A systematic literature review of emotion recognition using EEG signals

In this study, we conducted a systematic literature review of 107 primary studies conducted between 2017 and 2023 to discern trends in datasets, classifiers, and contributions to human emotion recognition using EEG signals. We identified DEAP (43%), SEED (29%), DREAMER (8%), and SEED-IV (5%) as the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Cognitive systems research Ročník 82; s. 101152
Hlavní autoři: Prabowo, Dwi Wahyu, Nugroho, Hanung Adi, Setiawan, Noor Akhmad, Debayle, Johan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2023
Elsevier
Témata:
ISSN:1389-0417, 1389-0417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, we conducted a systematic literature review of 107 primary studies conducted between 2017 and 2023 to discern trends in datasets, classifiers, and contributions to human emotion recognition using EEG signals. We identified DEAP (43%), SEED (29%), DREAMER (8%), and SEED-IV (5%) as the most commonly used EEG signal datasets. Deep learning techniques, especially transformer neural architecture search (TNAS), global-to-local feature aggregation network (GLFANet), attention-based convolutional transformer neural network (ACTNN) and efficient CNN-contrastive learning (ECNN-C), demonstrate superior performance across different datasets. Our comparative analysis of the validation scenarios revealed that subject-dependent validations outperformed subject-independent validations, highlighting the challenge of individual differences. This finding underscores the need for future research to address these individual differences in emotion recognition and enhance the generalizability of the models. The research contributions spanned seven categories: data augmentation, domain adaptation, channel selection, preprocessing, feature selection, classifiers, and feature extraction, with a major emphasis on feature extraction and classification (34%). This trend suggests a growing recognition of the importance of these contributions in the development of effective emotion-recognition systems. Our study contributes to the field by providing a comprehensive overview of recent trends, illuminating the performance of various classifiers, and highlighting key areas for future research on EEG-based emotion recognition. This work has significant implications for various applications, including mental health, human–computer interaction, and affective brain–computer interfaces.
AbstractList In this study, we conducted a systematic literature review of 107 primary studies conducted between 2017 and 2023 to discern trends in datasets, classifiers, and contributions to human emotion recognition using EEG signals. We identified DEAP (43%), SEED (29%), DREAMER (8%), and SEED-IV (5%) as the most commonly used EEG signal datasets. Deep learning techniques, especially transformer neural architecture search (TNAS), global-to-local feature aggregation network (GLFANet), attention-based convolutional transformer neural network (ACTNN) and efficient CNN-contrastive learning (ECNN-C), demonstrate superior performance across different datasets. Our comparative analysis of the validation scenarios revealed that subject-dependent validations outperformed subject-independent validations, highlighting the challenge of individual differences. This finding underscores the need for future research to address these individual differences in emotion recognition and enhance the generalizability of the models. The research contributions spanned seven categories: data augmentation, domain adaptation, channel selection, preprocessing, feature selection, classifiers, and feature extraction, with a major emphasis on feature extraction and classification (34%). This trend suggests a growing recognition of the importance of these contributions in the development of effective emotion-recognition systems. Our study contributes to the field by providing a comprehensive overview of recent trends, illuminating the performance of various classifiers, and highlighting key areas for future research on EEG-based emotion recognition. This work has significant implications for various applications, including mental health, human–computer interaction, and affective brain–computer interfaces.
ArticleNumber 101152
Author Nugroho, Hanung Adi
Debayle, Johan
Prabowo, Dwi Wahyu
Setiawan, Noor Akhmad
Author_xml – sequence: 1
  givenname: Dwi Wahyu
  surname: Prabowo
  fullname: Prabowo, Dwi Wahyu
  organization: Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 Kampus UGM, Yogyakarta, 55281, Indonesia
– sequence: 2
  givenname: Hanung Adi
  surname: Nugroho
  fullname: Nugroho, Hanung Adi
  email: adinugroho@ugm.ac.id
  organization: Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 Kampus UGM, Yogyakarta, 55281, Indonesia
– sequence: 3
  givenname: Noor Akhmad
  surname: Setiawan
  fullname: Setiawan, Noor Akhmad
  organization: Department of Electrical and Information Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2 Kampus UGM, Yogyakarta, 55281, Indonesia
– sequence: 4
  givenname: Johan
  surname: Debayle
  fullname: Debayle, Johan
  organization: MINES Saint-Etienne, CNRS, UMR 5307 LGF, Centre SPIN, Saint-Etienne, France
BackLink https://hal-emse.ccsd.cnrs.fr/emse-04185401$$DView record in HAL
BookMark eNqFkFFLwzAQx4NMcJt-Ax_6LHQ2TbM2PghjzE0Y-KLPIUkvM6NtJMkm-_amVkF80Kc7jv_vjvtN0KizHSB0jbMZzvD8dj9TdudPfpZnOelHmOZnaIxJxdKswOXoR3-BJt7vs4gxmo_RepFEMEArglFJYwI4EQ4OEgdHA--J1Qm0NhjbxUm80pnP_uBNt0tWq3Xiza4Tjb9E5zoWuPqqU_TysHpebtLt0_pxudimihQ4pKBkSVgldKHrspYVpoD1nLKyUIJVVGlKtNBSl0xqKqgguSyYFJLWkazYnEzRzbD3VTT8zZlWuBO3wvDNYsuh9cDjkxUtMnzEMXw3hJWz3jvQXJkg-geCE6bhOOO9P77ngz_e--ODvwgXv-Dvc_9g9wMG0UJU6LhXBjoFtYkCA6-t-XvBBw2sj7c
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3322294
crossref_primary_10_1016_j_bspc_2025_108111
crossref_primary_10_3389_fnhum_2024_1464431
crossref_primary_10_1007_s12021_025_09733_6
crossref_primary_10_1016_j_bspc_2025_108372
crossref_primary_10_1109_ACCESS_2025_3586713
crossref_primary_10_1007_s10791_025_09596_0
crossref_primary_10_1080_10447318_2025_2551049
crossref_primary_10_1109_ACCESS_2024_3409384
crossref_primary_10_1109_ACCESS_2024_3441514
crossref_primary_10_1016_j_jenvp_2025_102580
crossref_primary_10_1016_j_brainres_2024_149039
crossref_primary_10_1007_s10044_025_01501_1
crossref_primary_10_1007_s11571_025_10277_3
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_3390_computers14080299
crossref_primary_10_3390_e26070540
crossref_primary_10_1155_2024_7499554
crossref_primary_10_1109_ACCESS_2024_3516198
crossref_primary_10_1088_1741_2552_ad4743
crossref_primary_10_1109_ACCESS_2024_3371904
crossref_primary_10_1016_j_asoc_2025_113478
crossref_primary_10_1016_j_knosys_2025_114318
crossref_primary_10_1016_j_prime_2024_100818
crossref_primary_10_3390_app15052328
Cites_doi 10.1016/j.bica.2018.04.012
10.3390/s17051014
10.1109/ACCESS.2019.2944273
10.1016/j.bspc.2022.104211
10.1016/j.ijhcs.2009.03.005
10.1186/s40537-020-00289-7
10.1080/10255842.2021.2007889
10.1016/j.bica.2018.01.001
10.1109/JBHI.2022.3212475
10.1007/s00500-022-07413-0
10.1088/1741-2552/abb580
10.3233/THC-174739
10.18201/ijisae.2021473639
10.1016/j.jestch.2021.03.012
10.1007/s10044-019-00860-w
10.3390/s19235218
10.1109/TII.2022.3170422
10.1088/1741-2552/aab2f2
10.1016/j.bspc.2019.101646
10.1007/s12652-020-02338-8
10.1109/ACCESS.2019.2904400
10.1109/JIOT.2021.3061727
10.1016/j.cogsys.2020.10.001
10.1016/j.comcom.2020.02.051
10.1016/j.compbiomed.2022.106344
10.1080/02699930143000392
10.1109/ACCESS.2020.2974009
10.1016/j.bspc.2020.101951
10.1155/2023/9223599
10.1016/j.bica.2018.04.011
10.3390/s22145158
10.1016/j.compbiomed.2022.105303
10.1016/j.bspc.2022.104141
10.1109/JSEN.2018.2883497
10.1016/j.compbiomed.2023.106860
10.1109/TCDS.2016.2587290
10.3390/jpm12010053
10.1109/ACCESS.2019.2891579
10.3390/s19214736
10.1088/1741-2552/ab0ab5
10.1109/JBHI.2020.2995767
10.1109/ACCESS.2019.2945059
10.3390/s18082739
10.1016/j.artmed.2018.01.001
10.1109/TAFFC.2020.3013711
10.14569/IJACSA.2018.090843
10.1016/j.bspc.2023.104835
10.1152/jn.2001.86.4.1983
10.1109/ACCESS.2022.3155647
10.1016/j.comcom.2020.10.004
10.3389/fcomp.2021.786964
10.3390/sym11050683
10.1016/j.future.2021.01.010
10.1109/TCDS.2021.3051465
10.1007/s13755-022-00201-y
10.1109/JBHI.2022.3198688
10.1016/j.cogsys.2018.06.009
10.1016/j.cogsys.2018.11.002
10.1016/j.compbiomed.2022.105519
10.1109/JBHI.2021.3091187
10.1186/1753-4631-3-2
10.1016/j.bspc.2023.104799
10.3390/computers9040095
10.1016/j.eij.2019.10.002
10.3390/s20072034
10.3390/s18051383
10.1016/j.compbiomed.2022.105327
10.1007/s10044-016-0567-6
10.1016/j.cmpb.2023.107380
10.1016/j.knosys.2022.109038
10.1016/j.bspc.2020.101867
10.1016/j.bspc.2022.103485
10.1016/j.knosys.2020.106243
10.1109/JSEN.2021.3073040
10.1109/JBHI.2022.3210158
10.1109/TCDS.2018.2868121
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.cogsys.2023.101152
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1389-0417
ExternalDocumentID oai:HAL:emse-04185401v1
10_1016_j_cogsys_2023_101152
S1389041723000803
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACNNM
ACRLP
ACXNI
ACZNC
ADEZE
ADJOM
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSN
SST
SSV
SSY
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
AEIPS
AFJKZ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
ID FETCH-LOGICAL-c341t-ecb7398af4fd7db815e1f65974ca985cf53fafbf79bf5a5a32b49bab5decb8963
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001053403900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-0417
IngestDate Tue Oct 14 20:22:14 EDT 2025
Sat Nov 29 07:03:46 EST 2025
Tue Nov 18 21:49:51 EST 2025
Fri Feb 23 02:35:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Feature extraction
EEG signals
Classifier
Dataset
Research contribution
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c341t-ecb7398af4fd7db815e1f65974ca985cf53fafbf79bf5a5a32b49bab5decb8963
ORCID 0000-0002-9593-0467
ParticipantIDs hal_primary_oai_HAL_emse_04185401v1
crossref_citationtrail_10_1016_j_cogsys_2023_101152
crossref_primary_10_1016_j_cogsys_2023_101152
elsevier_sciencedirect_doi_10_1016_j_cogsys_2023_101152
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-12
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Cognitive systems research
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chanel, Kierkels, Soleymani, Pun (b16) 2009; 67
Jing, Liu, Hao (b39) 2009
Zhou, Chu, Li, Xiao, Sun (b96) 2020; 87
Chao, Dong, Liu, Lu (b17) 2020; 2020
Mert, Akan (b66) 2018; 21
Salama, A. El-Khoribi, E. Shoman, A. Wahby (b74) 2018; 9
Li, Song, Zhang, Zhang, Hou, Hu (b51) 2018; 12
Domínguez-Jiménez, Campo-Landines, Martínez-Santos, Delahoz, Contreras-Ortiz (b29) 2020; 55
Hwang, Hong, Son, Byun (b37) 2019; 23
Vafaei, Rahatabad, Setarehdan, Azadfallah (b85) 2023; 2023
Al Zoubi, Awad, Kasabov (b2) 2018; 86
Liu, Zhao, An, Zhao, Wang, Yan (b62) 2023; 85
Paus, Sipila, Strafella (b70) 2001; 86
Chakladar, Chakraborty (b15) 2018; 24
Topic, Russo (b83) 2021; 24
Gong, Li, Zhang, Chen (b33) 2023; 84
Asadur Rahman, Foisal Hossain, Hossain, Ahmmed (b7) 2020; 21
Klonowski (b44) 2009; 3
Li, Chai, Wang, Yang, Du (b47) 2021; 13
Luo, Zhu, Wan, Lu (b64) 2020; 17
Lin, Jung (b58) 2017; 11
Chai, Wang, Zhao, Li, Liu, Liu (b13) 2017; 17
Li, Lin, Liu, Song, Cheng, Chen (b50) 2022; 22
Cai, Chen, Yin (b12) 2019; 11
Xing, Li, Xu, Shu, Hu, Xu (b89) 2019; 13
Abhang, Gawali, Mehrotra (b1) 2016
Samavat, Khalili, Ayati, Ayati (b75) 2022; 10
Yin, Wang, Liu, Zhang, Zhang (b92) 2017; 11
Ma, Cui, Chen (b65) 2022
Ullah, Uzair, Mahmood, Ullah, Khan, Cheikh (b84) 2019; 7
Lin, Chen, Ma, Tang, Wang (b57) 2023; 231
Chai, Wang, Zhao, Liu, Liu, Bai (b14) 2018; 26
Pandey, Seeja (b69) 2020; 12
(b76) 2010
Kwon, Shin, Kim (b46) 2018; 18
Khojasteh, Ornek (b41) 2021; 9
Craik, He, Contreras-Vidal (b23) 2019; 16
Wankhade, Doye (b88) 2022; 25
Yerigeri, Ragha (b91) 2021; 65
Chao, Liu (b18) 2020; 8
Miao, Zheng, Xu, Yang, Hu (b67) 2023; 79
Sorbello, Tramonte, Calí, Giardina, Nishio, Ishiguro (b81) 2018; 23
Arnau-Gonzalez, Katsigiannis, Arevalillo-Herraez, Ramzan (b6) 2021; 8
Joshi, Ghongade (b40) 2020
Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy (b63) 2018; 15
Priyasad, Fernando, Denman, Sridharan, Fookes (b72) 2022; 250
Liu, Xie, Wu, Cao, Li, Li (b61) 2019; 11
Liu, Fu (b59) 2021; 119
Liu, Li, Tang, Xu, Chen, Bezerianos (b60) 2019; 7
Guo, Li, Lu, Yang (b34) 2021; 3
Li, Zhang, Zhang, Huang, Liu, Chen (b54) 2023; 19
Chen, Jiang, Zhang, Zhang (b19) 2020; 154
Du, Ma, Zhang, Li, Lai, Zhao (b31) 2022; 13
Li, Chen, Li, Fu, Wu, Ji (b48) 2022
Song, Zheng, Lu, Zong, Zhang, Cui (b80) 2019; 7
Zheng (b94) 2017; 9
Kitchenham, Charters (b43) 2007
Dong, Ren (b30) 2020; 164
Oker, Glas, Pecune, Pelachaud (b68) 2018; 24
Pusarla, Singh, Tripathi (b73) 2022; 74
Tian, Li, Yang, Hou, Yang, Song (b82) 2023; 27
She, Shi, Fang, Ma, Zhang (b79) 2023; 159
Alazrai, Homoud, Alwanni, Daoud (b4) 2018; 18
Philippot, Chapelle, Blairy (b71) 2002; 16
Wang, Qiu, Ma, He (b87) 2020; 110
Li, Hua, Xu, Shu, Xu, Kuang (b49) 2022; 145
Cheng, Chen, Li, Liu, Song, Liu (b20) 2021; 25
Cimtay, Ekmekcioglu (b21) 2020; 20
Bigirimana, Siddique, Coyle (b11) 2016
Gupta, Chopda, Pachori (b35) 2019; 19
Cui, Liu, Zhang, Chen, Wang, Chen (b24) 2020; 205
Cizmeci, Ozcan, Durgut (b22) 2022; 26
Kurbalija, Ivanović, Radovanović, Geler, Dai, Zhao (b45) 2018; 52
Wang, Hu, Song (b86) 2019; 7
Li, Wang, Zhang, Liu, Song, Cheng (b52) 2022; 143
da Silva Junior, de Freitas, dos Santos, da Silva, Rodrigues, Conde (b25) 2019; 54
Ivanov, Kazantsev, Zavarzin, Klimenko, Milakhina, Matushkin (b38) 2022; 12
Deniz, Sobahi, Omar, Sengur, Acharya (b27) 2022; 10
Aslan (b9) 2021
ul Haq, Yao, Rahmaniar, Fawad, Islam (b36) 2022; 22
Li, Zhu, Jin, Fan, He, Cai (b56) 2022; 26
Kim, Yang, Nguyen, Prabhakar, Lee (b42) 2022; 26
Doma, Pirouz (b28) 2020; 7
Li, Zhao, Song, Zhang, Pan, Wu (b55) 2020; 14
Sangnark, Autthasan, Ponglertnapakorn, Chalekarn, Sudhawiyangkul, Trakulruangroj (b77) 2021; 21
Alhalaseh, Alasasfeh (b5) 2020; 9
Dar, Akram, Yuvaraj, Khawaja, Murugappan (b26) 2022; 144
Sharma, Pachori, Sircar (b78) 2020; 58
Bai, Liu, Hou, Chen, Cheng, Mao (b10) 2023; 152
Alakus, Gonen, Turkoglu (b3) 2020; 60
Li, Zhang, Song, Cheng, Liu, Chen (b53) 2021
Yang, Han, Min (b90) 2019; 19
Zeng, Wu, Jin, Zheng, Li, Zhao (b93) 2022; 71
yu Zhong, yu Yang, Liu, yu Zhen, da Zhao, bei Xie (b95) 2023; 79
Asghar, Khan, Fawad, Amin, Rizwan, Rahman (b8) 2019; 19
Feng, Cheng, Zhao, Deng, Zhang (b32) 2022; 26
Lin (10.1016/j.cogsys.2023.101152_b58) 2017; 11
Lotte (10.1016/j.cogsys.2023.101152_b63) 2018; 15
Bigirimana (10.1016/j.cogsys.2023.101152_b11) 2016
Miao (10.1016/j.cogsys.2023.101152_b67) 2023; 79
Priyasad (10.1016/j.cogsys.2023.101152_b72) 2022; 250
Salama (10.1016/j.cogsys.2023.101152_b74) 2018; 9
Li (10.1016/j.cogsys.2023.101152_b50) 2022; 22
Cheng (10.1016/j.cogsys.2023.101152_b20) 2021; 25
Cizmeci (10.1016/j.cogsys.2023.101152_b22) 2022; 26
Zeng (10.1016/j.cogsys.2023.101152_b93) 2022; 71
Oker (10.1016/j.cogsys.2023.101152_b68) 2018; 24
Cai (10.1016/j.cogsys.2023.101152_b12) 2019; 11
Joshi (10.1016/j.cogsys.2023.101152_b40) 2020
Craik (10.1016/j.cogsys.2023.101152_b23) 2019; 16
Arnau-Gonzalez (10.1016/j.cogsys.2023.101152_b6) 2021; 8
Li (10.1016/j.cogsys.2023.101152_b53) 2021
Dong (10.1016/j.cogsys.2023.101152_b30) 2020; 164
Chai (10.1016/j.cogsys.2023.101152_b13) 2017; 17
Xing (10.1016/j.cogsys.2023.101152_b89) 2019; 13
Li (10.1016/j.cogsys.2023.101152_b51) 2018; 12
Al Zoubi (10.1016/j.cogsys.2023.101152_b2) 2018; 86
Samavat (10.1016/j.cogsys.2023.101152_b75) 2022; 10
Ma (10.1016/j.cogsys.2023.101152_b65) 2022
Li (10.1016/j.cogsys.2023.101152_b49) 2022; 145
Ullah (10.1016/j.cogsys.2023.101152_b84) 2019; 7
Zheng (10.1016/j.cogsys.2023.101152_b94) 2017; 9
Khojasteh (10.1016/j.cogsys.2023.101152_b41) 2021; 9
Chai (10.1016/j.cogsys.2023.101152_b14) 2018; 26
Feng (10.1016/j.cogsys.2023.101152_b32) 2022; 26
Philippot (10.1016/j.cogsys.2023.101152_b71) 2002; 16
Topic (10.1016/j.cogsys.2023.101152_b83) 2021; 24
Zhou (10.1016/j.cogsys.2023.101152_b96) 2020; 87
Chen (10.1016/j.cogsys.2023.101152_b19) 2020; 154
Wang (10.1016/j.cogsys.2023.101152_b87) 2020; 110
Domínguez-Jiménez (10.1016/j.cogsys.2023.101152_b29) 2020; 55
Lin (10.1016/j.cogsys.2023.101152_b57) 2023; 231
ul Haq (10.1016/j.cogsys.2023.101152_b36) 2022; 22
Kim (10.1016/j.cogsys.2023.101152_b42) 2022; 26
Deniz (10.1016/j.cogsys.2023.101152_b27) 2022; 10
Asghar (10.1016/j.cogsys.2023.101152_b8) 2019; 19
Vafaei (10.1016/j.cogsys.2023.101152_b85) 2023; 2023
Pandey (10.1016/j.cogsys.2023.101152_b69) 2020; 12
Kitchenham (10.1016/j.cogsys.2023.101152_b43) 2007
Wang (10.1016/j.cogsys.2023.101152_b86) 2019; 7
Yin (10.1016/j.cogsys.2023.101152_b92) 2017; 11
Bai (10.1016/j.cogsys.2023.101152_b10) 2023; 152
Cimtay (10.1016/j.cogsys.2023.101152_b21) 2020; 20
Kwon (10.1016/j.cogsys.2023.101152_b46) 2018; 18
Wankhade (10.1016/j.cogsys.2023.101152_b88) 2022; 25
Aslan (10.1016/j.cogsys.2023.101152_b9) 2021
Chakladar (10.1016/j.cogsys.2023.101152_b15) 2018; 24
Kurbalija (10.1016/j.cogsys.2023.101152_b45) 2018; 52
Jing (10.1016/j.cogsys.2023.101152_b39) 2009
Luo (10.1016/j.cogsys.2023.101152_b64) 2020; 17
Mert (10.1016/j.cogsys.2023.101152_b66) 2018; 21
Dar (10.1016/j.cogsys.2023.101152_b26) 2022; 144
Liu (10.1016/j.cogsys.2023.101152_b59) 2021; 119
Alhalaseh (10.1016/j.cogsys.2023.101152_b5) 2020; 9
Yang (10.1016/j.cogsys.2023.101152_b90) 2019; 19
da Silva Junior (10.1016/j.cogsys.2023.101152_b25) 2019; 54
Li (10.1016/j.cogsys.2023.101152_b55) 2020; 14
Li (10.1016/j.cogsys.2023.101152_b47) 2021; 13
Gong (10.1016/j.cogsys.2023.101152_b33) 2023; 84
Asadur Rahman (10.1016/j.cogsys.2023.101152_b7) 2020; 21
Doma (10.1016/j.cogsys.2023.101152_b28) 2020; 7
Du (10.1016/j.cogsys.2023.101152_b31) 2022; 13
Guo (10.1016/j.cogsys.2023.101152_b34) 2021; 3
Sorbello (10.1016/j.cogsys.2023.101152_b81) 2018; 23
Chao (10.1016/j.cogsys.2023.101152_b18) 2020; 8
Li (10.1016/j.cogsys.2023.101152_b48) 2022
Song (10.1016/j.cogsys.2023.101152_b80) 2019; 7
Li (10.1016/j.cogsys.2023.101152_b54) 2023; 19
Alazrai (10.1016/j.cogsys.2023.101152_b4) 2018; 18
Pusarla (10.1016/j.cogsys.2023.101152_b73) 2022; 74
Ivanov (10.1016/j.cogsys.2023.101152_b38) 2022; 12
Paus (10.1016/j.cogsys.2023.101152_b70) 2001; 86
Cui (10.1016/j.cogsys.2023.101152_b24) 2020; 205
Liu (10.1016/j.cogsys.2023.101152_b62) 2023; 85
She (10.1016/j.cogsys.2023.101152_b79) 2023; 159
Li (10.1016/j.cogsys.2023.101152_b52) 2022; 143
Yerigeri (10.1016/j.cogsys.2023.101152_b91) 2021; 65
Klonowski (10.1016/j.cogsys.2023.101152_b44) 2009; 3
(10.1016/j.cogsys.2023.101152_b76) 2010
yu Zhong (10.1016/j.cogsys.2023.101152_b95) 2023; 79
Tian (10.1016/j.cogsys.2023.101152_b82) 2023; 27
Sangnark (10.1016/j.cogsys.2023.101152_b77) 2021; 21
Chanel (10.1016/j.cogsys.2023.101152_b16) 2009; 67
Liu (10.1016/j.cogsys.2023.101152_b61) 2019; 11
Abhang (10.1016/j.cogsys.2023.101152_b1) 2016
Gupta (10.1016/j.cogsys.2023.101152_b35) 2019; 19
Hwang (10.1016/j.cogsys.2023.101152_b37) 2019; 23
Alakus (10.1016/j.cogsys.2023.101152_b3) 2020; 60
Liu (10.1016/j.cogsys.2023.101152_b60) 2019; 7
Li (10.1016/j.cogsys.2023.101152_b56) 2022; 26
Sharma (10.1016/j.cogsys.2023.101152_b78) 2020; 58
Chao (10.1016/j.cogsys.2023.101152_b17) 2020; 2020
References_xml – volume: 19
  start-page: 2266
  year: 2019
  end-page: 2274
  ident: b35
  article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals
  publication-title: IEEE Sensors Journal
– volume: 9
  start-page: 191
  year: 2021
  end-page: 197
  ident: b41
  article-title: TheRobust EEG based emotion recognition using deep neural network
  publication-title: International Journal of Intelligent Systems and Applications in Engineering
– volume: 26
  start-page: 10115
  year: 2022
  end-page: 10125
  ident: b22
  article-title: Channel selection and feature extraction on deep EEG classification using metaheuristic and welch PSD
  publication-title: Soft Computing
– year: 2021
  ident: b9
  article-title: CNN based efficient approach for emotion recognition
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 17
  start-page: 1014
  year: 2017
  ident: b13
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition
  publication-title: Sensors
– volume: 19
  start-page: 5218
  year: 2019
  ident: b8
  article-title: EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach
  publication-title: Sensors
– volume: 152
  year: 2023
  ident: b10
  article-title: Emotion recognition with residual network driven by spatial-frequency characteristics of EEG recorded from hearing-impaired adults in response to video clips
  publication-title: Computers in Biology and Medicine
– volume: 65
  start-page: 79
  year: 2021
  end-page: 97
  ident: b91
  article-title: Speech stress recognition using semi-eager learning
  publication-title: Cognitive Systems Research
– volume: 145
  year: 2022
  ident: b49
  article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
  publication-title: Computers in Biology and Medicine
– volume: 15
  year: 2018
  ident: b63
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: Journal of Neural Engineering
– year: 2022
  ident: b65
  article-title: An improved Bi-LSTM EEG emotion recognition algorithm
  publication-title: Journal of Network Intelligence
– volume: 7
  start-page: 18
  year: 2020
  ident: b28
  article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals
  publication-title: Journal of Big Data
– volume: 12
  start-page: 53
  year: 2022
  ident: b38
  article-title: ICBrainDB: An integrated database for finding associations between genetic factors and EEG markers of depressive disorders
  publication-title: Journal of Personalized Medicine
– start-page: 1
  year: 2021
  ident: b53
  article-title: EEG -based emotion recognition via neural architecture search
  publication-title: IEEE Transactions on Affective Computing
– volume: 14
  start-page: 1
  year: 2020
  end-page: 13
  ident: b55
  article-title: Latent factor decoding of multi-channel EEG for emotion recognition through autoencoder-like neural networks
  publication-title: Frontiers in Neuroscience
– volume: 23
  start-page: 19
  year: 2018
  end-page: 26
  ident: b81
  article-title: Embodied responses to musical experience detected by human bio-feedback brain features in a geminoid augmented architecture
  publication-title: Biologically Inspired Cognitive Architectures
– volume: 13
  start-page: 1
  year: 2019
  end-page: 14
  ident: b89
  article-title: SAE+LSTM: A new framework for emotion recognition from multi-channel EEG
  publication-title: Frontiers in Neurorobotics
– volume: 8
  start-page: 12219
  year: 2021
  end-page: 12230
  ident: b6
  article-title: BED: A new data set for EEG-based biometrics
  publication-title: IEEE Internet of Things Journal
– volume: 26
  start-page: 5964
  year: 2022
  end-page: 5973
  ident: b56
  article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 144
  year: 2022
  ident: b26
  article-title: EEG -based emotion charting for Parkinson's disease patients using convolutional recurrent neural networks and cross dataset learning
  publication-title: Computers in Biology and Medicine
– volume: 3
  start-page: 2
  year: 2009
  ident: b44
  article-title: Everything you wanted to ask about EEG but were afraid to get the right answer
  publication-title: Nonlinear Biomedical Physics
– volume: 26
  start-page: 327
  year: 2018
  end-page: 335
  ident: b14
  article-title: Multi-subject subspace alignment for non-stationary EEG-based emotion recognition
  publication-title: Technology and Health Care
– volume: 24
  start-page: 107
  year: 2018
  end-page: 114
  ident: b68
  article-title: An embodied virtual agent platform for emotional stroop effect experiments: A proof of concept
  publication-title: Biologically Inspired Cognitive Architectures
– volume: 54
  start-page: 1
  year: 2019
  end-page: 20
  ident: b25
  article-title: Exploratory study of the effect of binaural beat stimulation on the EEG activity pattern in resting state using artificial neural networks
  publication-title: Cognitive Systems Research
– volume: 85
  year: 2023
  ident: b62
  article-title: GLFANet: A global to local feature aggregation network for EEG emotion recognition
  publication-title: Biomedical Signal Processing and Control
– volume: 21
  start-page: 23
  year: 2020
  end-page: 35
  ident: b7
  article-title: Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal
  publication-title: Egyptian Informatics Journal
– volume: 7
  start-page: 143303
  year: 2019
  end-page: 143311
  ident: b86
  article-title: Channel selection method for EEG emotion recognition using normalized mutual information
  publication-title: IEEE Access
– volume: 60
  year: 2020
  ident: b3
  article-title: Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO
  publication-title: Biomedical Signal Processing and Control
– volume: 25
  start-page: 453
  year: 2021
  end-page: 464
  ident: b20
  article-title: Emotion recognition from multi-channel EEG via deep forest
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 497
  year: 2009
  end-page: 500
  ident: b39
  article-title: The research on emotion recognition from ECG signal
  publication-title: 2009 Int. conf. inf. technol. comput. sci., vol. 1
– volume: 58
  year: 2020
  ident: b78
  article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm
  publication-title: Biomedical Signal Processing and Control
– volume: 22
  start-page: 5158
  year: 2022
  ident: b36
  article-title: A hybrid hand-crafted and deep neural spatio-temporal EEG features clustering framework for precise emotional status recognition
  publication-title: Sensors
– volume: 79
  year: 2023
  ident: b67
  article-title: A multiple frequency bands parallel spatial–temporal 3D deep residual learning framework for EEG-based emotion recognition
  publication-title: Biomedical Signal Processing and Control
– start-page: 004429
  year: 2016
  end-page: 004434
  ident: b11
  article-title: A hybrid ICA-wavelet transform for automated artefact removal in EEG-based emotion recognition
  publication-title: 2016 IEEE int. conf. syst. man, cybern.
– volume: 19
  start-page: 6016
  year: 2023
  end-page: 6025
  ident: b54
  article-title: EEG -based emotion recognition via transformer neural architecture search
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 55
  year: 2020
  ident: b29
  article-title: A machine learning model for emotion recognition from physiological signals
  publication-title: Biomedical Signal Processing and Control
– volume: 250
  year: 2022
  ident: b72
  article-title: Affect recognition from scalp-EEG using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion
  publication-title: Knowledge-Based Systems
– volume: 22
  start-page: 19608
  year: 2022
  end-page: 19619
  ident: b50
  article-title: EEG-based emotion recognition via efficient convolutional neural network and contrastive learning
– volume: 11
  start-page: 517
  year: 2019
  end-page: 526
  ident: b61
  article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 24
  start-page: 1442
  year: 2021
  end-page: 1454
  ident: b83
  article-title: Emotion recognition based on EEG feature maps through deep learning network
  publication-title: Engineering Science and Technology, an International Journal
– volume: 74
  year: 2022
  ident: b73
  article-title: Learning DenseNet features from EEG based spectrograms for subject independent emotion recognition
  publication-title: Biomedical Signal Processing and Control
– volume: 67
  start-page: 607
  year: 2009
  end-page: 627
  ident: b16
  article-title: Short-term emotion assessment in a recall paradigm
  publication-title: International Journal of Human-Computer Studies
– volume: 110
  year: 2020
  ident: b87
  article-title: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition
  publication-title: Pattern Recognition
– volume: 18
  start-page: 1383
  year: 2018
  ident: b46
  article-title: Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system
  publication-title: Sensors
– volume: 52
  start-page: 103
  year: 2018
  end-page: 116
  ident: b45
  article-title: Emotion perception and recognition: An exploration of cultural differences and similarities
  publication-title: Cognitive Systems Research
– start-page: 480
  year: 2010
  end-page: 482
  ident: b76
  article-title: Encyclopedia of machine learning
  publication-title: Encycl. mach. learn. data min.
– volume: 79
  year: 2023
  ident: b95
  article-title: EEG emotion recognition based on TQWT-features and hybrid convolutional recurrent neural network
  publication-title: Biomedical Signal Processing and Control
– volume: 84
  year: 2023
  ident: b33
  article-title: EEG emotion recognition using attention-based convolutional transformer neural network
  publication-title: Biomedical Signal Processing and Control
– volume: 19
  start-page: 4736
  year: 2019
  ident: b90
  article-title: A multi-column CNN model for emotion recognition from EEG signals
  publication-title: Sensors
– year: 2007
  ident: b43
  article-title: Guidelines for performing systematic literature reviews in software engineering
– volume: 143
  year: 2022
  ident: b52
  article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism
  publication-title: Computers in Biology and Medicine
– volume: 26
  start-page: 5406
  year: 2022
  end-page: 5417
  ident: b32
  article-title: EEG-based emotion recognition using spatial-temporal graph convolutional LSTM with attention mechanism
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 87
  year: 2020
  ident: b96
  article-title: An EEG emotion recognition method based on transfer learning and echo state network for HilCPS
  publication-title: Microprocessors and Microsystems
– start-page: 1
  year: 2016
  end-page: 8
  ident: b1
  article-title: Introduction to EEG- and speech-based emotion recognition
– volume: 13
  start-page: 885
  year: 2021
  end-page: 897
  ident: b47
  article-title: EEG emotion recognition based on 3-D feature representation and dilated fully convolutional networks
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 7
  start-page: 12177
  year: 2019
  end-page: 12191
  ident: b80
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
– volume: 231
  year: 2023
  ident: b57
  article-title: EEG emotion recognition using improved graph neural network with channel selection
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 12
  start-page: 2311
  year: 2020
  end-page: 2320
  ident: b69
  article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– volume: 164
  start-page: 177
  year: 2020
  end-page: 184
  ident: b30
  article-title: Multi-reservoirs EEG signal feature sensing and recognition method based on generative adversarial networks
  publication-title: Computer Communications
– volume: 3
  year: 2021
  ident: b34
  article-title: Singular learning of deep multilayer perceptrons for EEG-based emotion recognition
  publication-title: Frontiers in Computer Science
– year: 2020
  ident: b40
  article-title: IDEA: Intellect database for emotion analysis using EEG signal
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 19
  ident: b85
  article-title: Extracting a novel emotional EEG topographic map based on a stacked autoencoder network
  publication-title: Journal of Healthcare Engineering
– volume: 9
  start-page: 329
  year: 2018
  end-page: 337
  ident: b74
  article-title: EEG-based emotion recognition using 3D convolutional neural networks
  publication-title: International Journal of Advanced Computer Science Applications
– volume: 205
  year: 2020
  ident: b24
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Knowledge-Based Systems
– volume: 7
  start-page: 143293
  year: 2019
  end-page: 143302
  ident: b60
  article-title: Emotion recognition and dynamic functional connectivity analysis based on EEG
  publication-title: IEEE Access
– volume: 9
  start-page: 95
  year: 2020
  ident: b5
  article-title: Machine-learning-based emotion recognition system using EEG signals
  publication-title: Computers
– volume: 16
  year: 2019
  ident: b23
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: Journal of Neural Engineering
– volume: 27
  start-page: 363
  year: 2023
  end-page: 373
  ident: b82
  article-title: A novel domain adversarial networks based on 3D-LSTM and local domain discriminator for hearing-impaired emotion recognition
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 15
  ident: b17
  article-title: Improved deep feature learning by synchronization measurements for multi-channel EEG emotion recognition
  publication-title: Complexity
– volume: 71
  start-page: 1
  year: 2022
  end-page: 9
  ident: b93
  article-title: Siam-GCAN: A siamese graph convolutional attention network for EEG emotion recognition
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 11
  start-page: 683
  year: 2019
  ident: b12
  article-title: Multiple transferable recursive feature elimination technique for emotion recognition based on EEG signals
  publication-title: Symmetry (Basel)
– volume: 7
  start-page: 40144
  year: 2019
  end-page: 40153
  ident: b84
  article-title: Internal emotion classification using EEG signal with sparse discriminative ensemble
  publication-title: IEEE Access
– volume: 26
  start-page: 264
  year: 2022
  end-page: 275
  ident: b42
  article-title: Wedea: A new EEG-based framework for emotion recognition
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 119
  start-page: 1
  year: 2021
  end-page: 6
  ident: b59
  article-title: Emotion recognition by deeply learned multi-channel textual and EEG features
  publication-title: Future Generation Computer Systems
– volume: 24
  start-page: 98
  year: 2018
  end-page: 106
  ident: b15
  article-title: EEG based emotion classification using “Correlation Based Subset Selection”
  publication-title: Biologically Inspired Cognitive Architectures
– volume: 20
  start-page: 2034
  year: 2020
  ident: b21
  article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition
  publication-title: Sensors
– volume: 23
  start-page: 1323
  year: 2019
  end-page: 1335
  ident: b37
  article-title: Learning CNN features from DE features for EEG-based emotion recognition
  publication-title: Pattern Analysis and Applications
– volume: 159
  year: 2023
  ident: b79
  article-title: Cross-subject EEG emotion recognition using multi-source domain manifold feature selection
  publication-title: Computers in Biology and Medicine
– volume: 12
  year: 2018
  ident: b51
  article-title: Exploring EEG features in cross-subject emotion recognition
  publication-title: Frontiers in Neuroscience
– volume: 18
  start-page: 2739
  year: 2018
  ident: b4
  article-title: EEG-based emotion recognition using quadratic time-frequency distribution
  publication-title: Sensors
– volume: 86
  start-page: 1
  year: 2018
  end-page: 8
  ident: b2
  article-title: Anytime multipurpose emotion recognition from EEG data using a liquid state machine based framework
  publication-title: Artificial Intelligence in Medicine
– volume: 10
  start-page: 24520
  year: 2022
  end-page: 24527
  ident: b75
  article-title: Deep learning model with adaptive regularization for EEG-based emotion recognition using temporal and frequency features
  publication-title: IEEE Access
– volume: 25
  start-page: 1311
  year: 2022
  end-page: 1331
  ident: b88
  article-title: Hybrid hunt-based deep convolutional neural network for emotion recognition using EEG signals
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
– volume: 10
  year: 2022
  ident: b27
  article-title: Automated robust human emotion classification system using hybrid EEG features with ICBrainDB dataset
  publication-title: Health Information Science and Systems
– volume: 21
  start-page: 81
  year: 2018
  end-page: 89
  ident: b66
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Analysis and Applications
– volume: 9
  start-page: 281
  year: 2017
  end-page: 290
  ident: b94
  article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– volume: 8
  start-page: 33002
  year: 2020
  end-page: 33012
  ident: b18
  article-title: Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework
  publication-title: IEEE Access
– volume: 11
  start-page: 1
  year: 2017
  end-page: 16
  ident: b92
  article-title: Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination
  publication-title: Frontiers in Neurorobotics
– volume: 17
  year: 2020
  ident: b64
  article-title: Data augmentation for enhancing EEG-based emotion recognition with deep generative models
  publication-title: Journal of Neural Engineering
– volume: 21
  start-page: 14931
  year: 2021
  end-page: 14940
  ident: b77
  article-title: Revealing preference in popular music through familiarity and brain response
  publication-title: IEEE Sensors Journal
– volume: 154
  start-page: 58
  year: 2020
  end-page: 65
  ident: b19
  article-title: Emotion recognition from spatiotemporal EEG representations with hybrid convolutional recurrent neural networks via wearable multi-channel headset
  publication-title: Computer Communications
– volume: 86
  start-page: 1983
  year: 2001
  end-page: 1990
  ident: b70
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: An EEG study
  publication-title: Journal of Neurophysiology
– start-page: 1
  year: 2022
  ident: b48
  article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 16
  start-page: 605
  year: 2002
  end-page: 627
  ident: b71
  article-title: Respiratory feedback in the generation of emotion
  publication-title: Cognition and Emotion
– volume: 13
  start-page: 1528
  year: 2022
  end-page: 1540
  ident: b31
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Transactions on Affective Computing
– volume: 11
  start-page: 1
  year: 2017
  end-page: 11
  ident: b58
  article-title: Improving EEG-based emotion classification using conditional transfer learning
  publication-title: Frontiers in Human Neuroscience
– volume: 24
  start-page: 98
  issue: March
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b15
  article-title: EEG based emotion classification using “Correlation Based Subset Selection”
  publication-title: Biologically Inspired Cognitive Architectures
  doi: 10.1016/j.bica.2018.04.012
– volume: 17
  start-page: 1014
  issue: 5
  year: 2017
  ident: 10.1016/j.cogsys.2023.101152_b13
  article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition
  publication-title: Sensors
  doi: 10.3390/s17051014
– volume: 7
  start-page: 143303
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b86
  article-title: Channel selection method for EEG emotion recognition using normalized mutual information
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944273
– volume: 79
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b95
  article-title: EEG emotion recognition based on TQWT-features and hybrid convolutional recurrent neural network
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.104211
– volume: 67
  start-page: 607
  issue: 8
  year: 2009
  ident: 10.1016/j.cogsys.2023.101152_b16
  article-title: Short-term emotion assessment in a recall paradigm
  publication-title: International Journal of Human-Computer Studies
  doi: 10.1016/j.ijhcs.2009.03.005
– volume: 7
  start-page: 18
  issue: 1
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b28
  article-title: A comparative analysis of machine learning methods for emotion recognition using EEG and peripheral physiological signals
  publication-title: Journal of Big Data
  doi: 10.1186/s40537-020-00289-7
– start-page: 1
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b48
  article-title: GMSS: Graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Transactions on Affective Computing
– volume: 25
  start-page: 1311
  issue: 12
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b88
  article-title: Hybrid hunt-based deep convolutional neural network for emotion recognition using EEG signals
  publication-title: Computer Methods in Biomechanics and Biomedical Engineering
  doi: 10.1080/10255842.2021.2007889
– volume: 23
  start-page: 19
  issue: January
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b81
  article-title: Embodied responses to musical experience detected by human bio-feedback brain features in a geminoid augmented architecture
  publication-title: Biologically Inspired Cognitive Architectures
  doi: 10.1016/j.bica.2018.01.001
– year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b65
  article-title: An improved Bi-LSTM EEG emotion recognition algorithm
  publication-title: Journal of Network Intelligence
– volume: 27
  start-page: 363
  issue: 1
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b82
  article-title: A novel domain adversarial networks based on 3D-LSTM and local domain discriminator for hearing-impaired emotion recognition
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2022.3212475
– volume: 26
  start-page: 10115
  issue: 19
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b22
  article-title: Channel selection and feature extraction on deep EEG classification using metaheuristic and welch PSD
  publication-title: Soft Computing
  doi: 10.1007/s00500-022-07413-0
– volume: 17
  issue: 5
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b64
  article-title: Data augmentation for enhancing EEG-based emotion recognition with deep generative models
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/abb580
– start-page: 480
  year: 2010
  ident: 10.1016/j.cogsys.2023.101152_b76
  article-title: Encyclopedia of machine learning
– volume: 26
  start-page: 327
  issue: S1
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b14
  article-title: Multi-subject subspace alignment for non-stationary EEG-based emotion recognition
  publication-title: Technology and Health Care
  doi: 10.3233/THC-174739
– volume: 9
  start-page: 191
  issue: 4
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b41
  article-title: TheRobust EEG based emotion recognition using deep neural network
  publication-title: International Journal of Intelligent Systems and Applications in Engineering
  doi: 10.18201/ijisae.2021473639
– year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b9
  article-title: CNN based efficient approach for emotion recognition
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 24
  start-page: 1442
  issue: 6
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b83
  article-title: Emotion recognition based on EEG feature maps through deep learning network
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2021.03.012
– volume: 23
  start-page: 1323
  issue: 3
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b37
  article-title: Learning CNN features from DE features for EEG-based emotion recognition
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-019-00860-w
– volume: 19
  start-page: 5218
  issue: 23
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b8
  article-title: EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach
  publication-title: Sensors
  doi: 10.3390/s19235218
– volume: 19
  start-page: 6016
  issue: 4
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b54
  article-title: EEG -based emotion recognition via transformer neural architecture search
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2022.3170422
– volume: 15
  issue: 3
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b63
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aab2f2
– volume: 11
  start-page: 1
  issue: June
  year: 2017
  ident: 10.1016/j.cogsys.2023.101152_b58
  article-title: Improving EEG-based emotion classification using conditional transfer learning
  publication-title: Frontiers in Human Neuroscience
– start-page: 004429
  year: 2016
  ident: 10.1016/j.cogsys.2023.101152_b11
  article-title: A hybrid ICA-wavelet transform for automated artefact removal in EEG-based emotion recognition
– volume: 55
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b29
  article-title: A machine learning model for emotion recognition from physiological signals
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2019.101646
– volume: 12
  start-page: 2311
  issue: 2
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b69
  article-title: Subject independent emotion recognition system for people with facial deformity: an EEG based approach
  publication-title: Journal of Ambient Intelligence and Humanized Computing
  doi: 10.1007/s12652-020-02338-8
– volume: 7
  start-page: 40144
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b84
  article-title: Internal emotion classification using EEG signal with sparse discriminative ensemble
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904400
– volume: 8
  start-page: 12219
  issue: 15
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b6
  article-title: BED: A new data set for EEG-based biometrics
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2021.3061727
– volume: 65
  start-page: 79
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b91
  article-title: Speech stress recognition using semi-eager learning
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2020.10.001
– volume: 154
  start-page: 58
  issue: 6
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b19
  article-title: Emotion recognition from spatiotemporal EEG representations with hybrid convolutional recurrent neural networks via wearable multi-channel headset
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2020.02.051
– volume: 152
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b10
  article-title: Emotion recognition with residual network driven by spatial-frequency characteristics of EEG recorded from hearing-impaired adults in response to video clips
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.106344
– volume: 16
  start-page: 605
  issue: 5
  year: 2002
  ident: 10.1016/j.cogsys.2023.101152_b71
  article-title: Respiratory feedback in the generation of emotion
  publication-title: Cognition and Emotion
  doi: 10.1080/02699930143000392
– volume: 8
  start-page: 33002
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b18
  article-title: Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random field framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974009
– volume: 87
  issue: October
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b96
  article-title: An EEG emotion recognition method based on transfer learning and echo state network for HilCPS
  publication-title: Microprocessors and Microsystems
– year: 2007
  ident: 10.1016/j.cogsys.2023.101152_b43
– volume: 60
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b3
  article-title: Database for an emotion recognition system based on EEG signals and various computer games – GAMEEMO
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.101951
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b85
  article-title: Extracting a novel emotional EEG topographic map based on a stacked autoencoder network
  publication-title: Journal of Healthcare Engineering
  doi: 10.1155/2023/9223599
– volume: 24
  start-page: 107
  issue: December 2017
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b68
  article-title: An embodied virtual agent platform for emotional stroop effect experiments: A proof of concept
  publication-title: Biologically Inspired Cognitive Architectures
  doi: 10.1016/j.bica.2018.04.011
– volume: 22
  start-page: 5158
  issue: 14
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b36
  article-title: A hybrid hand-crafted and deep neural spatio-temporal EEG features clustering framework for precise emotional status recognition
  publication-title: Sensors
  doi: 10.3390/s22145158
– volume: 143
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b52
  article-title: Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105303
– volume: 79
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b67
  article-title: A multiple frequency bands parallel spatial–temporal 3D deep residual learning framework for EEG-based emotion recognition
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.104141
– volume: 13
  start-page: 1
  issue: June
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b89
  article-title: SAE+LSTM: A new framework for emotion recognition from multi-channel EEG
  publication-title: Frontiers in Neurorobotics
– volume: 19
  start-page: 2266
  issue: 6
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b35
  article-title: Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2018.2883497
– year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b40
  article-title: IDEA: Intellect database for emotion analysis using EEG signal
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b93
  article-title: Siam-GCAN: A siamese graph convolutional attention network for EEG emotion recognition
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 159
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b79
  article-title: Cross-subject EEG emotion recognition using multi-source domain manifold feature selection
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2023.106860
– volume: 9
  start-page: 281
  issue: 3
  year: 2017
  ident: 10.1016/j.cogsys.2023.101152_b94
  article-title: Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2016.2587290
– volume: 12
  start-page: 53
  issue: 1
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b38
  article-title: ICBrainDB: An integrated database for finding associations between genetic factors and EEG markers of depressive disorders
  publication-title: Journal of Personalized Medicine
  doi: 10.3390/jpm12010053
– start-page: 1
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b53
  article-title: EEG -based emotion recognition via neural architecture search
  publication-title: IEEE Transactions on Affective Computing
– volume: 14
  start-page: 1
  issue: March
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b55
  article-title: Latent factor decoding of multi-channel EEG for emotion recognition through autoencoder-like neural networks
  publication-title: Frontiers in Neuroscience
– volume: 7
  start-page: 12177
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b80
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– volume: 19
  start-page: 4736
  issue: 21
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b90
  article-title: A multi-column CNN model for emotion recognition from EEG signals
  publication-title: Sensors
  doi: 10.3390/s19214736
– volume: 16
  issue: 3
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b23
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/ab0ab5
– volume: 25
  start-page: 453
  issue: 2
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b20
  article-title: Emotion recognition from multi-channel EEG via deep forest
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2020.2995767
– volume: 7
  start-page: 143293
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b60
  article-title: Emotion recognition and dynamic functional connectivity analysis based on EEG
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2945059
– volume: 18
  start-page: 2739
  issue: 8
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b4
  article-title: EEG-based emotion recognition using quadratic time-frequency distribution
  publication-title: Sensors
  doi: 10.3390/s18082739
– volume: 86
  start-page: 1
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b2
  article-title: Anytime multipurpose emotion recognition from EEG data using a liquid state machine based framework
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/j.artmed.2018.01.001
– volume: 13
  start-page: 1528
  issue: 3
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b31
  article-title: An efficient LSTM network for emotion recognition from multichannel EEG signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2020.3013711
– volume: 9
  start-page: 329
  issue: 8
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b74
  article-title: EEG-based emotion recognition using 3D convolutional neural networks
  publication-title: International Journal of Advanced Computer Science Applications
  doi: 10.14569/IJACSA.2018.090843
– volume: 84
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b33
  article-title: EEG emotion recognition using attention-based convolutional transformer neural network
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.104835
– volume: 86
  start-page: 1983
  issue: 4
  year: 2001
  ident: 10.1016/j.cogsys.2023.101152_b70
  article-title: Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: An EEG study
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.2001.86.4.1983
– volume: 22
  start-page: 19608
  issue: 20
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b50
  article-title: EEG-based emotion recognition via efficient convolutional neural network and contrastive learning
– volume: 10
  start-page: 24520
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b75
  article-title: Deep learning model with adaptive regularization for EEG-based emotion recognition using temporal and frequency features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3155647
– volume: 164
  start-page: 177
  issue: October
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b30
  article-title: Multi-reservoirs EEG signal feature sensing and recognition method based on generative adversarial networks
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2020.10.004
– volume: 3
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b34
  article-title: Singular learning of deep multilayer perceptrons for EEG-based emotion recognition
  publication-title: Frontiers in Computer Science
  doi: 10.3389/fcomp.2021.786964
– start-page: 1
  year: 2016
  ident: 10.1016/j.cogsys.2023.101152_b1
– volume: 11
  start-page: 683
  issue: 5
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b12
  article-title: Multiple transferable recursive feature elimination technique for emotion recognition based on EEG signals
  publication-title: Symmetry (Basel)
  doi: 10.3390/sym11050683
– volume: 119
  start-page: 1
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b59
  article-title: Emotion recognition by deeply learned multi-channel textual and EEG features
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2021.01.010
– volume: 13
  start-page: 885
  issue: 4
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b47
  article-title: EEG emotion recognition based on 3-D feature representation and dilated fully convolutional networks
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2021.3051465
– volume: 10
  issue: 1
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b27
  article-title: Automated robust human emotion classification system using hybrid EEG features with ICBrainDB dataset
  publication-title: Health Information Science and Systems
  doi: 10.1007/s13755-022-00201-y
– volume: 26
  start-page: 5406
  issue: 11
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b32
  article-title: EEG-based emotion recognition using spatial-temporal graph convolutional LSTM with attention mechanism
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2022.3198688
– volume: 52
  start-page: 103
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b45
  article-title: Emotion perception and recognition: An exploration of cultural differences and similarities
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.06.009
– volume: 54
  start-page: 1
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b25
  article-title: Exploratory study of the effect of binaural beat stimulation on the EEG activity pattern in resting state using artificial neural networks
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.11.002
– volume: 145
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b49
  article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105519
– volume: 110
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b87
  article-title: A prototype-based SPD matrix network for domain adaptation EEG emotion recognition
  publication-title: Pattern Recognition
– volume: 12
  issue: MAR
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b51
  article-title: Exploring EEG features in cross-subject emotion recognition
  publication-title: Frontiers in Neuroscience
– volume: 26
  start-page: 264
  issue: 1
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b42
  article-title: Wedea: A new EEG-based framework for emotion recognition
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2021.3091187
– volume: 3
  start-page: 2
  issue: 1
  year: 2009
  ident: 10.1016/j.cogsys.2023.101152_b44
  article-title: Everything you wanted to ask about EEG but were afraid to get the right answer
  publication-title: Nonlinear Biomedical Physics
  doi: 10.1186/1753-4631-3-2
– volume: 85
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b62
  article-title: GLFANet: A global to local feature aggregation network for EEG emotion recognition
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2023.104799
– volume: 9
  start-page: 95
  issue: 4
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b5
  article-title: Machine-learning-based emotion recognition system using EEG signals
  publication-title: Computers
  doi: 10.3390/computers9040095
– volume: 21
  start-page: 23
  issue: 1
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b7
  article-title: Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal
  publication-title: Egyptian Informatics Journal
  doi: 10.1016/j.eij.2019.10.002
– volume: 20
  start-page: 2034
  issue: 7
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b21
  article-title: Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition
  publication-title: Sensors
  doi: 10.3390/s20072034
– start-page: 497
  year: 2009
  ident: 10.1016/j.cogsys.2023.101152_b39
  article-title: The research on emotion recognition from ECG signal
– volume: 18
  start-page: 1383
  issue: 5
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b46
  article-title: Electroencephalography based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system
  publication-title: Sensors
  doi: 10.3390/s18051383
– volume: 144
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b26
  article-title: EEG -based emotion charting for Parkinson's disease patients using convolutional recurrent neural networks and cross dataset learning
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105327
– volume: 21
  start-page: 81
  issue: 1
  year: 2018
  ident: 10.1016/j.cogsys.2023.101152_b66
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Analysis and Applications
  doi: 10.1007/s10044-016-0567-6
– volume: 231
  year: 2023
  ident: 10.1016/j.cogsys.2023.101152_b57
  article-title: EEG emotion recognition using improved graph neural network with channel selection
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2023.107380
– volume: 250
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b72
  article-title: Affect recognition from scalp-EEG using channel-wise encoder networks coupled with geometric deep learning and multi-channel feature fusion
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.109038
– volume: 58
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b78
  article-title: Automated emotion recognition based on higher order statistics and deep learning algorithm
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2020.101867
– volume: 74
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b73
  article-title: Learning DenseNet features from EEG based spectrograms for subject independent emotion recognition
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103485
– volume: 205
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b24
  article-title: EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106243
– volume: 21
  start-page: 14931
  issue: 13
  year: 2021
  ident: 10.1016/j.cogsys.2023.101152_b77
  article-title: Revealing preference in popular music through familiarity and brain response
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2021.3073040
– volume: 11
  start-page: 1
  issue: APR
  year: 2017
  ident: 10.1016/j.cogsys.2023.101152_b92
  article-title: Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination
  publication-title: Frontiers in Neurorobotics
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.cogsys.2023.101152_b17
  article-title: Improved deep feature learning by synchronization measurements for multi-channel EEG emotion recognition
  publication-title: Complexity
– volume: 26
  start-page: 5964
  issue: 12
  year: 2022
  ident: 10.1016/j.cogsys.2023.101152_b56
  article-title: Dynamic domain adaptation for class-aware cross-subject and cross-session EEG emotion recognition
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2022.3210158
– volume: 11
  start-page: 517
  issue: 4
  year: 2019
  ident: 10.1016/j.cogsys.2023.101152_b61
  article-title: Electroencephalogram emotion recognition based on empirical mode decomposition and optimal feature selection
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
  doi: 10.1109/TCDS.2018.2868121
SSID ssj0016952
Score 2.4896555
Snippet In this study, we conducted a systematic literature review of 107 primary studies conducted between 2017 and 2023 to discern trends in datasets, classifiers,...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101152
SubjectTerms Artificial Intelligence
Chemical and Process Engineering
Classifier
Computer Science
Dataset
EEG signals
Emotion recognition
Engineering Sciences
Feature extraction
Human-Computer Interaction
Neural and Evolutionary Computing
Research contribution
Title A systematic literature review of emotion recognition using EEG signals
URI https://dx.doi.org/10.1016/j.cogsys.2023.101152
https://hal-emse.ccsd.cnrs.fr/emse-04185401
Volume 82
WOSCitedRecordID wos001053403900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1389-0417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016952
  issn: 1389-0417
  databaseCode: AIEXJ
  dateStart: 19991201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYxsNeJj7FGCBL8FZlamI7H4_RKCtoqpAY0LfIju2lW0mmfqzrf885dt1qBQ2QeIkitz63vl8u55_Pdwi9i2gpUqF5wEJJAyoIDTLZZUEsuCRM8yRrd8-_nSWDQTocZp_ddsG0LSeQ1HV6e5td_1dVQxso2xyd_Qt1e6HQAPegdLiC2uH6R4rPN7Mzj33W5I1DKsqW7un44CG4n7ecQa932jERHXw83fRaT3yMkRVttho2WDBjWScApkVLu75fjDrfebWce555fjFpqvazPq_nhoaRI8_sKDAxC8vCDppm0smvqh9cev9aCb4cO56_ckh2JEVE7gR8bJ-eaY0tMeFa1J7dPFa_aHMW2pYn2jL2lne4BF1dwL8_NuOaxtCmxL2TRvuLkWwEw5rLuMlkB-1FCcvAEu7lH3vDT37vKc7aOk3-l6wOXLZRgdtj_c6h2alW1Hzrqpw_QgdujYFzi43H6IGqn6B9_6pbPkWnOV6DBK9Bgi1IcKOxAwneAAluQYIBJNiB5Bn6-qF3ftIPXEmNoAR3ZRaoUiQkS7mmWiZSpCFToY7NorLkWcpKzYjmWugkE5pxxkkkaCa4YBJ6pmCsn6PduqnVC4QpoWnJeBQnIDoKpeiWkZaUJZoTKmJ5iMhqXorS5Zs3ZU_GxSqw8LKws1mY2SzsbB6iwPe6tvlW7vl-sprywvmM1hcsACX39HwLGvKDmDTr_fysgGdIFV2T0ol2w5vw5T_LP0L76yfhFdqdTebqNXpY3sxG08kbB7qfcYuhpQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+literature+review+of+emotion+recognition+using+EEG+signals&rft.jtitle=Cognitive+systems+research&rft.au=Prabowo%2C+Dwi+Wahyu&rft.au=Nugroho%2C+Hanung+Adi&rft.au=Setiawan%2C+Noor+Akhmad&rft.au=Debayle%2C+Johan&rft.date=2023-12-01&rft.pub=Elsevier+B.V&rft.issn=1389-0417&rft.eissn=1389-0417&rft.volume=82&rft_id=info:doi/10.1016%2Fj.cogsys.2023.101152&rft.externalDocID=S1389041723000803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-0417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-0417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-0417&client=summon