End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet
Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in deep feature representation and nonlinear problem modeling, deep learning is becoming increasingly popular to solve CD tasks in remote-sensi...
Uloženo v:
| Vydáno v: | Remote sensing (Basel, Switzerland) Ročník 11; číslo 11; s. 1382 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
10.06.2019
|
| Témata: | |
| ISSN: | 2072-4292, 2072-4292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in deep feature representation and nonlinear problem modeling, deep learning is becoming increasingly popular to solve CD tasks in remote-sensing community. However, most existing deep learning-based CD methods are implemented by either generating difference images using deep features or learning change relations between pixel patches, which leads to error accumulation problems since many intermediate processing steps are needed to obtain final change maps. To address the above-mentioned issues, a novel end-to-end CD method is proposed based on an effective encoder-decoder architecture for semantic segmentation named UNet++, where change maps could be learned from scratch using available annotated datasets. Firstly, co-registered image pairs are concatenated as an input for the improved UNet++ network, where both global and fine-grained information can be utilized to generate feature maps with high spatial accuracy. Then, the fusion strategy of multiple side outputs is adopted to combine change maps from different semantic levels, thereby generating a final change map with high accuracy. The effectiveness and reliability of our proposed CD method are verified on very-high-resolution (VHR) satellite image datasets. Extensive experimental results have shown that our proposed approach outperforms the other state-of-the-art CD methods. |
|---|---|
| AbstractList | Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in deep feature representation and nonlinear problem modeling, deep learning is becoming increasingly popular to solve CD tasks in remote-sensing community. However, most existing deep learning-based CD methods are implemented by either generating difference images using deep features or learning change relations between pixel patches, which leads to error accumulation problems since many intermediate processing steps are needed to obtain final change maps. To address the above-mentioned issues, a novel end-to-end CD method is proposed based on an effective encoder-decoder architecture for semantic segmentation named UNet++, where change maps could be learned from scratch using available annotated datasets. Firstly, co-registered image pairs are concatenated as an input for the improved UNet++ network, where both global and fine-grained information can be utilized to generate feature maps with high spatial accuracy. Then, the fusion strategy of multiple side outputs is adopted to combine change maps from different semantic levels, thereby generating a final change map with high accuracy. The effectiveness and reliability of our proposed CD method are verified on very-high-resolution (VHR) satellite image datasets. Extensive experimental results have shown that our proposed approach outperforms the other state-of-the-art CD methods. |
| Author | Zhang, Yongjun Peng, Daifeng Guan, Haiyan |
| Author_xml | – sequence: 1 givenname: Daifeng surname: Peng fullname: Peng, Daifeng – sequence: 2 givenname: Yongjun surname: Zhang fullname: Zhang, Yongjun – sequence: 3 givenname: Haiyan surname: Guan fullname: Guan, Haiyan |
| BookMark | eNptUU1rGzEQFSWFJm4u_QULvRW2kTSydvdY3LQxhBba-Cwm0mgjs1klklzov68cpySEzGVmHm_efJ2woznOxNgHwT8DDPwsZbE36OUbdix5J1slB3n0LH7HTnPe8moAYuDqmF2dz64tsa2uWd3gPFLzlQrZEuLc-JiaizDeNL8ox2n3gP3GQtMUCjXrWxwpN5sc5rEmdyn-IddsflB5z956nDKdPvoF23w7v1pdtJc_v69XXy5bC0rKdgDJfceVcCS05p11QLy_7kl7jYCwdA607LoOxbIHZa3X1gn0jmuvoBIWbH3QdRG35i6FW0x_TcRgHoCYRoOpBDuR8V4Kjc4KL0FpgGsr_dJ2YpCDR4HLqvXxoFX3uN9RLmYbd2mu4xsJXHEFfe25YPzAsinmnMgbGwruD1MShskIbvavME-vqCWfXpT8H_QV8j9oQokF |
| CitedBy_id | crossref_primary_10_1109_TGRS_2022_3169479 crossref_primary_10_1109_TGRS_2024_3369059 crossref_primary_10_1109_TGRS_2025_3608816 crossref_primary_10_1007_s10489_024_06000_0 crossref_primary_10_1016_j_jag_2022_102950 crossref_primary_10_1016_j_isprsjprs_2024_05_022 crossref_primary_10_1088_1555_6611_ad0ebf crossref_primary_10_1109_TGRS_2025_3545040 crossref_primary_10_1109_ACCESS_2022_3160163 crossref_primary_10_1007_s40808_024_02068_2 crossref_primary_10_1016_j_inffus_2025_103276 crossref_primary_10_3390_rs15102645 crossref_primary_10_1007_s12145_022_00914_4 crossref_primary_10_1109_LGRS_2022_3144304 crossref_primary_10_1109_TSM_2025_3532897 crossref_primary_10_1109_TGRS_2023_3298037 crossref_primary_10_1109_JSTARS_2023_3260006 crossref_primary_10_3390_rs14153562 crossref_primary_10_3390_rs14122838 crossref_primary_10_1016_j_isprsjprs_2022_08_012 crossref_primary_10_3390_rs17132249 crossref_primary_10_1007_s00521_022_07928_5 crossref_primary_10_1109_TGRS_2025_3550973 crossref_primary_10_3390_land12051050 crossref_primary_10_1109_TGRS_2023_3320288 crossref_primary_10_3390_rs17132121 crossref_primary_10_3390_jmse13091700 crossref_primary_10_1080_01431161_2021_2022241 crossref_primary_10_1109_TGRS_2023_3235917 crossref_primary_10_1109_TGRS_2023_3300533 crossref_primary_10_3390_app11041491 crossref_primary_10_1109_ACCESS_2022_3227069 crossref_primary_10_3390_rs13081440 crossref_primary_10_1016_j_isprsjprs_2023_11_004 crossref_primary_10_1016_j_rse_2020_111970 crossref_primary_10_1109_JSTARS_2020_3046838 crossref_primary_10_3390_rs12244145 crossref_primary_10_1155_2020_8360361 crossref_primary_10_1080_22797254_2022_2047795 crossref_primary_10_3390_ijgi10090591 crossref_primary_10_1080_07038992_2021_1922880 crossref_primary_10_1109_TGRS_2024_3374421 crossref_primary_10_3390_rs11232740 crossref_primary_10_1109_JSTARS_2025_3528185 crossref_primary_10_1109_TGRS_2024_3362795 crossref_primary_10_3233_JIFS_211432 crossref_primary_10_1080_01431161_2023_2285737 crossref_primary_10_1155_2022_3404858 crossref_primary_10_1155_2023_4200153 crossref_primary_10_1016_j_isprsjprs_2024_04_012 crossref_primary_10_1109_TGRS_2025_3536473 crossref_primary_10_3390_rs14153548 crossref_primary_10_1016_j_jag_2022_102940 crossref_primary_10_1109_TGRS_2024_3440001 crossref_primary_10_3390_app13106167 crossref_primary_10_1109_TGRS_2021_3099522 crossref_primary_10_1109_TGRS_2024_3419790 crossref_primary_10_1109_TGRS_2020_2994150 crossref_primary_10_1016_j_engappai_2024_108960 crossref_primary_10_1109_TGRS_2021_3095166 crossref_primary_10_3390_rs16081387 crossref_primary_10_1016_j_isprsjprs_2023_11_023 crossref_primary_10_1080_01431161_2024_2334778 crossref_primary_10_3390_rs15164095 crossref_primary_10_1016_j_engappai_2023_106324 crossref_primary_10_1109_TGRS_2024_3470808 crossref_primary_10_1007_s00170_024_13034_8 crossref_primary_10_1109_TGRS_2024_3368168 crossref_primary_10_1007_s10489_023_04535_2 crossref_primary_10_1080_15481603_2023_2257980 crossref_primary_10_1109_TIP_2022_3226418 crossref_primary_10_3390_diagnostics11030534 crossref_primary_10_1016_j_scitotenv_2022_160622 crossref_primary_10_1109_JSTARS_2025_3531658 crossref_primary_10_1109_JSTARS_2025_3601214 crossref_primary_10_3390_rs13244971 crossref_primary_10_3390_rs14174355 crossref_primary_10_1109_TGRS_2023_3336791 crossref_primary_10_1109_JSTARS_2023_3328315 crossref_primary_10_3390_ijgi12110454 crossref_primary_10_3390_rs17111849 crossref_primary_10_1080_2150704X_2024_2411067 crossref_primary_10_1109_JSTARS_2024_3522910 crossref_primary_10_3390_s22124626 crossref_primary_10_1016_j_compag_2025_109973 crossref_primary_10_1109_TGRS_2024_3402391 crossref_primary_10_1109_JSTARS_2022_3157648 crossref_primary_10_1109_TGRS_2024_3398820 crossref_primary_10_1117_1_JRS_17_034501 crossref_primary_10_3390_rs13204171 crossref_primary_10_3390_rs16050844 crossref_primary_10_1109_JSTARS_2023_3314133 crossref_primary_10_1109_TGRS_2021_3066802 crossref_primary_10_3390_rs14040957 crossref_primary_10_1109_JSTARS_2025_3579330 crossref_primary_10_1007_s11069_024_07094_y crossref_primary_10_1109_JSTARS_2025_3594716 crossref_primary_10_1175_BAMS_D_20_0097_1 crossref_primary_10_1109_JSTARS_2023_3328561 crossref_primary_10_1109_TGRS_2023_3325536 crossref_primary_10_3390_app12157903 crossref_primary_10_3390_rs15051391 crossref_primary_10_1109_TGRS_2024_3432771 crossref_primary_10_1016_j_neucom_2024_128080 crossref_primary_10_1007_s00521_022_06999_8 crossref_primary_10_1109_JSTARS_2025_3555849 crossref_primary_10_3390_land10111266 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_3390_rs14040871 crossref_primary_10_3390_rs14246352 crossref_primary_10_1109_JSTARS_2024_3387093 crossref_primary_10_1109_TGRS_2021_3079907 crossref_primary_10_3390_rs15225425 crossref_primary_10_1016_j_jag_2023_103180 crossref_primary_10_3390_f15112039 crossref_primary_10_1109_JSTARS_2022_3177235 crossref_primary_10_1016_j_isprsjprs_2022_02_021 crossref_primary_10_1080_01431161_2024_2398225 crossref_primary_10_1109_TGRS_2024_3371463 crossref_primary_10_3390_rs12060901 crossref_primary_10_3390_rs14071580 crossref_primary_10_3390_rs15020463 crossref_primary_10_1109_TGRS_2022_3159544 crossref_primary_10_1080_01431161_2023_2224100 crossref_primary_10_1080_01431161_2024_2339192 crossref_primary_10_1109_TGRS_2022_3209972 crossref_primary_10_1109_JSTARS_2022_3200997 crossref_primary_10_1109_TGRS_2023_3317701 crossref_primary_10_1109_TAES_2025_3558725 crossref_primary_10_1016_j_rse_2022_113371 crossref_primary_10_1109_TGRS_2024_3382116 crossref_primary_10_1016_j_petrol_2020_107527 crossref_primary_10_3390_app15063231 crossref_primary_10_3390_su14148915 crossref_primary_10_1007_s00371_021_02177_4 crossref_primary_10_1016_j_isprsjprs_2025_01_010 crossref_primary_10_1109_JSTARS_2023_3335281 crossref_primary_10_1016_j_jag_2022_102676 crossref_primary_10_3390_jcm12247633 crossref_primary_10_1109_ACCESS_2022_3208134 crossref_primary_10_1016_j_cj_2022_01_009 crossref_primary_10_1080_2150704X_2023_2201382 crossref_primary_10_1109_JSTARS_2021_3113327 crossref_primary_10_1109_TGRS_2024_3360516 crossref_primary_10_1007_s11263_024_02141_4 crossref_primary_10_1109_JSTARS_2022_3204191 crossref_primary_10_1109_JSTARS_2024_3422687 crossref_primary_10_1109_JSEN_2023_3271391 crossref_primary_10_1016_j_sigpro_2023_109203 crossref_primary_10_3390_rs16111846 crossref_primary_10_1109_TGRS_2022_3154390 crossref_primary_10_3390_rs14246361 crossref_primary_10_1007_s11600_024_01420_5 crossref_primary_10_3390_rs16142573 crossref_primary_10_1109_TGRS_2021_3106697 crossref_primary_10_3390_rs15051232 crossref_primary_10_1109_ACCESS_2024_3385540 crossref_primary_10_1016_j_isprsjprs_2023_05_011 crossref_primary_10_1109_LGRS_2023_3330867 crossref_primary_10_1109_TGRS_2023_3296383 crossref_primary_10_1109_TGRS_2024_3392696 crossref_primary_10_1109_JSTARS_2023_3278726 crossref_primary_10_1109_JSTARS_2025_3584959 crossref_primary_10_1016_j_compenvurbsys_2022_101820 crossref_primary_10_1109_LGRS_2022_3159545 crossref_primary_10_1109_TGRS_2021_3088902 crossref_primary_10_1109_TGRS_2022_3226778 crossref_primary_10_3390_rs16224186 crossref_primary_10_1080_10589759_2025_2490765 crossref_primary_10_3390_rs12162603 crossref_primary_10_1016_j_isprsjprs_2023_04_001 crossref_primary_10_1109_TGRS_2021_3085870 crossref_primary_10_1109_JSTARS_2023_3316304 crossref_primary_10_1109_TGRS_2024_3393422 crossref_primary_10_1016_j_jag_2024_104077 crossref_primary_10_1016_j_isprsjprs_2024_06_013 crossref_primary_10_1007_s11042_023_14331_2 crossref_primary_10_3390_rs15143566 crossref_primary_10_1109_TGRS_2025_3549818 crossref_primary_10_3390_rs12030484 crossref_primary_10_3390_rs15174186 crossref_primary_10_1109_ACCESS_2025_3575483 crossref_primary_10_1109_TIM_2022_3159978 crossref_primary_10_1109_JSTARS_2024_3349775 crossref_primary_10_1016_j_jag_2022_102769 crossref_primary_10_1080_2150704X_2024_2354128 crossref_primary_10_1109_TGRS_2024_3438228 crossref_primary_10_1109_TGRS_2020_3033009 crossref_primary_10_1007_s11270_021_05397_5 crossref_primary_10_3390_rs15082092 crossref_primary_10_1109_TGRS_2023_3280902 crossref_primary_10_1117_1_JRS_16_046509 crossref_primary_10_3390_app14135415 crossref_primary_10_1109_TGRS_2022_3218921 crossref_primary_10_1007_s11760_024_03170_9 crossref_primary_10_3390_rs14194972 crossref_primary_10_1109_JSTARS_2024_3522135 crossref_primary_10_1109_LGRS_2021_3049370 crossref_primary_10_1109_JSTARS_2024_3361507 crossref_primary_10_1007_s11042_021_10793_4 crossref_primary_10_1007_s12145_024_01315_5 crossref_primary_10_1007_s41651_024_00202_3 crossref_primary_10_1109_TGRS_2023_3238327 crossref_primary_10_1016_j_jenvman_2025_124323 crossref_primary_10_1016_j_ecoinf_2023_102193 crossref_primary_10_3390_rs14030462 crossref_primary_10_1016_j_jag_2021_102591 crossref_primary_10_1109_ACCESS_2023_3292531 crossref_primary_10_3390_rs12030346 crossref_primary_10_1109_TGRS_2024_3428551 crossref_primary_10_1111_cobi_13680 crossref_primary_10_3390_rs12233907 crossref_primary_10_1080_01431161_2025_2557587 crossref_primary_10_3390_s24051509 crossref_primary_10_1109_JSTARS_2024_3411622 crossref_primary_10_1109_TIM_2025_3608333 crossref_primary_10_3390_ijgi10080523 crossref_primary_10_1016_j_jag_2021_102597 crossref_primary_10_1109_TGRS_2024_3500790 crossref_primary_10_1117_1_JRS_19_016515 crossref_primary_10_1109_LGRS_2023_3305623 crossref_primary_10_3390_rs13061060 crossref_primary_10_1109_TGRS_2020_2990640 crossref_primary_10_1109_TGRS_2024_3349638 crossref_primary_10_3390_rs11192216 crossref_primary_10_3390_rs13153053 crossref_primary_10_3390_rs14215379 crossref_primary_10_1016_j_jag_2021_102582 crossref_primary_10_1080_22797254_2022_2161419 crossref_primary_10_1109_JSTARS_2024_3384545 crossref_primary_10_1016_j_image_2023_116964 crossref_primary_10_1038_s41598_025_10972_5 crossref_primary_10_3390_rs12071186 crossref_primary_10_3390_rs15215127 crossref_primary_10_1016_j_jag_2021_102348 crossref_primary_10_3390_app15179407 crossref_primary_10_1016_j_jag_2021_102463 crossref_primary_10_1016_j_jag_2021_102465 crossref_primary_10_1080_01431161_2024_2343139 crossref_primary_10_1109_TGRS_2025_3569581 crossref_primary_10_1109_TGRS_2023_3345645 crossref_primary_10_2478_rgg_2024_0023 crossref_primary_10_3390_rs13245094 crossref_primary_10_1109_JSTARS_2025_3601739 crossref_primary_10_1109_TGRS_2023_3241436 crossref_primary_10_12677_GST_2023_112013 crossref_primary_10_3390_su142013167 crossref_primary_10_3390_rs12071195 crossref_primary_10_3390_rs15143482 crossref_primary_10_3390_rs14133100 crossref_primary_10_1016_j_dsp_2025_105594 crossref_primary_10_3390_rs15051219 crossref_primary_10_1007_s12524_021_01312_x crossref_primary_10_1109_TGRS_2023_3325829 crossref_primary_10_3390_rs12101574 crossref_primary_10_3390_rs12132159 crossref_primary_10_1016_j_asr_2025_07_023 crossref_primary_10_1109_TGRS_2023_3272006 crossref_primary_10_3390_app14135730 crossref_primary_10_1038_s41598_025_15468_w crossref_primary_10_3390_rs14215598 crossref_primary_10_1007_s00521_022_08122_3 crossref_primary_10_1080_01431161_2022_2131479 crossref_primary_10_1109_JSTARS_2022_3159528 crossref_primary_10_1109_LGRS_2021_3103991 crossref_primary_10_3390_rs16071269 crossref_primary_10_1109_TGRS_2025_3591101 crossref_primary_10_3390_electronics13030630 crossref_primary_10_1109_JSTARS_2024_3394571 crossref_primary_10_3389_feart_2022_883779 crossref_primary_10_1007_s11042_021_11779_y crossref_primary_10_1109_JSTARS_2024_3434966 crossref_primary_10_3390_rs12101688 crossref_primary_10_3390_rs16132355 crossref_primary_10_1007_s00371_025_03933_6 crossref_primary_10_1016_j_jag_2024_104040 crossref_primary_10_1016_j_jag_2024_104282 crossref_primary_10_1109_TGRS_2025_3545012 crossref_primary_10_1117_1_JRS_19_016504 crossref_primary_10_1080_10106049_2024_2322053 crossref_primary_10_1016_j_jag_2023_103402 crossref_primary_10_1109_TGRS_2023_3268294 crossref_primary_10_3390_rs13224528 crossref_primary_10_1109_TGRS_2023_3297850 crossref_primary_10_3390_rs15082145 crossref_primary_10_3390_rs15061682 crossref_primary_10_1109_JSTARS_2023_3241157 crossref_primary_10_1016_j_imavis_2024_105157 crossref_primary_10_1016_j_bspc_2022_103979 crossref_primary_10_1109_TGRS_2021_3130940 crossref_primary_10_1109_TETCI_2022_3230941 crossref_primary_10_1109_JSTARS_2025_3586607 crossref_primary_10_1109_TGRS_2025_3584094 crossref_primary_10_1007_s11042_024_20015_2 crossref_primary_10_1109_TGRS_2024_3480122 crossref_primary_10_3390_s22197384 crossref_primary_10_1109_JSTARS_2024_3358298 crossref_primary_10_3390_rs14215577 crossref_primary_10_1109_TGRS_2023_3275819 crossref_primary_10_3390_s20185076 crossref_primary_10_1109_JSTARS_2024_3514926 crossref_primary_10_1117_1_JRS_19_024506 crossref_primary_10_1109_TIM_2023_3243680 crossref_primary_10_1109_TGRS_2024_3424317 crossref_primary_10_3390_app13021037 crossref_primary_10_1109_JSTARS_2025_3585529 crossref_primary_10_1080_01431161_2022_2066486 crossref_primary_10_1109_JSTARS_2023_3348630 crossref_primary_10_3390_rs14215448 crossref_primary_10_3390_s23063066 crossref_primary_10_1109_ACCESS_2025_3559992 crossref_primary_10_1109_TGRS_2021_3080580 crossref_primary_10_1109_JSTARS_2024_3487137 crossref_primary_10_1109_TGRS_2023_3331751 crossref_primary_10_1109_TGRS_2023_3272694 crossref_primary_10_3390_rs16030572 crossref_primary_10_1109_TGRS_2025_3544402 crossref_primary_10_1109_TGRS_2024_3357524 crossref_primary_10_1109_TGRS_2023_3327253 crossref_primary_10_1109_TGRS_2022_3196040 crossref_primary_10_3390_rs15030842 crossref_primary_10_3390_rs15245670 crossref_primary_10_1016_j_jag_2025_104393 crossref_primary_10_1109_TGRS_2024_3381751 crossref_primary_10_1109_TGRS_2025_3544651 crossref_primary_10_1049_ipr2_12505 crossref_primary_10_1007_s13042_023_01880_z crossref_primary_10_1109_MGRS_2021_3088865 crossref_primary_10_3390_rs14184527 crossref_primary_10_1016_j_jag_2022_103110 crossref_primary_10_1080_01431161_2023_2221797 crossref_primary_10_1109_TGRS_2022_3221492 crossref_primary_10_1109_JSTARS_2025_3526795 crossref_primary_10_1016_j_jag_2024_103836 crossref_primary_10_1016_j_isprsjprs_2021_03_005 crossref_primary_10_1155_2021_5548346 crossref_primary_10_1016_j_isprsjprs_2025_04_030 crossref_primary_10_3390_rs17183253 crossref_primary_10_3390_s24217040 crossref_primary_10_1080_01431161_2021_1907866 crossref_primary_10_1109_JSTARS_2024_3450287 crossref_primary_10_1109_JSTARS_2021_3113831 crossref_primary_10_1109_JSTARS_2024_3354944 crossref_primary_10_1109_TGRS_2022_3200684 crossref_primary_10_1109_LGRS_2023_3323367 crossref_primary_10_1109_ACCESS_2025_3605984 crossref_primary_10_1109_TGRS_2024_3470314 crossref_primary_10_1109_JSTARS_2023_3298097 crossref_primary_10_1109_TGRS_2023_3294300 crossref_primary_10_1016_j_isprsjprs_2021_10_015 crossref_primary_10_3390_rs12172669 crossref_primary_10_1080_17538947_2025_2503443 crossref_primary_10_1016_j_neucom_2024_128989 crossref_primary_10_1109_JSTARS_2024_3511597 crossref_primary_10_1117_1_JRS_18_016513 crossref_primary_10_1109_MGRS_2021_3063465 crossref_primary_10_1117_1_JRS_17_016515 crossref_primary_10_1109_JSTARS_2022_3174780 crossref_primary_10_3390_rs15092395 crossref_primary_10_1109_JSTARS_2024_3491762 crossref_primary_10_3390_rs16203852 crossref_primary_10_1109_LGRS_2023_3247882 crossref_primary_10_1080_01431161_2023_2173033 crossref_primary_10_1016_j_isprsjprs_2021_10_001 crossref_primary_10_1109_JSTARS_2025_3569104 crossref_primary_10_3390_rs16234494 crossref_primary_10_3390_rs12071217 crossref_primary_10_1109_TGRS_2022_3171067 crossref_primary_10_3390_f16050775 crossref_primary_10_3390_su15043343 crossref_primary_10_1109_TGRS_2025_3579416 crossref_primary_10_1038_s41598_024_63257_8 crossref_primary_10_1007_s11227_025_07344_1 crossref_primary_10_1109_TGRS_2025_3608214 crossref_primary_10_1080_01431161_2021_1906982 crossref_primary_10_1109_ACCESS_2022_3201129 crossref_primary_10_3390_rs14215402 crossref_primary_10_3390_rs11202377 crossref_primary_10_1038_s41598_022_20114_w crossref_primary_10_3390_rs13132566 crossref_primary_10_3390_rs14215527 crossref_primary_10_3390_rs15143517 crossref_primary_10_3390_s20236735 crossref_primary_10_1109_JSTARS_2024_3372386 crossref_primary_10_1109_LGRS_2021_3056416 crossref_primary_10_3390_ijgi11080439 crossref_primary_10_1109_TGRS_2022_3199502 crossref_primary_10_3390_rs15061655 crossref_primary_10_1109_ACCESS_2020_3047861 crossref_primary_10_1080_01431161_2021_1941390 crossref_primary_10_1016_j_asr_2023_07_069 crossref_primary_10_1109_TGRS_2024_3483775 crossref_primary_10_1016_j_compag_2022_107249 crossref_primary_10_1109_JSTARS_2024_3422901 crossref_primary_10_1109_JSTARS_2024_3439340 crossref_primary_10_1016_j_bspc_2024_106243 crossref_primary_10_1109_ACCESS_2020_3008036 crossref_primary_10_3390_sym14061138 crossref_primary_10_3390_rs13071236 crossref_primary_10_1109_JSTARS_2021_3077545 crossref_primary_10_1007_s00521_022_07637_z crossref_primary_10_1109_JSTARS_2022_3181155 crossref_primary_10_1016_j_rsase_2024_101440 crossref_primary_10_3390_rs13245152 crossref_primary_10_3390_rs17152575 crossref_primary_10_1109_TGRS_2024_3352050 crossref_primary_10_1109_TGRS_2023_3321637 crossref_primary_10_3390_rs14071552 crossref_primary_10_1016_j_asr_2020_05_041 crossref_primary_10_1007_s11227_020_03604_4 crossref_primary_10_1109_TGRS_2022_3233849 crossref_primary_10_1038_s41598_024_68704_0 crossref_primary_10_1109_TGRS_2024_3520630 crossref_primary_10_3390_rs13204083 crossref_primary_10_1007_s11042_024_18766_z crossref_primary_10_1016_j_ecoinf_2021_101310 crossref_primary_10_1109_ACCESS_2025_3571463 crossref_primary_10_1109_TGRS_2025_3598766 crossref_primary_10_3390_app13042485 crossref_primary_10_1109_TGRS_2022_3175635 crossref_primary_10_1080_01431161_2023_2282407 crossref_primary_10_1007_s00500_023_09352_w crossref_primary_10_1016_j_isprsjprs_2024_11_017 crossref_primary_10_1109_JSTARS_2022_3215773 crossref_primary_10_1016_j_eswa_2023_122089 crossref_primary_10_3390_rs15092351 crossref_primary_10_3390_rs12152460 crossref_primary_10_3390_rs16050804 crossref_primary_10_1109_LGRS_2021_3082630 crossref_primary_10_3390_rs15010006 crossref_primary_10_3390_rs13142646 crossref_primary_10_3390_s21041110 crossref_primary_10_1111_tgis_13133 crossref_primary_10_1109_JSTARS_2023_3306274 crossref_primary_10_3390_rs14092237 crossref_primary_10_3390_rs14184478 crossref_primary_10_1109_JSTARS_2024_3418632 crossref_primary_10_1109_TGRS_2023_3324025 crossref_primary_10_1016_j_neucom_2021_06_059 crossref_primary_10_1109_TGRS_2022_3165851 crossref_primary_10_1016_j_isprsjprs_2022_07_016 crossref_primary_10_1080_10106049_2024_2353253 crossref_primary_10_3390_rs15020395 crossref_primary_10_3390_rs17020217 crossref_primary_10_1109_TGRS_2024_3356711 crossref_primary_10_1364_OE_559651 crossref_primary_10_3390_electronics12234823 crossref_primary_10_1016_j_jag_2024_103785 crossref_primary_10_1109_JSTARS_2023_3267137 crossref_primary_10_1109_JSTARS_2024_3373039 crossref_primary_10_3390_rs15163972 crossref_primary_10_1016_j_isprsjprs_2021_05_001 crossref_primary_10_3390_rs13173394 crossref_primary_10_1109_TGRS_2021_3091758 crossref_primary_10_1109_JSTARS_2024_3392917 crossref_primary_10_1155_2022_2189176 crossref_primary_10_1007_s00521_024_10666_5 crossref_primary_10_1109_JSTARS_2021_3108777 crossref_primary_10_1109_TGRS_2025_3540794 crossref_primary_10_1109_JSTARS_2024_3354310 crossref_primary_10_1109_TGRS_2024_3376673 crossref_primary_10_1109_TGRS_2023_3305499 crossref_primary_10_1109_JSTARS_2022_3152775 crossref_primary_10_3390_s25185832 crossref_primary_10_3390_rs16050823 crossref_primary_10_1109_TGRS_2023_3327780 crossref_primary_10_3390_app13106320 crossref_primary_10_1080_2150704X_2023_2264493 crossref_primary_10_1109_LGRS_2022_3165885 crossref_primary_10_1016_j_jag_2023_103256 crossref_primary_10_3390_rs16183533 crossref_primary_10_1016_j_isprsjprs_2020_06_003 crossref_primary_10_3390_rs15040928 crossref_primary_10_3390_rs15040927 crossref_primary_10_1109_TGRS_2021_3089453 crossref_primary_10_1109_TGRS_2023_3348459 crossref_primary_10_3390_rs14040818 crossref_primary_10_1109_TGRS_2025_3600397 crossref_primary_10_1111_phor_12462 crossref_primary_10_1109_TGRS_2025_3605961 crossref_primary_10_1109_JSTARS_2023_3344635 crossref_primary_10_3390_rs15153740 crossref_primary_10_1109_TGRS_2023_3236664 crossref_primary_10_32604_jai_2022_034931 crossref_primary_10_1038_s41598_021_89015_8 crossref_primary_10_1109_TGRS_2022_3227098 crossref_primary_10_1111_phor_12530 crossref_primary_10_1109_TGRS_2020_3011913 crossref_primary_10_1111_tgis_70020 crossref_primary_10_3390_rs14071746 crossref_primary_10_3390_ijgi11070385 crossref_primary_10_1109_LGRS_2023_3341045 crossref_primary_10_3390_rs13010039 crossref_primary_10_1109_JSTARS_2024_3390427 crossref_primary_10_1016_j_isprsjprs_2021_07_007 crossref_primary_10_1109_JSTARS_2021_3129318 crossref_primary_10_1088_1755_1315_502_1_012017 crossref_primary_10_1109_JSTARS_2022_3198517 crossref_primary_10_1117_1_JRS_18_036503 crossref_primary_10_1016_j_bspc_2024_106546 crossref_primary_10_3390_rs15010045 crossref_primary_10_1109_JSTARS_2023_3317488 crossref_primary_10_1109_JSTARS_2023_3264802 crossref_primary_10_1109_TGRS_2020_3043766 crossref_primary_10_1109_TGRS_2022_3195692 crossref_primary_10_3390_rs14122801 crossref_primary_10_1109_TGRS_2022_3213925 crossref_primary_10_1109_TGRS_2024_3363431 crossref_primary_10_3390_su16219232 crossref_primary_10_1080_10095020_2022_2157762 crossref_primary_10_1109_LGRS_2022_3216627 crossref_primary_10_1109_TGRS_2023_3245674 crossref_primary_10_1109_TGRS_2022_3200985 crossref_primary_10_1109_JSTARS_2024_3374290 crossref_primary_10_1109_JSTARS_2024_3435372 crossref_primary_10_3390_rs15092406 crossref_primary_10_1038_s41598_024_54096_8 crossref_primary_10_1109_TGRS_2024_3365990 crossref_primary_10_1080_17445647_2023_2225071 crossref_primary_10_1109_TVLSI_2024_3438728 crossref_primary_10_1109_TGRS_2022_3161337 crossref_primary_10_1109_JSTARS_2024_3374050 crossref_primary_10_1109_TGRS_2024_3424532 crossref_primary_10_1109_JSTARS_2023_3333959 crossref_primary_10_1016_j_engappai_2024_108774 crossref_primary_10_3390_app15063061 crossref_primary_10_1109_LGRS_2024_3359719 crossref_primary_10_1109_TGRS_2024_3433373 crossref_primary_10_7780_kjrs_2024_40_6_3_11 crossref_primary_10_1109_TCSVT_2024_3494820 crossref_primary_10_1109_TGRS_2024_3523097 crossref_primary_10_1109_TGRS_2024_3454055 crossref_primary_10_1016_j_jag_2023_103456 crossref_primary_10_3390_atmos16040359 crossref_primary_10_1109_TGRS_2024_3397797 crossref_primary_10_1080_01431161_2023_2225712 crossref_primary_10_3390_info12090364 crossref_primary_10_1007_s12524_022_01601_z crossref_primary_10_1109_JSTARS_2024_3390762 crossref_primary_10_1016_j_jag_2023_103453 crossref_primary_10_1371_journal_pone_0246071 crossref_primary_10_3390_rs13224630 crossref_primary_10_1007_s40031_024_01084_1 crossref_primary_10_1109_JSTARS_2023_3283524 crossref_primary_10_1016_j_eswa_2022_117346 crossref_primary_10_1109_TGRS_2023_3319961 crossref_primary_10_1109_TMI_2019_2959609 crossref_primary_10_1109_TNNLS_2021_3089332 crossref_primary_10_1109_ACCESS_2024_3451473 crossref_primary_10_3390_rs13010047 crossref_primary_10_1109_ACCESS_2025_3580481 |
| Cites_doi | 10.3390/app8101785 10.1080/01431160801950162 10.1109/TPAMI.2015.2389824 10.1109/ICCV.2015.164 10.1007/978-3-319-24574-4_28 10.1109/MGRS.2017.2762307 10.1016/j.rse.2007.07.023 10.3390/rs11030258 10.1016/j.rse.2017.07.009 10.1080/01431161.2013.805282 10.1007/978-3-030-00889-5_1 10.1016/j.rse.2013.01.012 10.1109/MGRS.2016.2540798 10.1080/01431168908903939 10.3390/rs8060506 10.1109/IGARSS.2018.8518178 10.1007/s10514-018-9734-5 10.1109/TGRS.2010.2045506 10.1109/LGRS.2018.2889307 10.1109/LGRS.2017.2763182 10.1109/LGRS.2016.2601930 10.1109/ACCESS.2019.2902613 10.1109/IGARSS.2018.8518015 10.1109/LGRS.2018.2868880 10.1016/j.isprsjprs.2018.09.002 10.1080/01431161.2016.1148284 10.1109/TGRS.2018.2849692 10.1109/TGRS.2009.2022633 10.1109/TGRS.2018.2886643 10.3390/rs11030240 10.1080/2150704X.2016.1163744 10.1109/TGRS.2012.2195727 10.1109/ACCESS.2018.2889326 10.1109/JSTARS.2018.2887108 10.1109/ICIVC.2017.7984667 10.1109/LGRS.2009.2025059 10.1109/TGRS.2018.2819367 10.1016/j.isprsjprs.2016.08.010 10.5244/C.29.61 10.1109/LGRS.2017.2738149 10.1109/TGRS.2017.2707528 10.3390/rs11060626 10.1016/j.rse.2005.01.011 10.1016/j.rse.2015.01.006 10.1109/CVPR.2016.90 10.1109/CVPR.2017.243 10.1109/TGRS.2018.2863224 10.3390/rs8090761 10.1109/CVPR.2015.7298965 10.1109/LGRS.2018.2869608 10.1109/LGRS.2017.2766840 10.1109/TNNLS.2015.2435783 10.1080/01431161.2014.951740 10.1109/LGRS.2018.2868704 10.1109/36.843009 10.1109/TGRS.2017.2650198 10.1080/01431161.2011.648285 10.1016/j.isprsjprs.2013.03.006 10.3390/rs8040329 10.5194/isprs-archives-XLII-2-565-2018 10.1109/LGRS.2017.2762694 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.3390/rs11111382 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Databases ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_ff216adc1f234633bc2f5c71929fa1a5 10_3390_rs11111382 |
| GeographicLocations | United States--US China |
| GeographicLocations_xml | – name: China – name: United States--US |
| GroupedDBID | 29P 2WC 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c3422-9320f7041de16607cd3e08b8e6f6a3a35dd362777a15834ccf6cd1afd06f433a3 |
| IEDL.DBID | DOA |
| ISSN | 2072-4292 |
| IngestDate | Mon Nov 10 04:31:26 EST 2025 Mon Oct 20 01:43:31 EDT 2025 Sat Nov 29 07:18:42 EST 2025 Tue Nov 18 21:18:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3422-9320f7041de16607cd3e08b8e6f6a3a35dd362777a15834ccf6cd1afd06f433a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/ff216adc1f234633bc2f5c71929fa1a5 |
| PQID | 2304043843 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ff216adc1f234633bc2f5c71929fa1a5 proquest_journals_2304043843 crossref_citationtrail_10_3390_rs11111382 crossref_primary_10_3390_rs11111382 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-10 |
| PublicationDateYYYYMMDD | 2019-06-10 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hou (ref_28) 2017; 14 Lv (ref_16) 2018; 56 Wang (ref_45) 2018; 57 ref_58 ref_57 Jian (ref_17) 2016; 37 ref_55 ref_53 ref_51 Saha (ref_27) 2019; 57 Zhang (ref_25) 2016; 4 ref_59 Alcantarilla (ref_56) 2018; 42 Kim (ref_66) 2019; 16 Lei (ref_52) 2019; 16 Bruzzone (ref_7) 2000; 38 Gong (ref_43) 2016; 27 ref_61 ref_60 Khan (ref_42) 2017; 55 ref_69 Zhan (ref_31) 2017; 14 ref_67 Cao (ref_15) 2016; 37 Lei (ref_35) 2019; 7 ref_65 ref_20 ref_64 Deng (ref_9) 2008; 29 ref_62 Dong (ref_39) 2019; 7 ref_29 Gong (ref_37) 2017; 14 Zhang (ref_30) 2016; 13 Singh (ref_1) 2010; 10 ref_26 Zhang (ref_32) 2019; 16 Benedek (ref_14) 2009; 47 Celik (ref_8) 2009; 6 ref_70 Zhan (ref_34) 2018; 146 Volpi (ref_13) 2013; 20 Huang (ref_11) 2008; 112 Tewkesbury (ref_2) 2015; 160 Qin (ref_23) 2013; 34 ref_38 Wu (ref_10) 2017; 199 Cao (ref_12) 2014; 35 He (ref_63) 2015; 37 Gong (ref_36) 2017; 55 Hussain (ref_6) 2013; 80 Ruiz (ref_22) 2016; 121 Niu (ref_33) 2019; 16 Demir (ref_3) 2013; 51 ref_47 ref_46 Guerin (ref_5) 2005; 95 ref_44 Lebedev (ref_54) 2018; 42 ref_41 ref_40 Bazi (ref_18) 2010; 48 Zhang (ref_21) 2018; 15 Gong (ref_50) 2019; 12 ref_48 Klambauer (ref_68) 2017; 30 Jin (ref_4) 2013; 132 Mou (ref_49) 2019; 57 Zhu (ref_24) 2017; 5 Chen (ref_19) 2012; 33 |
| References_xml | – ident: ref_46 doi: 10.3390/app8101785 – volume: 29 start-page: 4823 year: 2008 ident: ref_9 article-title: PCA-based land-use change detection and analysis using mul-titemporal and multisensor satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160801950162 – ident: ref_55 – volume: 37 start-page: 1904 year: 2015 ident: ref_63 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: ref_70 doi: 10.1109/ICCV.2015.164 – ident: ref_65 doi: 10.1007/978-3-319-24574-4_28 – volume: 5 start-page: 8 year: 2017 ident: ref_24 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – ident: ref_51 – volume: 112 start-page: 970 year: 2008 ident: ref_11 article-title: Use of a dark object concept and support vector machines to automate forest cover change analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.023 – volume: 20 start-page: 77 year: 2013 ident: ref_13 article-title: Supervised change detection in VHR images using contextual information and support vector machines publication-title: Int. J. Appl. Earth Obs. Geoinform. – ident: ref_57 doi: 10.3390/rs11030258 – volume: 199 start-page: 241 year: 2017 ident: ref_10 article-title: A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.07.009 – volume: 34 start-page: 6723 year: 2013 ident: ref_23 article-title: Object-based land cover change detection for cross-sensor images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.805282 – ident: ref_58 doi: 10.1007/978-3-030-00889-5_1 – volume: 132 start-page: 159 year: 2013 ident: ref_4 article-title: A comprehensive change detection method for updating the National Land Cover Database to circa 2011 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.012 – ident: ref_61 – volume: 4 start-page: 22 year: 2016 ident: ref_25 article-title: Deep learning for remote sensing data: A technical tutorial on the state of the art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – volume: 10 start-page: 989 year: 2010 ident: ref_1 article-title: Review Article Digital change detection techniques using remotely-sensed data publication-title: Int. Remote Sens. doi: 10.1080/01431168908903939 – ident: ref_48 doi: 10.3390/rs8060506 – ident: ref_38 doi: 10.1109/IGARSS.2018.8518178 – volume: 42 start-page: 1301 year: 2018 ident: ref_56 article-title: Streetview change detection with deconvolutional networks publication-title: Auton. Robots doi: 10.1007/s10514-018-9734-5 – volume: 48 start-page: 3178 year: 2010 ident: ref_18 article-title: Unsupervised change detection in multispectral remotely sensed imagery with level set methods publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2045506 – volume: 16 start-page: 982 year: 2019 ident: ref_52 article-title: Landslide Inventory Mapping from Bi-temporal Images Using Deep Convolutional Neural Networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2889307 – volume: 15 start-page: 13 year: 2018 ident: ref_21 article-title: Object-based change detection for VHR images based on multiscale un- certainty analysis publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2763182 – volume: 13 start-page: 1666 year: 2016 ident: ref_30 article-title: Feature-level change detection using deep representation and feature change analysis for multispectral imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2601930 – volume: 7 start-page: 36600 year: 2019 ident: ref_35 article-title: Multiscale Superpixel Segmentation with Deep Features for Change Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902613 – ident: ref_44 doi: 10.1109/IGARSS.2018.8518015 – volume: 16 start-page: 115 year: 2019 ident: ref_66 article-title: Objects Segmentation from High-Resolution Aerial Images Using U-Net With Pyramid Pooling Layers publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2868880 – volume: 146 start-page: 38 year: 2018 ident: ref_34 article-title: Iterative feature mapping network for detecting multiple changes in multi-source remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.002 – volume: 37 start-page: 1173 year: 2016 ident: ref_15 article-title: A new change detection method in high-resolution remote sensing images based on a conditional random field model publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1148284 – ident: ref_69 – volume: 57 start-page: 3 year: 2018 ident: ref_45 article-title: GETNET: A General End-to-End 2-D CNN Framework for Hyper- spectral Image Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2849692 – ident: ref_41 – volume: 47 start-page: 3416 year: 2009 ident: ref_14 article-title: Change detection in optical aerial images by a multilayer conditional mixed Markov model publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2022633 – volume: 57 start-page: 3677 year: 2019 ident: ref_27 article-title: Unsupervised Deep Change Vector Analysis for Multiple-Change De-tection in VHR Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2886643 – ident: ref_47 doi: 10.3390/rs11030240 – volume: 37 start-page: 1814 year: 2016 ident: ref_17 article-title: A hypergraph-based context-sensitive representation technique for VHR remote-sensing image change detection publication-title: Int. J. Remote Sens. doi: 10.1080/2150704X.2016.1163744 – volume: 51 start-page: 300 year: 2013 ident: ref_3 article-title: Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2195727 – volume: 7 start-page: 15389 year: 2019 ident: ref_39 article-title: Local Descriptor Learning for Change Detection in Synthetic Aperture Radar Images via Convolutional Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889326 – volume: 12 start-page: 321 year: 2019 ident: ref_50 article-title: A Generative Discriminatory Classified Net- work for Change Detection in Multispectral Imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2018.2887108 – ident: ref_53 – volume: 30 start-page: 971 year: 2017 ident: ref_68 article-title: Selfnormalizing neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_29 doi: 10.1109/ICIVC.2017.7984667 – volume: 6 start-page: 772 year: 2009 ident: ref_8 article-title: Unsupervised change detection in satellite images using principal component analysis and k-means clustering publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2009.2025059 – volume: 56 start-page: 4002 year: 2018 ident: ref_16 article-title: Unsupervised change detection based on hybrid conditional random field model for high spatial resolution remote sensing imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2819367 – volume: 121 start-page: 77 year: 2016 ident: ref_22 article-title: Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.08.010 – ident: ref_26 doi: 10.5244/C.29.61 – volume: 14 start-page: 1845 year: 2017 ident: ref_31 article-title: Change detection based on deep siamese convolutional network for optical aerial images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2738149 – volume: 55 start-page: 5407 year: 2017 ident: ref_42 article-title: Forest change detection in incomplete satellite images with deep neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2707528 – ident: ref_40 doi: 10.3390/rs11060626 – volume: 95 start-page: 464 year: 2005 ident: ref_5 article-title: Land cover change detection at coarse spatial scales based on iterative estimation and previous state information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.01.011 – volume: 160 start-page: 1 year: 2015 ident: ref_2 article-title: A critical synthesis of remotely sensed optical image change detection techniques publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.006 – ident: ref_62 doi: 10.1109/CVPR.2016.90 – ident: ref_67 doi: 10.1109/CVPR.2017.243 – volume: 57 start-page: 924 year: 2019 ident: ref_49 article-title: Learning spectral-spatial-temporal features via a recurrent convolutional neural network for change detection in multispectral imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2863224 – ident: ref_20 doi: 10.3390/rs8090761 – ident: ref_60 doi: 10.1109/CVPR.2015.7298965 – volume: 16 start-page: 266 year: 2019 ident: ref_32 article-title: Triplet-Based Semantic Relation Learning for Aerial Remote Sensing Image Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2869608 – volume: 14 start-page: 2418 year: 2017 ident: ref_28 article-title: Change Detection Based on Deep Features and Low Rank publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2766840 – volume: 27 start-page: 125 year: 2016 ident: ref_43 article-title: Change detection in synthetic aperture radar images based on deep neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2435783 – volume: 35 start-page: 6255 year: 2014 ident: ref_12 article-title: Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.951740 – volume: 16 start-page: 45 year: 2019 ident: ref_33 article-title: A Conditional Adversarial Network for Change Detection in Heterogeneous Images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2868704 – volume: 38 start-page: 1171 year: 2000 ident: ref_7 article-title: Automatic analysis of the difference image for unsupervised change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.843009 – volume: 55 start-page: 2658 year: 2017 ident: ref_36 article-title: Superpixel-based difference representation learning for change detection in multispectral remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2650198 – ident: ref_64 – volume: 33 start-page: 4434 year: 2012 ident: ref_19 article-title: Object-based change detection publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.648285 – volume: 80 start-page: 91 year: 2013 ident: ref_6 article-title: Change detection from remotely sensed images: From pixel-based to object-based approaches publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.03.006 – ident: ref_59 doi: 10.3390/rs8040329 – volume: 42 start-page: 565 year: 2018 ident: ref_54 article-title: Change detection in remote sensing images using conditional adversarial networks publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-2-565-2018 – volume: 14 start-page: 2310 year: 2017 ident: ref_37 article-title: Generative adversarial networks for change detection in multi- spectral imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2762694 |
| SSID | ssj0000331904 |
| Score | 2.6756392 |
| Snippet | Change detection (CD) is essential to the accurate understanding of land surface changes using available Earth observation data. Due to the great advantages in... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1382 |
| SubjectTerms | Architectural engineering Change detection Coders Datasets Deep learning Earth surface encoder-decoder architecture Encoders-Decoders end-to-end Feature maps High resolution Image detection Image processing Image resolution Image segmentation Information processing International conferences Machine learning multiple side-outputs fusion Neural networks Pattern recognition Remote sensing Satellite imagery Semantic segmentation Semantics |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uoBd3cdwI6MVDMelLk_YkrijIILjgrWSyqKAdnVbBf2-SZkZB8eKpkL5DyXt5y5fX7yG0A0IVxAXShPYAEkYp90BTkRgBqVSs4DpAA7cXotvN7-6Kywi41bGtcugTg6PWfeUx8j0PXvpbKwb7L6-Jnxrlb1fjCI1xNOlZEtLQunc1wlgIOAMjrGUlBVfd7w1q7yJa3r1vcSjQ9f_wxiHEnM799-Pm0WxMLvFBaw0LaMxUi2g6zjl_-FhC1yeVTpp-4h64_a8AH5smdGNV2KWv2Ld9YA_ptwaJr2Rg7GwMPn92nqfGocUAt1CE0fima5pldHN6cn10lsS5CokC5mpPl7IRKwij2lDOiVAaDMl7ueGWS5CQae3CmhBC0iwHppTlSlNpNeGWgRNYQRNVvzKrCOeWudpaGBbqEshyPwmLmJ4r83KbyryDdoe7XKpIOu5nXzyVrvjwGim_NNJB2yPZl5Zq41epQ6-skYSnxw4L_cF9GU9baW1KudSK2hQYB-ip1GZKuGy2sJLKrIM2hnos45mtyy8lrv39eh3NuLTJkze4ILaBJprBm9lEU-q9eawHW8EEPwECSOH2 priority: 102 providerName: ProQuest |
| Title | End-to-End Change Detection for High Resolution Satellite Images Using Improved UNet |
| URI | https://www.proquest.com/docview/2304043843 https://doaj.org/article/ff216adc1f234633bc2f5c71929fa1a5 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: P5Z dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PCBAR dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhDbSX0PRBN49F0F56MGt5ZMk-Nq1DAokxTbakvRitHrSQOGHtBHrpb-9IcpKFBnLpRQZ7wGZGnplvPP6GkA8gdZliIE3YAiDhjAlfaCoTKyFTmpfChNLAt2NZ18X5edmsjPryPWGRHjgqbuZcxoQymrkMuABY6MzlWmJiUjrFVGAvxaxnBUwFHwy4tVIe-UgBcf1s2XvnEBn3ViJQIOr_xw-H4HLwkmyOWSH9FJ9mi6zZ7hV5Pg4o__n7NTmrOpMMVwkeaPwhgH6xQ2ij6ijmndT3a1Bfi487iZ6qQLU5WHp0iS6jp6E3gMYagjV0XtvhDZkfVGefD5NxIEKigSNoxFwrdTLlzFgmRCq1AZsWi8IKJxQoyI3BeCSlVCwvgGvthDZMOZMKxwEF3pL17qqz7wgtHEdQLC0PgALywo-wSu0C8VnhMlVMyMc7JbV6ZAv3QysuWkQNXqHtg0In5P297HXkyHhUat_r-l7C81qHE2jtdrR2-5S1J2T3zlLt-LL1ra9r-w-aHLb_xz12yAvMijw3A8aoXbI-LG_sHtnQt8Ovfjklz_aruvk6Dftt6ltFT_36p8K1yX_g9ebopPn-FwgA2tI |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VglQufFcsLWCJcuAQ1c44dnJACGirrrpdIXWLegtef7RINNtuAlX_FL8R20m2SEW99cApUjKKlPj5eWY8ngewgVIX1C-kCZsiJpwxERJNRWIlpkrzQpiYGvg6kuNxfnRUfFmC3_1ZmFBW2XNiJGoz0yFHvhmSl2HXiuOHs_MkqEaF3dVeQqOFxZ69vPAhW_1-uOXH922a7mxPPu8mnapAopH7yMs7LNRJypmxTAgqtUFL82luhRMKFWbGeFKXUiqW5ci1dkIbppyhwnH0Bv69d-AuD-wfSwUPFjkdih7QlLddUBELujmvAyW1ff7-WveiPMA19o9L2s7D_-1nPIIHnfNMPrZofwxLtnoCK52O-8nlU5hsVyZpZom_kPbcBNmyTaw2q4h3z0koayFhy6KdcORAxY6kjSXDU8-sNYklFKRNtVhDDse2eQaHt_JRq7BczSr7HEjuuOSptDzGXZjlQemL2qkPY3OXqnwA7_pRLXXXVD1oe_wofXAVEFBeIWAAbxa2Z20rkX9afQrgWFiE9t_xxmx-XHZsUjqXMqGMZi5FLhCnOnWZlt5bL5xiKhvAeo-bsuOkurwCzYubH7-Gld3J_qgcDcd7a3Dfu4hdVd06LDfzn_Yl3NO_mu_1_FWEP4Fvtw2xP-k0Pbg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFH_0Q6oXq1ZxtdUB9eAh7ExmMpMcRLTbxaVlWbCV4iXOzocKmq2bqPRf86_zzSTZCoq3HnoKJI9AMr953_N-AE-5MgVFQ5qwOeeJYEyGRFOROMVTbUQhbUwNvDtS02l-elrM1uBXfxYmtFX2OjEqarswIUc-DMnLULUSfOi7tojZaPzy7FsSGKRCpbWn02ghcujOf2L4Vr-YjHCtn6Xp-OB4_03SMQwkhguMwtB5oV5RwaxjUlJlLHc0n-dOeqm55pm1qOCVUpplORfGeGks095S6QVHAXzvOmwqjDFD4DfL3q_yO5QjuKloJ6JyXtDhsg7qqZ3594cNjFQBf1mCaN7G21f5x9yCm51TTV61u-A2rLnqDlzv-N0_ne_A8UFlk2aR4IW05ynIyDWxC60i6LaT0O5CQimj3YjkrY6TShtHJl9R49YktlaQNgXjLDmZuuYunFzKR92DjWpRuftAci-USJUTMR7jWR4YwKibY3ib-1TnA3jer3BpumHrgfPjS4lBV0BDeYGGATxZyZ61I0b-KfU6AGUlEcaCxxuL5cey0zKl9ymT2hrmUy4k53OT-swo9OILr5nOBrDbY6jsdFVdXgDowf8fP4YtRFZ5NJkePoQb6DmG-RVox3dho1l-d3twzfxoPtfLR3EnEPhw2Qj7DYglRpg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-to-End+Change+Detection+for+High+Resolution+Satellite+Images+Using+Improved+UNet&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Daifeng+Peng&rft.au=Yongjun+Zhang&rft.au=Haiyan+Guan&rft.date=2019-06-10&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=11&rft.issue=11&rft.spage=1382&rft_id=info:doi/10.3390%2Frs11111382&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ff216adc1f234633bc2f5c71929fa1a5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |