Microarray is an efficient tool for circRNA profiling

Abstract Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA sequencing (RNA-seq) technology and bioinformatics prediction, large numbers of circRNAs have been identified. However, at present, we lac...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Briefings in bioinformatics Ročník 20; číslo 4; s. 1420 - 1433
Hlavní autori: Li, Shasha, Teng, Shuaishuai, Xu, Junquan, Su, Guannan, Zhang, Yu, Zhao, Jianqing, Zhang, Suwei, Wang, Haiyan, Qin, Wenyan, Lu, Zhi John, Guo, Yong, Zhu, Qianyong, Wang, Dong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 19.07.2019
Oxford Publishing Limited (England)
Predmet:
ISSN:1467-5463, 1477-4054, 1477-4054
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA sequencing (RNA-seq) technology and bioinformatics prediction, large numbers of circRNAs have been identified. However, at present, we lack a comprehensive characterization of all these circRNAs in interested samples. In this study, we integrated 87 935 circRNAs sequences that cover most of circRNAs identified till now represented in circBase to design microarray probes targeting back-splice site of each circRNA to profile expression of those circRNAs. By comparing the circRNA detection efficiency of RNA-seq with this circRNA microarray, we revealed that microarray is more efficient than RNA-seq for circRNA profiling. Then, we found ∼80 000 circRNAs were expressed in cervical tumors and matched normal tissues, and ∼25 000 of them were differently expressed. Notably, many of these circRNAs detected by this microarray can be validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or RNA-seq. Strikingly, as many as ∼18 000 circRNAs could be robustly detected in cell-free plasma samples, and the expression of ∼2700 of them differed after surgery for tumor removal. Our findings provided a comprehensive and genome-wide characterization of circRNAs in paired normal tissues and tumors and plasma samples from multiple individuals. In addition, we also provide a rich resource with 41 microarray data sets and 10 RNA-seq data sets and strong evidences for circRNA expression in cervical cancer. In conclusion, circRNAs could be efficiently profiled by circRNA microarray to target their reported back-splice sites in interested samples.
AbstractList Abstract Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA sequencing (RNA-seq) technology and bioinformatics prediction, large numbers of circRNAs have been identified. However, at present, we lack a comprehensive characterization of all these circRNAs in interested samples. In this study, we integrated 87 935 circRNAs sequences that cover most of circRNAs identified till now represented in circBase to design microarray probes targeting back-splice site of each circRNA to profile expression of those circRNAs. By comparing the circRNA detection efficiency of RNA-seq with this circRNA microarray, we revealed that microarray is more efficient than RNA-seq for circRNA profiling. Then, we found ∼80 000 circRNAs were expressed in cervical tumors and matched normal tissues, and ∼25 000 of them were differently expressed. Notably, many of these circRNAs detected by this microarray can be validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or RNA-seq. Strikingly, as many as ∼18 000 circRNAs could be robustly detected in cell-free plasma samples, and the expression of ∼2700 of them differed after surgery for tumor removal. Our findings provided a comprehensive and genome-wide characterization of circRNAs in paired normal tissues and tumors and plasma samples from multiple individuals. In addition, we also provide a rich resource with 41 microarray data sets and 10 RNA-seq data sets and strong evidences for circRNA expression in cervical cancer. In conclusion, circRNAs could be efficiently profiled by circRNA microarray to target their reported back-splice sites in interested samples.
Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA sequencing (RNA-seq) technology and bioinformatics prediction, large numbers of circRNAs have been identified. However, at present, we lack a comprehensive characterization of all these circRNAs in interested samples. In this study, we integrated 87 935 circRNAs sequences that cover most of circRNAs identified till now represented in circBase to design microarray probes targeting back-splice site of each circRNA to profile expression of those circRNAs. By comparing the circRNA detection efficiency of RNA-seq with this circRNA microarray, we revealed that microarray is more efficient than RNA-seq for circRNA profiling. Then, we found ∼80 000 circRNAs were expressed in cervical tumors and matched normal tissues, and ∼25 000 of them were differently expressed. Notably, many of these circRNAs detected by this microarray can be validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or RNA-seq. Strikingly, as many as ∼18 000 circRNAs could be robustly detected in cell-free plasma samples, and the expression of ∼2700 of them differed after surgery for tumor removal. Our findings provided a comprehensive and genome-wide characterization of circRNAs in paired normal tissues and tumors and plasma samples from multiple individuals. In addition, we also provide a rich resource with 41 microarray data sets and 10 RNA-seq data sets and strong evidences for circRNA expression in cervical cancer. In conclusion, circRNAs could be efficiently profiled by circRNA microarray to target their reported back-splice sites in interested samples.
Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA sequencing (RNA-seq) technology and bioinformatics prediction, large numbers of circRNAs have been identified. However, at present, we lack a comprehensive characterization of all these circRNAs in interested samples. In this study, we integrated 87 935 circRNAs sequences that cover most of circRNAs identified till now represented in circBase to design microarray probes targeting back-splice site of each circRNA to profile expression of those circRNAs. By comparing the circRNA detection efficiency of RNA-seq with this circRNA microarray, we revealed that microarray is more efficient than RNA-seq for circRNA profiling. Then, we found ∼80 000 circRNAs were expressed in cervical tumors and matched normal tissues, and ∼25 000 of them were differently expressed. Notably, many of these circRNAs detected by this microarray can be validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or RNA-seq. Strikingly, as many as ∼18 000 circRNAs could be robustly detected in cell-free plasma samples, and the expression of ∼2700 of them differed after surgery for tumor removal. Our findings provided a comprehensive and genome-wide characterization of circRNAs in paired normal tissues and tumors and plasma samples from multiple individuals. In addition, we also provide a rich resource with 41 microarray data sets and 10 RNA-seq data sets and strong evidences for circRNA expression in cervical cancer. In conclusion, circRNAs could be efficiently profiled by circRNA microarray to target their reported back-splice sites in interested samples.
Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA sequencing (RNA-seq) technology and bioinformatics prediction, large numbers of circRNAs have been identified. However, at present, we lack a comprehensive characterization of all these circRNAs in interested samples. In this study, we integrated 87 935 circRNAs sequences that cover most of circRNAs identified till now represented in circBase to design microarray probes targeting back-splice site of each circRNA to profile expression of those circRNAs. By comparing the circRNA detection efficiency of RNA-seq with this circRNA microarray, we revealed that microarray is more efficient than RNA-seq for circRNA profiling. Then, we found ∼80 000 circRNAs were expressed in cervical tumors and matched normal tissues, and ∼25 000 of them were differently expressed. Notably, many of these circRNAs detected by this microarray can be validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or RNA-seq. Strikingly, as many as ∼18 000 circRNAs could be robustly detected in cell-free plasma samples, and the expression of ∼2700 of them differed after surgery for tumor removal. Our findings provided a comprehensive and genome-wide characterization of circRNAs in paired normal tissues and tumors and plasma samples from multiple individuals. In addition, we also provide a rich resource with 41 microarray data sets and 10 RNA-seq data sets and strong evidences for circRNA expression in cervical cancer. In conclusion, circRNAs could be efficiently profiled by circRNA microarray to target their reported back-splice sites in interested samples.Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA sequencing (RNA-seq) technology and bioinformatics prediction, large numbers of circRNAs have been identified. However, at present, we lack a comprehensive characterization of all these circRNAs in interested samples. In this study, we integrated 87 935 circRNAs sequences that cover most of circRNAs identified till now represented in circBase to design microarray probes targeting back-splice site of each circRNA to profile expression of those circRNAs. By comparing the circRNA detection efficiency of RNA-seq with this circRNA microarray, we revealed that microarray is more efficient than RNA-seq for circRNA profiling. Then, we found ∼80 000 circRNAs were expressed in cervical tumors and matched normal tissues, and ∼25 000 of them were differently expressed. Notably, many of these circRNAs detected by this microarray can be validated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) or RNA-seq. Strikingly, as many as ∼18 000 circRNAs could be robustly detected in cell-free plasma samples, and the expression of ∼2700 of them differed after surgery for tumor removal. Our findings provided a comprehensive and genome-wide characterization of circRNAs in paired normal tissues and tumors and plasma samples from multiple individuals. In addition, we also provide a rich resource with 41 microarray data sets and 10 RNA-seq data sets and strong evidences for circRNA expression in cervical cancer. In conclusion, circRNAs could be efficiently profiled by circRNA microarray to target their reported back-splice sites in interested samples.
Author Su, Guannan
Wang, Dong
Zhao, Jianqing
Zhang, Yu
Qin, Wenyan
Zhu, Qianyong
Xu, Junquan
Li, Shasha
Wang, Haiyan
Lu, Zhi John
Teng, Shuaishuai
Zhang, Suwei
Guo, Yong
Author_xml – sequence: 1
  givenname: Shasha
  surname: Li
  fullname: Li, Shasha
– sequence: 2
  givenname: Shuaishuai
  surname: Teng
  fullname: Teng, Shuaishuai
– sequence: 3
  givenname: Junquan
  surname: Xu
  fullname: Xu, Junquan
– sequence: 4
  givenname: Guannan
  surname: Su
  fullname: Su, Guannan
– sequence: 5
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
– sequence: 6
  givenname: Jianqing
  surname: Zhao
  fullname: Zhao, Jianqing
– sequence: 7
  givenname: Suwei
  surname: Zhang
  fullname: Zhang, Suwei
– sequence: 8
  givenname: Haiyan
  surname: Wang
  fullname: Wang, Haiyan
  email: dwang@biomed.tsinghua.edu.cn
– sequence: 9
  givenname: Wenyan
  surname: Qin
  fullname: Qin, Wenyan
– sequence: 10
  givenname: Zhi John
  surname: Lu
  fullname: Lu, Zhi John
– sequence: 11
  givenname: Yong
  surname: Guo
  fullname: Guo, Yong
– sequence: 12
  givenname: Qianyong
  surname: Zhu
  fullname: Zhu, Qianyong
  email: 1832258836@qq.com
– sequence: 13
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  email: dwang@biomed.tsinghua.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29415187$$D View this record in MEDLINE/PubMed
BookMark eNp90E1LwzAYwPEgE_eiFz-AFEQQoS5JkzQ5juEbTAXRc0iyRDK6ZibtYd_ejm6XIZ6Sw-95Ev5jMKhDbQG4RPAeQVFMtddTrbcQshMwQqQscwIpGezurMwpYcUQjFNaQYhhydEZGGJBEEW8HAH66k0MKka1zXzKVJ1Z57zxtm6yJoQqcyFmxkfz8TbLNjE4X_n6-xycOlUle7E_J-Dr8eFz_pwv3p9e5rNFbgqCmtyJggth-NIwQq1TWFktnCOYcKUYVdZaWpZL7hClghFmNbaaYui0VoXmopiA235v9_JPa1Mj1z4ZW1WqtqFNEgkhGC84QR29PqKr0Ma6-53EglKMBWK0U1d71eq1XcpN9GsVt_IQpAOwB12VlKJ10vhGNT7UTVS-kgjKXXPZNZd9827k7mjksPVPfNPj0G7-c7_0Eo5q
CitedBy_id crossref_primary_10_3390_ijms221910626
crossref_primary_10_1016_j_bios_2022_114982
crossref_primary_10_1007_s10528_022_10231_6
crossref_primary_10_3390_ijms242216213
crossref_primary_10_1007_s00414_023_03091_1
crossref_primary_10_1016_j_omtn_2021_10_002
crossref_primary_10_3389_fcell_2020_603516
crossref_primary_10_1186_s12872_021_02217_w
crossref_primary_10_3390_ncrna6040045
crossref_primary_10_1093_nar_gkad763
crossref_primary_10_3390_ijms21175972
crossref_primary_10_1038_s41420_022_00865_1
crossref_primary_10_1097_BRS_0000000000003975
crossref_primary_10_3390_cells12040552
crossref_primary_10_1002_jcla_23603
crossref_primary_10_1016_j_bios_2024_116875
crossref_primary_10_1038_s41419_023_05881_2
crossref_primary_10_3390_biom12091235
crossref_primary_10_1007_s13273_022_00292_4
crossref_primary_10_1186_s40364_022_00407_y
crossref_primary_10_1111_nyas_14679
crossref_primary_10_1016_j_csbj_2021_01_018
crossref_primary_10_3892_ijmm_2025_5491
crossref_primary_10_1186_s12935_022_02559_1
crossref_primary_10_3389_fonc_2019_00500
crossref_primary_10_3389_fcell_2020_00050
crossref_primary_10_3390_genes10090642
crossref_primary_10_1002_wrna_1850
crossref_primary_10_3389_fimmu_2025_1542686
crossref_primary_10_1002_mco2_699
crossref_primary_10_1016_j_omtn_2024_102286
crossref_primary_10_1007_s10529_020_03059_w
crossref_primary_10_1007_s40618_022_01922_3
crossref_primary_10_1016_j_ccr_2023_215249
crossref_primary_10_3390_cancers12061472
crossref_primary_10_1007_s00432_019_03045_4
crossref_primary_10_3389_fcell_2021_618113
crossref_primary_10_1016_j_bioana_2024_11_002
crossref_primary_10_2147_PGPM_S424359
crossref_primary_10_1080_13813455_2024_2404975
crossref_primary_10_1016_j_ijbiomac_2023_124929
crossref_primary_10_1111_cbdd_14423
crossref_primary_10_1186_s12943_018_0877_y
crossref_primary_10_3389_fonc_2020_00184
crossref_primary_10_1016_j_bios_2021_113500
crossref_primary_10_7717_peerj_5503
crossref_primary_10_1038_s41531_021_00265_9
crossref_primary_10_1016_j_gene_2020_145365
crossref_primary_10_1007_s11596_023_2784_8
crossref_primary_10_2217_pme_2023_0020
crossref_primary_10_7717_peerj_10032
crossref_primary_10_1080_10409238_2023_2185764
crossref_primary_10_1177_03936155221086599
crossref_primary_10_1016_j_talanta_2021_123066
crossref_primary_10_1186_s12920_020_00800_2
crossref_primary_10_1002_cai2_28
crossref_primary_10_2147_CMAR_S243329
crossref_primary_10_3389_fgene_2021_749296
crossref_primary_10_1007_s10528_022_10224_5
crossref_primary_10_1371_journal_pone_0242194
crossref_primary_10_1016_j_omtn_2021_10_017
crossref_primary_10_3389_fgene_2021_653051
crossref_primary_10_1186_s12935_020_01736_4
crossref_primary_10_1155_2021_1565660
crossref_primary_10_1002_wrna_1872
crossref_primary_10_1186_s40364_022_00392_2
crossref_primary_10_1007_s10528_022_10275_8
crossref_primary_10_1016_j_cej_2024_149788
crossref_primary_10_3390_pharmaceutics17040471
crossref_primary_10_1093_bib_bbaa001
crossref_primary_10_3389_fmed_2022_759928
crossref_primary_10_3389_fonc_2021_676609
crossref_primary_10_1080_01443615_2023_2228894
crossref_primary_10_3389_fonc_2022_858598
crossref_primary_10_1007_s00109_023_02413_5
crossref_primary_10_1155_2021_5575286
crossref_primary_10_1186_s12967_019_1800_z
crossref_primary_10_1002_cnr2_70316
crossref_primary_10_59717_j_xinn_med_2024_100081
crossref_primary_10_1016_j_cca_2022_09_027
crossref_primary_10_1007_s11011_023_01184_9
crossref_primary_10_1007_s11064_023_04077_6
crossref_primary_10_3390_ijms21217812
crossref_primary_10_1016_j_biocel_2023_106364
crossref_primary_10_1016_j_snb_2022_132893
crossref_primary_10_4014_jmb_2412_12048
crossref_primary_10_1016_j_pneurobio_2020_101746
crossref_primary_10_1007_s12033_023_00658_6
crossref_primary_10_1007_s12094_023_03324_0
crossref_primary_10_3389_fmolb_2022_886366
crossref_primary_10_3389_fonc_2020_00959
crossref_primary_10_1007_s43032_022_00920_3
crossref_primary_10_1016_j_prp_2022_154073
crossref_primary_10_2147_OTT_S246957
crossref_primary_10_1016_j_gendis_2025_101605
crossref_primary_10_3389_fgene_2021_679446
crossref_primary_10_1080_10799893_2021_1910706
crossref_primary_10_1186_s12957_023_03050_5
crossref_primary_10_3389_fonc_2022_845703
crossref_primary_10_1016_j_biopha_2023_115818
crossref_primary_10_1186_s12935_020_01417_2
crossref_primary_10_32604_chd_2024_054742
crossref_primary_10_1007_s10528_023_10534_2
crossref_primary_10_1097_MD_0000000000027404
crossref_primary_10_1007_s00018_025_05684_y
crossref_primary_10_1186_s12964_024_01494_0
crossref_primary_10_1093_bib_bbaa023
crossref_primary_10_1007_s00018_019_03016_5
crossref_primary_10_1134_S0006297924140013
crossref_primary_10_1186_s12943_023_01766_2
crossref_primary_10_1007_s10528_022_10239_y
crossref_primary_10_1038_s41388_023_02780_w
crossref_primary_10_1155_2021_5529486
crossref_primary_10_1016_j_cej_2025_160685
crossref_primary_10_1021_acs_chemrestox_5c00146
crossref_primary_10_3389_fmolb_2021_781424
crossref_primary_10_1002_jcp_29449
crossref_primary_10_1016_j_bios_2025_117564
crossref_primary_10_1016_j_toxlet_2023_04_003
crossref_primary_10_1038_s42003_022_04262_3
crossref_primary_10_3390_cancers11101473
crossref_primary_10_1002_jcla_24805
crossref_primary_10_1186_s40364_022_00388_y
crossref_primary_10_1021_acs_analchem_5c03464
crossref_primary_10_3389_fcvm_2021_672600
crossref_primary_10_3389_fsurg_2022_842292
crossref_primary_10_3390_cancers14040866
crossref_primary_10_1016_j_lfs_2020_117363
crossref_primary_10_1111_jre_12989
crossref_primary_10_1016_j_cellsig_2020_109669
crossref_primary_10_1186_s12868_022_00736_6
crossref_primary_10_1186_s12943_019_1113_0
crossref_primary_10_3390_gidisord2030022
crossref_primary_10_1186_s12931_024_02716_2
crossref_primary_10_4103_ejh_ejh_78_24
crossref_primary_10_1016_j_ynpai_2023_100142
crossref_primary_10_1186_s12943_020_01300_8
crossref_primary_10_2147_DDDT_S288473
crossref_primary_10_1186_s13046_022_02378_2
crossref_primary_10_1038_s41467_021_24975_z
crossref_primary_10_1155_2021_4738264
crossref_primary_10_1111_febs_70012
crossref_primary_10_2147_CMAR_S362594
Cites_doi 10.1073/pnas.73.11.3852
10.1038/nsmb.2959
10.18632/oncotarget.9706
10.1158/0008-5472.CAN-16-1883
10.1101/gr.092759.109
10.1080/21541264.2015.1071301
10.1002/cpt1970113432
10.1042/CS20140089
10.1126/science.270.5235.467
10.1080/15384101.2017.1380135
10.1016/j.molcel.2013.08.017
10.1038/s41598-017-09076-6
10.1038/nrclinonc.2014.5
10.1261/rna.035667.112
10.2174/1389202916666150707161554
10.1080/15476286.2015.1020271
10.1016/j.molcel.2015.03.027
10.1371/journal.pgen.1003777
10.18632/oncotarget.8917
10.1186/s13072-016-0075-3
10.1371/journal.pone.0030733
10.1186/s13059-014-0409-z
10.3390/genes8120353
10.1016/j.canlet.2016.12.006
10.1261/rna.043687.113
10.1016/j.celrep.2014.12.002
10.1093/nar/gkq622
10.1016/j.molcel.2017.10.034
10.1016/j.cell.2014.09.001
10.1016/j.celrep.2016.03.058
10.1038/nrg.2016.114
10.1038/srep08057
10.3945/an.116.012211
10.1038/cr.2015.82
10.1038/nbt.2890
10.1016/j.gdata.2015.07.017
10.2217/epi-2015-0019
10.1073/pnas.1405528111
10.1038/nature11928
10.1016/S0959-8049(12)71445-4
10.1371/journal.pone.0141214
10.1080/15476286.2015.1122162
10.18637/jss.v033.i01
10.1177/1479164117722714
10.1016/j.molcel.2014.08.019
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2018
The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2018
– notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bby006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef
Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
EndPage 1433
ExternalDocumentID 29415187
10_1093_bib_bby006
10.1093/bib/bby006
Genre Validation Study
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31371314
  funderid: 10.13039/501100001809
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
ROX
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c341t-f93899c8dc645efa2aeb9ff4248aa65aeee577d8f1559646eb2eb520fbba3b893
IEDL.DBID TOX
ISICitedReferencesCount 174
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000493041400031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1467-5463
1477-4054
IngestDate Thu Sep 04 20:19:38 EDT 2025
Fri Oct 03 06:01:13 EDT 2025
Wed Feb 19 02:30:21 EST 2025
Sat Nov 29 05:43:17 EST 2025
Tue Nov 18 21:25:39 EST 2025
Wed Apr 02 06:55:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords circRNAs
circRNA microarray
cervical cancer
plasma circRNA
noninvasively biomarker
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-f93899c8dc645efa2aeb9ff4248aa65aeee577d8f1559646eb2eb520fbba3b893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 29415187
PQID 2955229165
PQPubID 26846
PageCount 14
ParticipantIDs proquest_miscellaneous_1999683841
proquest_journals_2955229165
pubmed_primary_29415187
crossref_citationtrail_10_1093_bib_bby006
crossref_primary_10_1093_bib_bby006
oup_primary_10_1093_bib_bby006
PublicationCentury 2000
PublicationDate 2019-07-19
PublicationDateYYYYMMDD 2019-07-19
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2019
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Sanger (2019100807485760200_bby006-B1) 1976; 73
Bachmayr-Heyda (2019100807485760200_bby006-B38) 2015; 5
Lindner (2019100807485760200_bby006-B41) 2015; 128
Feinstein (2019100807485760200_bby006-B37) 1970; 11
Chen (2019100807485760200_bby006-B11) 2015; 16
Haque (2019100807485760200_bby006-B14) 2017; 8
Li (2019100807485760200_bby006-B26) 2015; 25
Schena (2019100807485760200_bby006-B43) 1995; 270
Shao (2019100807485760200_bby006-B17) 2017; 10
Stoffelen (2019100807485760200_bby006-B10) 2012; 7
Friedman (2019100807485760200_bby006-B32) 2010; 33
Yong (2019100807485760200_bby006-B7) 2016; 9
Wang (2019100807485760200_bby006-B28) 2010; 38
Rybak-Wolf (2019100807485760200_bby006-B35) 2015; 58
Callari (2019100807485760200_bby006-B36) 2012; 48
Jie (2019100807485760200_bby006-B15) 2017; 388
Zhao (2019100807485760200_bby006-B18) 2017; 14
Liaw (2019100807485760200_bby006-B33) 2001; 23
Yang (2019100807485760200_bby006-B3) 2016; 15
Li (2019100807485760200_bby006-B29) 2015; 22
Memczak (2019100807485760200_bby006-B2) 2013; 495
Salzman (2019100807485760200_bby006-B20) 2013; 9
Zhang (2019100807485760200_bby006-B30) 2013; 51
Chen (2019100807485760200_bby006-B9) 2015; 12
Ahmed (2019100807485760200_bby006-B24) 2016; 7
Li (2019100807485760200_bby006-B48) 2017; 14
Huang (2019100807485760200_bby006-B6) 2015; 6
Zhang (2019100807485760200_bby006-B13) 2014; 159
Jeck (2019100807485760200_bby006-B8) 2013; 19
Guo (2019100807485760200_bby006-B19) 2014; 15
McGuire (2019100807485760200_bby006-B22) 2016; 7
Glažar (2019100807485760200_bby006-B27) 2014; 20
Starke (2019100807485760200_bby006-B12) 2015; 56
Qu (2019100807485760200_bby006-B44) 2015; 5
Dang (2019100807485760200_bby006-B47) 2017; 7
Sand (2019100807485760200_bby006-B23) 2016; 8
Koh (2019100807485760200_bby006-B40) 2014; 111
Ashwal-Fluss (2019100807485760200_bby006-B5) 2014; 56
Jeck (2019100807485760200_bby006-B4) 2014; 32
Szabo (2019100807485760200_bby006-B21) 2016; 17
Lai (2019100807485760200_bby006-B46) 2017; 16
Liang (2019100807485760200_bby006-B39) 2017; 68
Gross (2019100807485760200_bby006-B42) 2014; 11
Krzywinski (2019100807485760200_bby006-B31) 2009; 19
Huang (2019100807485760200_bby006-B45) 2016; 7
Hsiao (2019100807485760200_bby006-B16) 2017; 77
Kuhn (2019100807485760200_bby006-B34) 1989; 129
Memczak (2019100807485760200_bby006-B25) 2015; 10
References_xml – volume: 73
  start-page: 3852
  issue: 11
  year: 1976
  ident: 2019100807485760200_bby006-B1
  article-title: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.73.11.3852
– volume: 22
  start-page: 256
  year: 2015
  ident: 2019100807485760200_bby006-B29
  article-title: Exon-intron circular RNAs regulate transcription in the nucleus
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.2959
– volume: 7
  start-page: 47186
  issue: 30
  year: 2016
  ident: 2019100807485760200_bby006-B45
  article-title: Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9706
– volume: 77
  start-page: 2339
  issue: 9
  year: 2017
  ident: 2019100807485760200_bby006-B16
  article-title: Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-1883
– volume: 19
  start-page: 1639
  issue: 9
  year: 2009
  ident: 2019100807485760200_bby006-B31
  article-title: Circos: an information aesthetic for comparative genomics
  publication-title: Genome Res
  doi: 10.1101/gr.092759.109
– volume: 6
  start-page: 61
  issue: 4
  year: 2015
  ident: 2019100807485760200_bby006-B6
  article-title: What happens at or after transcription: insights into circRNA biogenesis and function
  publication-title: Transcription
  doi: 10.1080/21541264.2015.1071301
– volume: 11
  start-page: 432
  issue: 3
  year: 1970
  ident: 2019100807485760200_bby006-B37
  article-title: Clinical biostatistics. 3. The architecture of clinical research
  publication-title: Clin Pharmacol Ther
  doi: 10.1002/cpt1970113432
– volume: 128
  start-page: 1
  issue: 1
  year: 2015
  ident: 2019100807485760200_bby006-B41
  article-title: Circulating microRNAs: emerging biomarkers for diagnosis and prognosis in patients with gastrointestinal cancers
  publication-title: Clin Sci
  doi: 10.1042/CS20140089
– volume: 270
  start-page: 467
  issue: 5235
  year: 1995
  ident: 2019100807485760200_bby006-B43
  article-title: Quantitative monitoring of gene expression patterns with a complementary DNA microarray
  publication-title: Science
  doi: 10.1126/science.270.5235.467
– volume: 16
  start-page: 2301
  year: 2017
  ident: 2019100807485760200_bby006-B46
  article-title: Analysis of co-expression networks for circular RNAs and mRNAs reveals that circular RNAs hsa_circ_0047905, hsa_circ_0138960 and has-circRNA7690-15 are candidate oncogenes in gastric cancer
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2017.1380135
– volume: 51
  start-page: 792
  issue: 6
  year: 2013
  ident: 2019100807485760200_bby006-B30
  article-title: Circular intronic long noncoding RNAs
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2013.08.017
– volume: 7
  start-page: 9060
  issue: 1
  year: 2017
  ident: 2019100807485760200_bby006-B47
  article-title: Circular RNAs expression profiles in human gastric cancer
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09076-6
– volume: 11
  start-page: 145
  year: 2014
  ident: 2019100807485760200_bby006-B42
  article-title: Clinical relevance of circulating cell-free microRNAs in cancer
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2014.5
– volume: 19
  start-page: 141
  issue: 2
  year: 2013
  ident: 2019100807485760200_bby006-B8
  article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats
  publication-title: RNA
  doi: 10.1261/rna.035667.112
– volume: 16
  start-page: 312
  issue: 5
  year: 2015
  ident: 2019100807485760200_bby006-B11
  article-title: Circular RNAs in eukaryotic cells
  publication-title: Curr Genomics
  doi: 10.2174/1389202916666150707161554
– volume: 12
  start-page: 381
  issue: 4
  year: 2015
  ident: 2019100807485760200_bby006-B9
  article-title: Regulation of circRNA biogenesis
  publication-title: RNA Biol
  doi: 10.1080/15476286.2015.1020271
– volume: 58
  start-page: 870
  issue: 5
  year: 2015
  ident: 2019100807485760200_bby006-B35
  article-title: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.03.027
– volume: 9
  start-page: 119
  issue: 9
  year: 2013
  ident: 2019100807485760200_bby006-B20
  article-title: Cell-type specific features of circular RNA expression
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003777
– volume: 7
  start-page: 36366
  issue: 24
  year: 2016
  ident: 2019100807485760200_bby006-B24
  article-title: Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8917
– volume: 9
  start-page: 26
  issue: 1
  year: 2016
  ident: 2019100807485760200_bby006-B7
  article-title: Profiling genome-wide DNA methylation
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-016-0075-3
– volume: 7
  start-page: e30733
  year: 2012
  ident: 2019100807485760200_bby006-B10
  article-title: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030733
– volume: 15
  start-page: 409
  issue: 7
  year: 2014
  ident: 2019100807485760200_bby006-B19
  article-title: Expanded identification and characterization of mammalian circular RNAs
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0409-z
– volume: 8
  start-page: 353
  year: 2017
  ident: 2019100807485760200_bby006-B14
  article-title: Circular RNAs (circRNAs) in health and disease
  publication-title: Genes
  doi: 10.3390/genes8120353
– volume: 388
  start-page: 208
  year: 2017
  ident: 2019100807485760200_bby006-B15
  article-title: Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2016.12.006
– volume: 20
  start-page: 1666
  issue: 11
  year: 2014
  ident: 2019100807485760200_bby006-B27
  article-title: circBase: a database for circular RNAs
  publication-title: RNA
  doi: 10.1261/rna.043687.113
– volume: 56
  start-page: 103
  year: 2015
  ident: 2019100807485760200_bby006-B12
  article-title: Exon circularization requires canonical splice signals
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.12.002
– volume: 38
  start-page: e178
  issue: 18
  year: 2010
  ident: 2019100807485760200_bby006-B28
  article-title: MapSplice: accurate mapping of RNA-seq reads for splice junction discovery
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq622
– volume: 68
  start-page: 940
  issue: 5
  year: 2017
  ident: 2019100807485760200_bby006-B39
  article-title: The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.10.034
– volume: 159
  start-page: 134
  issue: 1
  year: 2014
  ident: 2019100807485760200_bby006-B13
  article-title: Complementary sequence-mediated exon circularization
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.001
– volume: 15
  start-page: 611
  issue: 3
  year: 2016
  ident: 2019100807485760200_bby006-B3
  article-title: The biogenesis of nascent circular RNAs
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.03.058
– volume: 17
  start-page: 679
  issue: 11
  year: 2016
  ident: 2019100807485760200_bby006-B21
  article-title: Detecting circular RNAs: bioinformatic and experimental challenges
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.114
– volume: 5
  start-page: 8057
  year: 2015
  ident: 2019100807485760200_bby006-B38
  article-title: Correlation of circular RNA abundance with proliferation–exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues
  publication-title: Sci Rep
  doi: 10.1038/srep08057
– volume: 7
  start-page: 418
  year: 2016
  ident: 2019100807485760200_bby006-B22
  article-title: World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015
  publication-title: Adv Nutr
  doi: 10.3945/an.116.012211
– volume: 25
  start-page: 981
  issue: 8
  year: 2015
  ident: 2019100807485760200_bby006-B26
  article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis
  publication-title: Cell Res
  doi: 10.1038/cr.2015.82
– volume: 32
  start-page: 453
  issue: 5
  year: 2014
  ident: 2019100807485760200_bby006-B4
  article-title: Detecting and characterizing circular RNAs
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2890
– volume: 5
  start-page: 385
  year: 2015
  ident: 2019100807485760200_bby006-B44
  article-title: Microarray expression profile of circular RNAs in human pancreatic ductal adenocarcinoma
  publication-title: Genom Data
  doi: 10.1016/j.gdata.2015.07.017
– volume: 8
  start-page: 619
  issue: 5
  year: 2016
  ident: 2019100807485760200_bby006-B23
  article-title: Circular RNA expression in basal cell carcinoma
  publication-title: Epigenomics
  doi: 10.2217/epi-2015-0019
– volume: 111
  start-page: 7361
  issue: 20
  year: 2014
  ident: 2019100807485760200_bby006-B40
  article-title: Noninvasive in vivo monitoring of tissue-specific global gene expression in humans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1405528111
– volume: 495
  start-page: 333
  issue: 7441
  year: 2013
  ident: 2019100807485760200_bby006-B2
  article-title: Circular RNAs are a large class of animal RNAs with regulatory potency
  publication-title: Nature
  doi: 10.1038/nature11928
– volume: 23
  start-page: 18
  year: 2001
  ident: 2019100807485760200_bby006-B33
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 48
  start-page: S194
  year: 2012
  ident: 2019100807485760200_bby006-B36
  article-title: 812 comparison of microarray platforms for measuring differential MicroRNA expression in paired normal/cancer colon tissues
  publication-title: Eur J Cancer
  doi: 10.1016/S0959-8049(12)71445-4
– volume: 10
  start-page: 5802
  issue: 10
  year: 2015
  ident: 2019100807485760200_bby006-B25
  article-title: Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0141214
– volume: 14
  start-page: 514
  issue: 5
  year: 2017
  ident: 2019100807485760200_bby006-B18
  article-title: Circular RNA participates in the carcinogenesis and the malignant behavior of cancer
  publication-title: RNA Biol
  doi: 10.1080/15476286.2015.1122162
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 2019100807485760200_bby006-B32
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 10
  start-page: 3151
  year: 2017
  ident: 2019100807485760200_bby006-B17
  article-title: Identification of tissue-specific circRNA hsa_circ_0000705 as an indicator for human gastric cancer
  publication-title: Int J Clin Exp Pathol
– volume: 14
  start-page: 510
  issue: 6
  year: 2017
  ident: 2019100807485760200_bby006-B48
  article-title: Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus
  publication-title: Diab Vasc Dis Res
  doi: 10.1177/1479164117722714
– volume: 56
  start-page: 55
  issue: 1
  year: 2014
  ident: 2019100807485760200_bby006-B5
  article-title: circRNA biogenesis competes with pre-mRNA splicing
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.08.019
– volume: 129
  start-page: 291
  year: 1989
  ident: 2019100807485760200_bby006-B34
  article-title: caret: classification and regression training
  publication-title: J Colloid Interface Sci
SSID ssj0020781
Score 2.6037848
Snippet Abstract Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of...
Circular RNAs (circRNAs) are emerging as a new class of endogenous and regulatory noncoding RNAs in latest years. With the widespread application of RNA...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1420
SubjectTerms Bioinformatics
Brain - metabolism
Cervical cancer
Circular RNA
Computational Biology
Databases, Nucleic Acid - statistics & numerical data
Datasets
DNA probes
Female
Gene Expression Profiling - methods
Gene Expression Profiling - statistics & numerical data
Gene sequencing
Genomes
Humans
Neoplasms - blood
Neoplasms - genetics
Neoplasms - metabolism
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Polymerase chain reaction
Reverse transcription
RNA, Circular - blood
RNA, Circular - genetics
RNA, Circular - metabolism
RNA-Seq - methods
RNA-Seq - statistics & numerical data
Tissue Distribution
Tumors
Uterine Cervical Neoplasms - blood
Uterine Cervical Neoplasms - genetics
Uterine Cervical Neoplasms - metabolism
Title Microarray is an efficient tool for circRNA profiling
URI https://www.ncbi.nlm.nih.gov/pubmed/29415187
https://www.proquest.com/docview/2955229165
https://www.proquest.com/docview/1999683841
Volume 20
WOSCitedRecordID wos000493041400031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020781
  issn: 1467-5463
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60KHjx_ajWEtGLh6XdR15HEYsXq0iF3pYkzUKh7MpuK_TfO2m2hWJRz5tlwkzC9w2T-QbgLtZMjHTGA6q4DZLI6ECJxASSGwRLxsPI-mETvN8Xw6F8qx_RVBtK-DLu6LHuaD33wtohFe40D16Hq7TKydX4HiK0mLB4KUK69usa7Ky1sv1glAtk6R38c0-HsF9TR_LgY30EWzY_hl0_THJ-AvTFva1TZanmZFwRlRO7kIdAVCHTopgQpKfEjEvz3n8gflQ3wtYpfPSeBo_PQT0UITAIONMgk04Rz4iRYQm1mYqU1TLLkigRSjGqrLWU85HIXL2RJQwzZ6tp1M20VrFGdnIGjbzI7QUQzCXixR3UEpO0kVUITdR2uTQ2CllXNeF-6bPU1IrhbnDFJPWV6zhFN6TeDU24Xa399DoZG1e10fW_Lmgto5LWl6lKI0mRJSKPpU24WX3Ga-BqGyq3xaxKnZoCE7FIwiac-2iuzEQSWUoo-OVf1q9gD_mQa-oKQtmCxrSc2WvYMV_TcVW2YZsPRXtx9r4Bv2XTCA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microarray+is+an+efficient+tool+for+circRNA+profiling&rft.jtitle=Briefings+in+bioinformatics&rft.au=Li%2C+Shasha&rft.au=Teng%2C+Shuaishuai&rft.au=Xu%2C+Junquan&rft.au=Su%2C+Guannan&rft.date=2019-07-19&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=20&rft.issue=4&rft.spage=1420&rft.epage=1433&rft_id=info:doi/10.1093%2Fbib%2Fbby006&rft.externalDocID=10.1093%2Fbib%2Fbby006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon