109_JSTARS_2023_3328561
crossref_primary_10_1109_TGRS_2023_3325536
crossref_primary_10_3390_app12157903
crossref_primary_10_3390_rs15051391
crossref_primary_10_1109_TGRS_2024_3432771
crossref_primary_10_1016_j_neucom_2024_128080
crossref_primary_10_1007_s00521_022_06999_8
crossref_primary_10_1109_JSTARS_2025_3555849
crossref_primary_10_3390_land10111266
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_3390_rs14040871
crossref_primary_10_3390_rs14246352
crossref_primary_10_1109_JSTARS_2024_3387093
crossref_primary_10_1109_TGRS_2021_3079907
crossref_primary_10_3390_rs15225425
crossref_primary_10_1016_j_jag_2023_103180
crossref_primary_10_3390_f15112039
crossref_primary_10_1109_JSTARS_2022_3177235
crossref_primary_10_1016_j_isprsjprs_2022_02_021
crossref_primary_10_1080_01431161_2024_2398225
crossref_primary_10_1109_TGRS_2024_3371463
crossref_primary_10_3390_rs12060901
crossref_primary_10_3390_rs14071580
crossref_primary_10_3390_rs15020463
crossref_primary_10_1109_TGRS_2022_3159544
crossref_primary_10_1080_01431161_2023_2224100
crossref_primary_10_1080_01431161_2024_2339192
crossref_primary_10_1109_TGRS_2022_3209972
crossref_primary_10_1109_JSTARS_2022_3200997
crossref_primary_10_1109_TGRS_2023_3317701
crossref_primary_10_1109_TAES_2025_3558725
crossref_primary_10_1016_j_rse_2022_113371
crossref_primary_10_1109_TGRS_2024_3382116
crossref_primary_10_1016_j_petrol_2020_107527
crossref_primary_10_3390_app15063231
crossref_primary_10_3390_su14148915
crossref_primary_10_1007_s00371_021_02177_4
crossref_primary_10_1016_j_isprsjprs_2025_01_010
crossref_primary_10_1109_JSTARS_2023_3335281
crossref_primary_10_1016_j_jag_2022_102676
crossref_primary_10_3390_jcm12247633
crossref_primary_10_1109_ACCESS_2022_3208134
crossref_primary_10_1016_j_cj_2022_01_009
crossref_primary_10_1080_2150704X_2023_2201382
crossref_primary_10_1109_JSTARS_2021_3113327
crossref_primary_10_1109_TGRS_2024_3360516
crossref_primary_10_1007_s11263_024_02141_4
crossref_primary_10_1109_JSTARS_2022_3204191
crossref_primary_10_1109_JSTARS_2024_3422687
crossref_primary_10_1109_JSEN_2023_3271391
crossref_primary_10_1016_j_sigpro_2023_109203
crossref_primary_10_3390_rs16111846
crossref_primary_10_1109_TGRS_2022_3154390
crossref_primary_10_3390_rs14246361
crossref_primary_10_1007_s11600_024_01420_5
crossref_primary_10_3390_rs16142573
crossref_primary_10_1109_TGRS_2021_3106697
crossref_primary_10_3390_rs15051232
crossref_primary_10_1109_ACCESS_2024_3385540
crossref_primary_10_1016_j_isprsjprs_2023_05_011
crossref_primary_10_1109_LGRS_2023_3330867
crossref_primary_10_1109_TGRS_2023_3296383
crossref_primary_10_1109_TGRS_2024_3392696
crossref_primary_10_1109_JSTARS_2023_3278726
crossref_primary_10_1109_JSTARS_2025_3584959
crossref_primary_10_1016_j_compenvurbsys_2022_101820
crossref_primary_10_1109_LGRS_2022_3159545
crossref_primary_10_1109_TGRS_2021_3088902
crossref_primary_10_1109_TGRS_2022_3226778
crossref_primary_10_3390_rs16224186
crossref_primary_10_1080_10589759_2025_2490765
crossref_primary_10_3390_rs12162603
crossref_primary_10_1016_j_isprsjprs_2023_04_001
crossref_primary_10_1109_TGRS_2021_3085870
crossref_primary_10_1109_JSTARS_2023_3316304
crossref_primary_10_1109_TGRS_2024_3393422
crossref_primary_10_1016_j_jag_2024_104077
crossref_primary_10_1016_j_isprsjprs_2024_06_013
crossref_primary_10_1007_s11042_023_14331_2
crossref_primary_10_3390_rs15143566
crossref_primary_10_1109_TGRS_2025_3549818
crossref_primary_10_3390_rs12030484
crossref_primary_10_3390_rs15174186
crossref_primary_10_1109_ACCESS_2025_3575483
crossref_primary_10_1109_TIM_2022_3159978
crossref_primary_10_1109_JSTARS_2024_3349775
crossref_primary_10_1016_j_jag_2022_102769
crossref_primary_10_1080_2150704X_2024_2354128
crossref_primary_10_1109_TGRS_2024_3438228
crossref_primary_10_1109_TGRS_2020_3033009
crossref_primary_10_1007_s11270_021_05397_5
crossref_primary_10_3390_rs15082092
crossref_primary_10_1109_TGRS_2023_3280902
crossref_primary_10_1117_1_JRS_16_046509
crossref_primary_10_3390_app14135415
crossref_primary_10_1109_TGRS_2022_3218921
crossref_primary_10_1007_s11760_024_03170_9
crossref_primary_10_3390_rs14194972
crossref_primary_10_1109_JSTARS_2024_3522135
crossref_primary_10_1109_LGRS_2021_3049370
crossref_primary_10_1109_JSTARS_2024_3361507
crossref_primary_10_1007_s11042_021_10793_4
crossref_primary_10_1007_s12145_024_01315_5
crossref_primary_10_1007_s41651_024_00202_3
crossref_primary_10_1109_TGRS_2023_3238327
crossref_primary_10_1016_j_jenvman_2025_124323
crossref_primary_10_1016_j_ecoinf_2023_102193
crossref_primary_10_3390_rs14030462
crossref_primary_10_1016_j_jag_2021_102591
crossref_primary_10_1109_ACCESS_2023_3292531
crossref_primary_10_3390_rs12030346
crossref_primary_10_1109_TGRS_2024_3428551
crossref_primary_10_1111_cobi_13680
crossref_primary_10_3390_rs12233907
crossref_primary_10_1080_01431161_2025_2557587
crossref_primary_10_3390_s24051509
crossref_primary_10_1109_JSTARS_2024_3411622
crossref_primary_10_1109_TIM_2025_3608333
crossref_primary_10_3390_ijgi10080523
crossref_primary_10_1016_j_jag_2021_102597
crossref_primary_10_1109_TGRS_2024_3500790
crossref_primary_10_1117_1_JRS_19_016515
crossref_primary_10_1109_LGRS_2023_3305623
crossref_primary_10_3390_rs13061060
crossref_primary_10_1109_TGRS_2020_2990640
crossref_primary_10_1109_TGRS_2024_3349638
crossref_primary_10_3390_rs11192216
crossref_primary_10_3390_rs13153053
crossref_primary_10_3390_rs14215379
crossref_primary_10_1016_j_jag_2021_102582
crossref_primary_10_1080_22797254_2022_2161419
crossref_primary_10_1109_JSTARS_2024_3384545
crossref_primary_10_1016_j_image_2023_116964
crossref_primary_10_1038_s41598_025_10972_5
crossref_primary_10_3390_rs12071186
crossref_primary_10_3390_rs15215127
crossref_primary_10_1016_j_jag_2021_102348
crossref_primary_10_3390_app15179407
crossref_primary_10_1016_j_jag_2021_102463
crossref_primary_10_1016_j_jag_2021_102465
crossref_primary_10_1080_01431161_2024_2343139
crossref_primary_10_1109_TGRS_2025_3569581
crossref_primary_10_1109_TGRS_2023_3345645
crossref_primary_10_2478_rgg_2024_0023
crossref_primary_10_3390_rs13245094
crossref_primary_10_1109_JSTARS_2025_3601739
crossref_primary_10_1109_TGRS_2023_3241436
crossref_primary_10_12677_GST_2023_112013
crossref_primary_10_3390_su142013167
crossref_primary_10_3390_rs12071195
crossref_primary_10_3390_rs15143482
crossref_primary_10_3390_rs14133100
crossref_primary_10_1016_j_dsp_2025_105594
crossref_primary_10_3390_rs15051219
crossref_primary_10_1007_s12524_021_01312_x
crossref_primary_10_1109_TGRS_2023_3325829
crossref_primary_10_3390_rs12101574
crossref_primary_10_3390_rs12132159
crossref_primary_10_1016_j_asr_2025_07_023
crossref_primary_10_1109_TGRS_2023_3272006
crossref_primary_10_3390_app14135730
crossref_primary_10_1038_s41598_025_15468_w
crossref_primary_10_3390_rs14215598
crossref_primary_10_1007_s00521_022_08122_3
crossref_primary_10_1080_01431161_2022_2131479
crossref_primary_10_1109_JSTARS_2022_3159528
crossref_primary_10_1109_LGRS_2021_3103991
crossref_primary_10_3390_rs16071269
crossref_primary_10_1109_TGRS_2025_3591101
crossref_primary_10_3390_electronics13030630
crossref_primary_10_1109_JSTARS_2024_3394571
crossref_primary_10_3389_feart_2022_883779
crossref_primary_10_1007_s11042_021_11779_y
crossref_primary_10_1109_JSTARS_2024_3434966
crossref_primary_10_3390_rs12101688
crossref_primary_10_3390_rs16132355
crossref_primary_10_1007_s00371_025_03933_6
crossref_primary_10_1016_j_jag_2024_104040
crossref_primary_10_1016_j_jag_2024_104282
crossref_primary_10_1109_TGRS_2025_3545012
crossref_primary_10_1117_1_JRS_19_016504
crossref_primary_10_1080_10106049_2024_2322053
crossref_primary_10_1016_j_jag_2023_103402
crossref_primary_10_1109_TGRS_2023_3268294
crossref_primary_10_3390_rs13224528
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_3390_rs15082145
crossref_primary_10_3390_rs15061682
crossref_primary_10_1109_JSTARS_2023_3241157
crossref_primary_10_1016_j_imavis_2024_105157
crossref_primary_10_1016_j_bspc_2022_103979
crossref_primary_10_1109_TGRS_2021_3130940
crossref_primary_10_1109_TETCI_2022_3230941
crossref_primary_10_1109_JSTARS_2025_3586607
crossref_primary_10_1109_TGRS_2025_3584094
crossref_primary_10_1007_s11042_024_20015_2
crossref_primary_10_1109_TGRS_2024_3480122
crossref_primary_10_3390_s22197384
crossref_primary_10_1109_JSTARS_2024_3358298
crossref_primary_10_3390_rs14215577
crossref_primary_10_1109_TGRS_2023_3275819
crossref_primary_10_3390_s20185076
crossref_primary_10_1109_JSTARS_2024_3514926
crossref_primary_10_1117_1_JRS_19_024506
crossref_primary_10_1109_TIM_2023_3243680
crossref_primary_10_1109_TGRS_2024_3424317
crossref_primary_10_3390_app13021037
crossref_primary_10_1109_JSTARS_2025_3585529
crossref_primary_10_1080_01431161_2022_2066486
crossref_primary_10_1109_JSTARS_2023_3348630
crossref_primary_10_3390_rs14215448
crossref_primary_10_3390_s23063066
crossref_primary_10_1109_ACCESS_2025_3559992
crossref_primary_10_1109_TGRS_2021_3080580
crossref_primary_10_1109_JSTARS_2024_3487137
crossref_primary_10_1109_TGRS_2023_3331751
crossref_primary_10_1109_TGRS_2023_3272694
crossref_primary_10_3390_rs16030572
crossref_primary_10_1109_TGRS_2025_3544402
crossref_primary_10_1109_TGRS_2024_3357524
crossref_primary_10_1109_TGRS_2023_3327253
crossref_primary_10_1109_TGRS_2022_3196040
crossref_primary_10_3390_rs15030842
crossref_primary_10_3390_rs15245670
crossref_primary_10_1016_j_jag_2025_104393
crossref_primary_10_1109_TGRS_2024_3381751
crossref_primary_10_1109_TGRS_2025_3544651
crossref_primary_10_1049_ipr2_12505
crossref_primary_10_1007_s13042_023_01880_z
crossref_primary_10_1109_MGRS_2021_3088865
crossref_primary_10_3390_rs14184527
crossref_primary_10_1016_j_jag_2022_103110
crossref_primary_10_1080_01431161_2023_2221797
crossref_primary_10_1109_TGRS_2022_3221492
crossref_primary_10_1109_JSTARS_2025_3526795
crossref_primary_10_1016_j_jag_2024_103836
crossref_primary_10_1016_j_isprsjprs_2021_03_005
crossref_primary_10_1155_2021_5548346
crossref_primary_10_1016_j_isprsjprs_2025_04_030
crossref_primary_10_3390_rs17183253
crossref_primary_10_3390_s24217040
crossref_primary_10_1080_01431161_2021_1907866
crossref_primary_10_1109_JSTARS_2024_3450287
crossref_primary_10_1109_JSTARS_2021_3113831
crossref_primary_10_1109_JSTARS_2024_3354944
crossref_primary_10_1109_TGRS_2022_3200684
crossref_primary_10_1109_LGRS_2023_3323367
crossref_primary_10_1109_ACCESS_2025_3605984
crossref_primary_10_1109_TGRS_2024_3470314
crossref_primary_10_1109_JSTARS_2023_3298097
crossref_primary_10_1109_TGRS_2023_3294300
crossref_primary_10_1016_j_isprsjprs_2021_10_015
crossref_primary_10_3390_rs12172669
crossref_primary_10_1080_17538947_2025_2503443
crossref_primary_10_1016_j_neucom_2024_128989
crossref_primary_10_1109_JSTARS_2024_3511597
crossref_primary_10_1117_1_JRS_18_016513
crossref_primary_10_1109_MGRS_2021_3063465
crossref_primary_10_1117_1_JRS_17_016515
crossref_primary_10_1109_JSTARS_2022_3174780
crossref_primary_10_3390_rs15092395
crossref_primary_10_1109_JSTARS_2024_3491762
crossref_primary_10_3390_rs16203852
crossref_primary_10_1109_LGRS_2023_3247882
crossref_primary_10_1080_01431161_2023_2173033
crossref_primary_10_1016_j_isprsjprs_2021_10_001
crossref_primary_10_1109_JSTARS_2025_3569104
crossref_primary_10_3390_rs16234494
crossref_primary_10_3390_rs12071217
crossref_primary_10_1109_TGRS_2022_3171067
crossref_primary_10_3390_f16050775
crossref_primary_10_3390_su15043343
crossref_primary_10_1109_TGRS_2025_3579416
crossref_primary_10_1038_s41598_024_63257_8
crossref_primary_10_1007_s11227_025_07344_1
crossref_primary_10_1109_TGRS_2025_3608214
crossref_primary_10_1080_01431161_2021_1906982
crossref_primary_10_1109_ACCESS_2022_3201129
crossref_primary_10_3390_rs14215402
crossref_primary_10_3390_rs11202377
crossref_primary_10_1038_s41598_022_20114_w
crossref_primary_10_3390_rs13132566
crossref_primary_10_3390_rs14215527
crossref_primary_10_3390_rs15143517
crossref_primary_10_3390_s20236735
crossref_primary_10_1109_JSTARS_2024_3372386
crossref_primary_10_1109_LGRS_2021_3056416
crossref_primary_10_3390_ijgi11080439
crossref_primary_10_1109_TGRS_2022_3199502
crossref_primary_10_3390_rs15061655
crossref_primary_10_1109_ACCESS_2020_3047861
crossref_primary_10_1080_01431161_2021_1941390
crossref_primary_10_1016_j_asr_2023_07_069
crossref_primary_10_1109_TGRS_2024_3483775
crossref_primary_10_1016_j_compag_2022_107249
crossref_primary_10_1109_JSTARS_2024_3422901
crossref_primary_10_1109_JSTARS_2024_3439340
crossref_primary_10_1016_j_bspc_2024_106243
crossref_primary_10_1109_ACCESS_2020_3008036
crossref_primary_10_3390_sym14061138
crossref_primary_10_3390_rs13071236
crossref_primary_10_1109_JSTARS_2021_3077545
crossref_primary_10_1007_s00521_022_07637_z
crossref_primary_10_1109_JSTARS_2022_3181155
crossref_primary_10_1016_j_rsase_2024_101440
crossref_primary_10_3390_rs13245152
crossref_primary_10_3390_rs17152575
crossref_primary_10_1109_TGRS_2024_3352050
crossref_primary_10_1109_TGRS_2023_3321637
crossref_primary_10_3390_rs14071552
crossref_primary_10_1016_j_asr_2020_05_041
crossref_primary_10_1007_s11227_020_03604_4
crossref_primary_10_1109_TGRS_2022_3233849
crossref_primary_10_1038_s41598_024_68704_0
crossref_primary_10_1109_TGRS_2024_3520630
crossref_primary_10_3390_rs13204083
crossref_primary_10_1007_s11042_024_18766_z
crossref_primary_10_1016_j_ecoinf_2021_101310
crossref_primary_10_1109_ACCESS_2025_3571463
crossref_primary_10_1109_TGRS_2025_3598766
crossref_primary_10_3390_app13042485
crossref_primary_10_1109_TGRS_2022_3175635
crossref_primary_10_1080_01431161_2023_2282407
crossref_primary_10_1007_s00500_023_09352_w
crossref_primary_10_1016_j_isprsjprs_2024_11_017
crossref_primary_10_1109_JSTARS_2022_3215773
crossref_primary_10_1016_j_eswa_2023_122089
crossref_primary_10_3390_rs15092351
crossref_primary_10_3390_rs12152460
crossref_primary_10_3390_rs16050804
crossref_primary_10_1109_LGRS_2021_3082630
crossref_primary_10_3390_rs15010006
crossref_primary_10_3390_rs13142646
crossref_primary_10_3390_s21041110
crossref_primary_10_1111_tgis_13133
crossref_primary_10_1109_JSTARS_2023_3306274
crossref_primary_10_3390_rs14092237
crossref_primary_10_3390_rs14184478
crossref_primary_10_1109_JSTARS_2024_3418632
crossref_primary_10_1109_TGRS_2023_3324025
crossref_primary_10_1016_j_neucom_2021_06_059
crossref_primary_10_1109_TGRS_2022_3165851
crossref_primary_10_1016_j_isprsjprs_2022_07_016
crossref_primary_10_1080_10106049_2024_2353253
crossref_primary_10_3390_rs15020395
crossref_primary_10_3390_rs17020217
crossref_primary_10_1109_TGRS_2024_3356711
crossref_primary_10_1364_OE_559651
crossref_primary_10_3390_electronics12234823
crossref_primary_10_1016_j_jag_2024_103785
crossref_primary_10_1109_JSTARS_2023_3267137
crossref_primary_10_1109_JSTARS_2024_3373039
crossref_primary_10_3390_rs15163972
crossref_primary_10_1016_j_isprsjprs_2021_05_001
crossref_primary_10_3390_rs13173394
crossref_primary_10_1109_TGRS_2021_3091758
crossref_primary_10_1109_JSTARS_2024_3392917
crossref_primary_10_1155_2022_2189176
crossref_primary_10_1007_s00521_024_10666_5
crossref_primary_10_1109_JSTARS_2021_3108777
crossref_primary_10_1109_TGRS_2025_3540794
crossref_primary_10_1109_JSTARS_2024_3354310
crossref_primary_10_1109_TGRS_2024_3376673
crossref_primary_10_1109_TGRS_2023_3305499
crossref_primary_10_1109_JSTARS_2022_3152775
crossref_primary_10_3390_s25185832
crossref_primary_10_3390_rs16050823
crossref_primary_10_1109_TGRS_2023_3327780
crossref_primary_10_3390_app13106320
crossref_primary_10_1080_2150704X_2023_2264493
crossref_primary_10_1109_LGRS_2022_3165885
crossref_primary_10_1016_j_jag_2023_103256
crossref_primary_10_3390_rs16183533
crossref_primary_10_1016_j_isprsjprs_2020_06_003
crossref_primary_10_3390_rs15040928
crossref_primary_10_3390_rs15040927
crossref_primary_10_1109_TGRS_2021_3089453
crossref_primary_10_1109_TGRS_2023_3348459
crossref_primary_10_3390_rs14040818
crossref_primary_10_1109_TGRS_2025_3600397
crossref_primary_10_1111_phor_12462
crossref_primary_10_1109_TGRS_2025_3605961
crossref_primary_10_1109_JSTARS_2023_3344635
crossref_primary_10_3390_rs15153740
crossref_primary_10_1109_TGRS_2023_3236664
crossref_primary_10_32604_jai_2022_034931
crossref_primary_10_1038_s41598_021_89015_8
crossref_primary_10_1109_TGRS_2022_3227098
crossref_primary_10_1111_phor_12530
crossref_primary_10_1109_TGRS_2020_3011913
crossref_primary_10_1111_tgis_70020
crossref_primary_10_3390_rs14071746
crossref_primary_10_3390_ijgi11070385
crossref_primary_10_1109_LGRS_2023_3341045
crossref_primary_10_3390_rs13010039
crossref_primary_10_1109_JSTARS_2024_3390427
crossref_primary_10_1016_j_isprsjprs_2021_07_007
crossref_primary_10_1109_JSTARS_2021_3129318
crossref_primary_10_1088_1755_1315_502_1_012017
crossref_primary_10_1109_JSTARS_2022_3198517
crossref_primary_10_1117_1_JRS_18_036503
crossref_primary_10_1016_j_bspc_2024_106546
crossref_primary_10_3390_rs15010045
crossref_primary_10_1109_JSTARS_2023_3317488
crossref_primary_10_1109_JSTARS_2023_3264802
crossref_primary_10_1109_TGRS_2020_3043766
crossref_primary_10_1109_TGRS_2022_3195692
crossref_primary_10_3390_rs14122801
crossref_primary_10_1109_TGRS_2022_3213925
crossref_primary_10_1109_TGRS_2024_3363431
crossref_primary_10_3390_su16219232
crossref_primary_10_1080_10095020_2022_2157762
crossref_primary_10_1109_LGRS_2022_3216627
crossref_primary_10_1109_TGRS_2023_3245674
crossref_primary_10_1109_TGRS_2022_3200985
crossref_primary_10_1109_JSTARS_2024_3374290
crossref_primary_10_1109_JSTARS_2024_3435372
crossref_primary_10_3390_rs15092406
crossref_primary_10_1038_s41598_024_54096_8
crossref_primary_10_1109_TGRS_2024_3365990
crossref_primary_10_1080_17445647_2023_2225071
crossref_primary_10_1109_TVLSI_2024_3438728
crossref_primary_10_1109_TGRS_2022_3161337
crossref_primary_10_1109_JSTARS_2024_3374050
crossref_primary_10_1109_TGRS_2024_3424532
crossref_primary_10_1109_JSTARS_2023_3333959
crossref_primary_10_1016_j_engappai_2024_108774
crossref_primary_10_3390_app15063061
crossref_primary_10_1109_LGRS_2024_3359719
crossref_primary_10_1109_TGRS_2024_3433373
crossref_primary_10_7780_kjrs_2024_40_6_3_11
crossref_primary_10_1109_TCSVT_2024_3494820
crossref_primary_10_1109_TGRS_2024_3523097
crossref_primary_10_1109_TGRS_2024_3454055
crossref_primary_10_1016_j_jag_2023_103456
crossref_primary_10_3390_atmos16040359
crossref_primary_10_1109_TGRS_2024_3397797
crossref_primary_10_1080_01431161_2023_2225712
crossref_primary_10_3390_info12090364
crossref_primary_10_1007_s12524_022_01601_z
crossref_primary_10_1109_JSTARS_2024_3390762
crossref_primary_10_1016_j_jag_2023_103453
crossref_primary_10_1371_journal_pone_0246071
crossref_primary_10_3390_rs13224630
crossref_primary_10_1007_s40031_024_01084_1
crossref_primary_10_1109_JSTARS_2023_3283524
crossref_primary_10_1016_j_eswa_2022_117346
crossref_primary_10_1109_TGRS_2023_3319961
crossref_primary_10_1109_TMI_2019_2959609
crossref_primary_10_1109_TNNLS_2021_3089332
crossref_primary_10_1109_ACCESS_2024_3451473
crossref_primary_10_3390_rs13010047
crossref_primary_10_1109_ACCESS_2025_3580481
Cites_doi 10.3390/app8101785
10.1080/01431160801950162
10.1109/TPAMI.2015.2389824
10.1109/ICCV.2015.164
10.1007/978-3-319-24574-4_28
10.1109/MGRS.2017.2762307
10.1016/j.rse.2007.07.023
10.3390/rs11030258
10.1016/j.rse.2017.07.009
10.1080/01431161.2013.805282
10.1007/978-3-030-00889-5_1
10.1016/j.rse.2013.01.012
10.1109/MGRS.2016.2540798
10.1080/01431168908903939
10.3390/rs8060506
10.1109/IGARSS.2018.8518178
10.1007/s10514-018-9734-5
10.1109/TGRS.2010.2045506
10.1109/LGRS.2018.2889307
10.1109/LGRS.2017.2763182
10.1109/LGRS.2016.2601930
10.1109/ACCESS.2019.2902613
10.1109/IGARSS.2018.8518015
10.1109/LGRS.2018.2868880
10.1016/j.isprsjprs.2018.09.002
10.1080/01431161.2016.1148284
10.1109/TGRS.2018.2849692
10.1109/TGRS.2009.2022633
10.1109/TGRS.2018.2886643
10.3390/rs11030240
10.1080/2150704X.2016.1163744
10.1109/TGRS.2012.2195727
10.1109/ACCESS.2018.2889326
10.1109/JSTARS.2018.2887108
10.1109/ICIVC.2017.7984667
10.1109/LGRS.2009.2025059
10.1109/TGRS.2018.2819367
10.1016/j.isprsjprs.2016.08.010
10.5244/C.29.61
10.1109/LGRS.2017.2738149
10.1109/TGRS.2017.2707528
10.3390/rs11060626
10.1016/j.rse.2005.01.011
10.1016/j.rse.2015.01.006
10.1109/CVPR.2016.90
10.1109/CVPR.2017.243
10.1109/TGRS.2018.2863224
10.3390/rs8090761
10.1109/CVPR.2015.7298965
10.1109/LGRS.2018.2869608
10.1109/LGRS.2017.2766840
10.1109/TNNLS.2015.2435783
10.1080/01431161.2014.951740
10.1109/LGRS.2018.2868704
10.1109/36.843009
10.1109/TGRS.2017.2650198
10.1080/01431161.2011.648285
10.1016/j.isprsjprs.2013.03.006
10.3390/rs8040329
10.5194/isprs-archives-XLII-2-565-2018
10.1109/LGRS.2017.2762694
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs11111382
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ff216adc1f234633bc2f5c71929fa1a5
10_3390_rs11111382
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID 29P
2WC
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3422-9320f7041de16607cd3e08b8e6f6a3a35dd362777a15834ccf6cd1afd06f433a3
IEDL.DBID M7S
ISSN 2072-4292
IngestDate Mon Nov 10 04:31:26 EST 2025
Mon Oct 20 01:43:31 EDT 2025
Sat Nov 29 07:18:42 EST 2025
Tue Nov 18 21:18:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3422-9320f7041de16607cd3e08b8e6f6a3a35dd362777a15834ccf6cd1afd06f433a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2304043843?pq-origsite=%requestingapplication%
PQID 2304043843
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ff216adc1f234633bc2f5c71929fa1a5
proquest_journals_2304043843
crossref_citationtrail_10_3390_rs11111382
crossref_primary_10_3390_rs11111382
PublicationCentury 2000
PublicationDate 2019-06-10
PublicationDateYYYYMMDD 2019-06-10
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-10
  day: 10
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hou (ref_28) 2017; 14
Lv (ref_16) 2018; 56
Wang (ref_45) 2018; 57
ref_58
ref_57
Jian (ref_17) 2016; 37
ref_55
ref_53
ref_51
Saha (ref_27) 2019; 57
Zhang (ref_25) 2016; 4
ref_59
Alcantarilla (ref_56) 2018; 42
Kim (ref_66) 2019; 16
Lei (ref_52) 2019; 16
Bruzzone (ref_7) 2000; 38
Gong (ref_43) 2016; 27
ref_61
ref_60
Khan (ref_42) 2017; 55
ref_69
Zhan (ref_31) 2017; 14
ref_67
Cao (ref_15) 2016; 37
Lei (ref_35) 2019; 7
ref_65
ref_20
ref_64
Deng (ref_9) 2008; 29
ref_62
Dong (ref_39) 2019; 7
ref_29
Gong (ref_37) 2017; 14
Zhang (ref_30) 2016; 13
Singh (ref_1) 2010; 10
ref_26
Zhang (ref_32) 2019; 16
Benedek (ref_14) 2009; 47
Celik (ref_8) 2009; 6
ref_70
Zhan (ref_34) 2018; 146
Volpi (ref_13) 2013; 20
Huang (ref_11) 2008; 112
Tewkesbury (ref_2) 2015; 160
Qin (ref_23) 2013; 34
ref_38
Wu (ref_10) 2017; 199
Cao (ref_12) 2014; 35
He (ref_63) 2015; 37
Gong (ref_36) 2017; 55
Hussain (ref_6) 2013; 80
Ruiz (ref_22) 2016; 121
Niu (ref_33) 2019; 16
Demir (ref_3) 2013; 51
ref_47
ref_46
Guerin (ref_5) 2005; 95
ref_44
Lebedev (ref_54) 2018; 42
ref_41
ref_40
Bazi (ref_18) 2010; 48
Zhang (ref_21) 2018; 15
Gong (ref_50) 2019; 12
ref_48
Klambauer (ref_68) 2017; 30
Jin (ref_4) 2013; 132
Mou (ref_49) 2019; 57
Zhu (ref_24) 2017; 5
Chen (ref_19) 2012; 33
References_xml – ident: ref_46
  doi: 10.3390/app8101785
– volume: 29
  start-page: 4823
  year: 2008
  ident: ref_9
  article-title: PCA-based land-use change detection and analysis using mul-titemporal and multisensor satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160801950162
– ident: ref_55
– volume: 37
  start-page: 1904
  year: 2015
  ident: ref_63
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– ident: ref_70
  doi: 10.1109/ICCV.2015.164
– ident: ref_65
  doi: 10.1007/978-3-319-24574-4_28
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_24
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– ident: ref_51
– volume: 112
  start-page: 970
  year: 2008
  ident: ref_11
  article-title: Use of a dark object concept and support vector machines to automate forest cover change analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.023
– volume: 20
  start-page: 77
  year: 2013
  ident: ref_13
  article-title: Supervised change detection in VHR images using contextual information and support vector machines
  publication-title: Int. J. Appl. Earth Obs. Geoinform.
– ident: ref_57
  doi: 10.3390/rs11030258
– volume: 199
  start-page: 241
  year: 2017
  ident: ref_10
  article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.009
– volume: 34
  start-page: 6723
  year: 2013
  ident: ref_23
  article-title: Object-based land cover change detection for cross-sensor images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.805282
– ident: ref_58
  doi: 10.1007/978-3-030-00889-5_1
– volume: 132
  start-page: 159
  year: 2013
  ident: ref_4
  article-title: A comprehensive change detection method for updating the National Land Cover Database to circa 2011
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.012
– ident: ref_61
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_25
  article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– volume: 10
  start-page: 989
  year: 2010
  ident: ref_1
  article-title: Review Article Digital change detection techniques using remotely-sensed data
  publication-title: Int. Remote Sens.
  doi: 10.1080/01431168908903939
– ident: ref_48
  doi: 10.3390/rs8060506
– ident: ref_38
  doi: 10.1109/IGARSS.2018.8518178
– volume: 42
  start-page: 1301
  year: 2018
  ident: ref_56
  article-title: Streetview change detection with deconvolutional networks
  publication-title: Auton. Robots
  doi: 10.1007/s10514-018-9734-5
– volume: 48
  start-page: 3178
  year: 2010
  ident: ref_18
  article-title: Unsupervised change detection in multispectral remotely sensed imagery with level set methods
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2045506
– volume: 16
  start-page: 982
  year: 2019
  ident: ref_52
  article-title: Landslide Inventory Mapping from Bi-temporal Images Using Deep Convolutional Neural Networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2889307
– volume: 15
  start-page: 13
  year: 2018
  ident: ref_21
  article-title: Object-based change detection for VHR images based on multiscale un- certainty analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2763182
– volume: 13
  start-page: 1666
  year: 2016
  ident: ref_30
  article-title: Feature-level change detection using deep representation and feature change analysis for multispectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2601930
– volume: 7
  start-page: 36600
  year: 2019
  ident: ref_35
  article-title: Multiscale Superpixel Segmentation with Deep Features for Change Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902613
– ident: ref_44
  doi: 10.1109/IGARSS.2018.8518015
– volume: 16
  start-page: 115
  year: 2019
  ident: ref_66
  article-title: Objects Segmentation from High-Resolution Aerial Images Using U-Net With Pyramid Pooling Layers
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2868880
– volume: 146
  start-page: 38
  year: 2018
  ident: ref_34
  article-title: Iterative feature mapping network for detecting multiple changes in multi-source remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.002
– volume: 37
  start-page: 1173
  year: 2016
  ident: ref_15
  article-title: A new change detection method in high-resolution remote sensing images based on a conditional random field model
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1148284
– ident: ref_69
– volume: 57
  start-page: 3
  year: 2018
  ident: ref_45
  article-title: GETNET: A General End-to-End 2-D CNN Framework for Hyper- spectral Image Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2849692
– ident: ref_41
– volume: 47
  start-page: 3416
  year: 2009
  ident: ref_14
  article-title: Change detection in optical aerial images by a multilayer conditional mixed Markov model
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2022633
– volume: 57
  start-page: 3677
  year: 2019
  ident: ref_27
  article-title: Unsupervised Deep Change Vector Analysis for Multiple-Change De-tection in VHR Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2886643
– ident: ref_47
  doi: 10.3390/rs11030240
– volume: 37
  start-page: 1814
  year: 2016
  ident: ref_17
  article-title: A hypergraph-based context-sensitive representation technique for VHR remote-sensing image change detection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/2150704X.2016.1163744
– volume: 51
  start-page: 300
  year: 2013
  ident: ref_3
  article-title: Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2195727
– volume: 7
  start-page: 15389
  year: 2019
  ident: ref_39
  article-title: Local Descriptor Learning for Change Detection in Synthetic Aperture Radar Images via Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889326
– volume: 12
  start-page: 321
  year: 2019
  ident: ref_50
  article-title: A Generative Discriminatory Classified Net- work for Change Detection in Multispectral Imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2018.2887108
– ident: ref_53
– volume: 30
  start-page: 971
  year: 2017
  ident: ref_68
  article-title: Selfnormalizing neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_29
  doi: 10.1109/ICIVC.2017.7984667
– volume: 6
  start-page: 772
  year: 2009
  ident: ref_8
  article-title: Unsupervised change detection in satellite images using principal component analysis and k-means clustering
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2009.2025059
– volume: 56
  start-page: 4002
  year: 2018
  ident: ref_16
  article-title: Unsupervised change detection based on hybrid conditional random field model for high spatial resolution remote sensing imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2819367
– volume: 121
  start-page: 77
  year: 2016
  ident: ref_22
  article-title: Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.08.010
– ident: ref_26
  doi: 10.5244/C.29.61
– volume: 14
  start-page: 1845
  year: 2017
  ident: ref_31
  article-title: Change detection based on deep siamese convolutional network for optical aerial images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2738149
– volume: 55
  start-page: 5407
  year: 2017
  ident: ref_42
  article-title: Forest change detection in incomplete satellite images with deep neural networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2707528
– ident: ref_40
  doi: 10.3390/rs11060626
– volume: 95
  start-page: 464
  year: 2005
  ident: ref_5
  article-title: Land cover change detection at coarse spatial scales based on iterative estimation and previous state information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.01.011
– volume: 160
  start-page: 1
  year: 2015
  ident: ref_2
  article-title: A critical synthesis of remotely sensed optical image change detection techniques
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.006
– ident: ref_62
  doi: 10.1109/CVPR.2016.90
– ident: ref_67
  doi: 10.1109/CVPR.2017.243
– volume: 57
  start-page: 924
  year: 2019
  ident: ref_49
  article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2863224
– ident: ref_20
  doi: 10.3390/rs8090761
– ident: ref_60
  doi: 10.1109/CVPR.2015.7298965
– volume: 16
  start-page: 266
  year: 2019
  ident: ref_32
  article-title: Triplet-Based Semantic Relation Learning for Aerial Remote Sensing Image Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2869608
– volume: 14
  start-page: 2418
  year: 2017
  ident: ref_28
  article-title: Change Detection Based on Deep Features and Low Rank
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2766840
– volume: 27
  start-page: 125
  year: 2016
  ident: ref_43
  article-title: Change detection in synthetic aperture radar images based on deep neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2435783
– volume: 35
  start-page: 6255
  year: 2014
  ident: ref_12
  article-title: Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.951740
– volume: 16
  start-page: 45
  year: 2019
  ident: ref_33
  article-title: A Conditional Adversarial Network for Change Detection in Heterogeneous Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2868704
– volume: 38
  start-page: 1171
  year: 2000
  ident: ref_7
  article-title: Automatic analysis of the difference image for unsupervised change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.843009
– volume: 55
  start-page: 2658
  year: 2017
  ident: ref_36
  article-title: Superpixel-based difference representation learning for change detection in multispectral remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2650198
– ident: ref_64
– volume: 33
  start-page: 4434
  year: 2012
  ident: ref_19
  article-title: Object-based change detection
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.648285
– volume: 80
  start-page: 91
  year: 2013
  ident: ref_6
  article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.03.006
– ident: ref_59
  doi: 10.3390/rs8040329
– volume: 42
  start-page: 565
  year: 2018
  ident: ref_54
  article-title: Change detection in remote sensing images using conditional adversarial networks
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-565-2018
– volume: 14
  start-page: 2310
  year: 2017
  ident: ref_37
  article-title: Generative adversarial networks for change detection in multi- spectral imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2762694
SSID ssj0000331904
Score 2.6756392
Snippet Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1382
SubjectTerms Architectural engineering
Change detection
Coders
Datasets
Deep learning
Earth surface
encoder-decoder architecture
Encoders-Decoders
end-to-end
Feature maps
High resolution
Image detection
Image processing
Image resolution
Image segmentation
Information processing
International conferences
Machine learning
multiple side-outputs fusion
Neural networks
Pattern recognition
Remote sensing
Satellite imagery
Semantic segmentation
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kCHoRn1itsqAXD0uz2W02OfpoUZAi2EJvYZ8oaCptFPz3zu6mtaDgxVMgDCTMTOabmcx-g9B5UWgJZs2JSJUlnBpOlOaO8JRqbjn4kA0Hhe_FcJhPJsXDyqovPxMW6YGj4rrOpTSTRlOXMp4xpnTqelpAYlI4SWVgL4WsZ6WYCjGYgWslPPKRMqjru7O5Dw6RcW8FgQJR_484HMBlsI22mqwQX8a32UFrttpFG82C8qfPPTTqV4bUUwIXHA8E4BtbhzGqCkPeif28Bva9-OhJ-FEGqs3a4rtXCBlzHGYDcOwhWIPHQ1vvo_GgP7q-Jc1CBKIZh6IRcq3EiQQ0ammWJUIbZpNc5TZzmWSS9YwBPBJCSNrLGdfaZdpQ6UySOc5A4AC1qmllDxFW3CkOqAXYVHDKhfSkNVoBvFuWa6Ha6GKhpFI3bOF-acVLCVWDV2j5rdA2OlvKvkWOjF-lrryulxKe1zrcAGuXjbXLv6zdRp2FpcrmY5uXvq_tf2hydvQfzzhGm5AVeW4GwKgOatWzd3uC1vVH_TyfnQY_-wJRRtYD
  priority: 102
  providerName: Directory of Open Access Journals
Title End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet
URI https://www.proquest.com/docview/2304043843
https://doaj.org/article/ff216adc1f234633bc2f5c71929fa1a5
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7Rh1QuPPoQC2VliV56sBrHTpycEIWtqNSuoj6kwiVy_ChIkF02AYkLv52x491WAnHhYkvxHKzMeF4efwNwUJZaIVsLKtPGUsGMoI0WjoqUaWEFypAND4XP5HRa3NyUVUy4dbGscqkTg6I2M-1z5Ec-eelvrQR_Pf9Gfdcof7saW2iswYZHSUhD6d7lKseScBSwRAyopByj-6NF51XEgLt3zw4FuP4_tHEwMSeP_3dzT-BRdC7Jm0EansID227DVuxz_unnDlxNWkP7GcWJDO8KyDvbh2qslqD7SnzZB_Ep_UEgyaUKiJ29JadfUfN0JJQYkCEVYQ25ntp-F65PJldv39PYV4FqLjD2RJctcTJBxliW54nUhtukaAqbu1xxxTNj0KxJKRXLCi60drk2TDmT5E5wJNiD9XbW2mdAGuEagcYPTVwpmJDKY9_oBr0EywstmxEcLv9yrSPouO998aXG4MNzpL7jyAherWjnA9TGX6mOPbNWFB4eO3yYLW7reNpq51KWK6OZw63lnDc6dZnGPaalU0xlI9hf8rGOZ7ar75j4_N_LL-Ahuk0evAGN2D6s94vv9iVs6h_9524xho3jybS6GIfofhwE0o-_JjhW2Udcr07Pqw-_Aajb6g4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RWgku0NJWLKWtpZYDB4s49sbJAaG2gFixXVVikbiljj8KEmRhE0D8qf5Gxk6yVKLqjUNPK2VHkRO_vBmPx28APmeZVjitKZVxYalgRtBCC0dFzLSwAjFkw0HhoRyN0pOT7Mcc_O7Owviyyo4TA1GbifY58i2fvPS7VoLvXF5R3zXK7652LTQaWBzau1tcslXbg12c34043t8bfzugbVcBqrnAlRcGLJGTEQ7LsiSJpDbcRmmR2sQliiveNwZJXUqpWD_lQmuXaMOUM1HiBEcDvO8zeC48-4dSwaNZTifiCOhINCqonGfR1rTylNTo_P3h90J7gEfsH1za_vL_9jJewlIbPJMvDdpfwZwtV2Ch7eN-evcaxnulofWE4g9pzk2QXVuHarOSYHhOfFkL8VsWzQdHjlRQJK0tGVwgs1YklFCQJtViDTke2foNHD_JQ72F-XJS2lUghXCFQOeOLjwTTEjltX10gVGQ5amWRQ82u1nNdSuq7nt7nOe4uPIIyB8Q0INPM9vLRkrkr1ZfPThmFl7-O1yYTH_lLZvkzsUsUUYzh0NLOC907PoaxxhnTjHV78F6h5u85aQqfwDN2r___ggLB-Pvw3w4GB2-g0UMEb1QBTrsdZivp9f2PbzQN_VZNf0Q4E_g51ND7B6rnj9b
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgmgvPFuxbQFLwIGDtXHsxMmhQsB2xarVaiVaqeISHD8ACbLtJm3Vv8avY-wkW6Si3nrgFCkZRU78eV4efwPwOs-1wmnNqIxLSwUzgpZaOCpipoUViCEbDgofyOk0Oz7OZyvwuz8L48sqe50YFLWZa58jH_rkpd-1EnzourKI2Wj87uSU-g5Sfqe1b6fRQmTfXl5g-FbvTkY412_ieLx3-PET7ToMUM0FRmHovERORjhEy9I0ktpwG2VlZlOXKq54YgwqeCmlYknGhdYu1YYpZ6LUCY4C-N47cFdijOkDv1nyZZnfiTiCOxItIyrneTRc1F49tZx_f9nA0CrgmiUI5m388H_-MY_gQedUk_ftKngMK7Z6Amtdf_fvl0_hcK8ytJlTvJD2PAUZ2SZUoVUE3Xbiy12I38poFyL5rAJTaWPJ5Bdq3JqE0grSpmCsIUdT22zA0a181CasVvPKPgNSClcKNPpo2nPBhFSe80eX6B1ZnmlZDuBtP8OF7sjWfc-PnwUGXR4NxRUaBvBqKXvSUoz8U-qDB8pSwtOChxvzxbei0zKFczFLldHM4dBSzksdu0TjGOPcKaaSAez0GCo6XVUXVwDauvnxS7iPyCoOJtP9bVhHz9HzV6Ad34HVZnFmn8M9fd78qBcvwkog8PW2EfYHZydIPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-End+Change+Detection+for+High+Resolution+Satellite+Images+Using+Improved+UNet&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Peng%2C+Daifeng&rft.au=Zhang%2C+Yongjun&rft.au=Guan%2C+Haiyan&rft.date=2019-06-10&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=11&rft.issue=11&rft.spage=1382&rft_id=info:doi/10.3390%2Frs11111382&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs11111382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon