Valid sequential inference on probability forecast performance

Summary Probability forecasts for binary events play a central role in many applications. Their quality is commonly assessed with proper scoring rules, which assign forecasts numerical scores such that a correct forecast achieves a minimal expected score. In this paper, we construct e-values for tes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biometrika Ročník 109; číslo 3; s. 647 - 663
Hlavní autori: Henzi, Alexander, Ziegel, Johanna F
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford University Press 01.09.2022
Predmet:
ISSN:0006-3444, 1464-3510
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Summary Probability forecasts for binary events play a central role in many applications. Their quality is commonly assessed with proper scoring rules, which assign forecasts numerical scores such that a correct forecast achieves a minimal expected score. In this paper, we construct e-values for testing the statistical significance of score differences of competing forecasts in sequential settings. E-values have been proposed as an alternative to $p$-values for hypothesis testing, and they can easily be transformed into conservative $p$-values by taking the multiplicative inverse. The e-values proposed in this article are valid in finite samples without any assumptions on the data-generating processes. They also allow optional stopping, so a forecast user may decide to interrupt evaluation, taking into account the available data at any time, and still draw statistically valid inference, which is generally not true for classical $p$-value-based tests. In a case study on post-processing of precipitation forecasts, state-of-the-art forecast dominance tests and e-values lead to the same conclusions.
AbstractList Summary Probability forecasts for binary events play a central role in many applications. Their quality is commonly assessed with proper scoring rules, which assign forecasts numerical scores such that a correct forecast achieves a minimal expected score. In this paper, we construct e-values for testing the statistical significance of score differences of competing forecasts in sequential settings. E-values have been proposed as an alternative to $p$-values for hypothesis testing, and they can easily be transformed into conservative $p$-values by taking the multiplicative inverse. The e-values proposed in this article are valid in finite samples without any assumptions on the data-generating processes. They also allow optional stopping, so a forecast user may decide to interrupt evaluation, taking into account the available data at any time, and still draw statistically valid inference, which is generally not true for classical $p$-value-based tests. In a case study on post-processing of precipitation forecasts, state-of-the-art forecast dominance tests and e-values lead to the same conclusions.
Author Henzi, Alexander
Ziegel, Johanna F
Author_xml – sequence: 1
  givenname: Alexander
  surname: Henzi
  fullname: Henzi, Alexander
  email: alexander.henzi@stat.unibe.ch
– sequence: 2
  givenname: Johanna F
  orcidid: 0000-0002-5916-9746
  surname: Ziegel
  fullname: Ziegel, Johanna F
  email: johanna.ziegel@stat.unibe.ch
BookMark eNotjztrwzAUhUVJoU7atbPWDm6k6GUvhRL6gkCXtqu5kq9AxZZcyRny75uQTOcc-DjwLckipoiE3HP2yFkr1jakEec1FLBMmitScallLRRnC1IxxnQtpJQ3ZFnK72lqpSvy9AND6GnBvz3GOcBAQ_SYMTqkKdIpJws2DGE-UJ8yOigznTAf-whH5pZcexgK3l1yRb5fX7627_Xu8-1j-7yrnZB8rhupHOiNxNbaxvfIwCqOxoHsZWssR83BG7QSGTZgzEZpb5mxzhjrVY9iRR7Ov2k_dVMOI-RDx1l3Eu_O4t1FXPwDNLxSBg
CitedBy_id crossref_primary_10_1093_biomet_asac043
crossref_primary_10_1109_TIT_2024_3444458
crossref_primary_10_12688_f1000research_74223_2
crossref_primary_10_1093_biomet_asae049
crossref_primary_10_1093_jrsssb_qkae011
crossref_primary_10_1287_opre_2021_0792
crossref_primary_10_1214_23_STS894
crossref_primary_10_1073_pnas_2302098121
crossref_primary_10_1287_mnsc_2023_01659
crossref_primary_10_1109_ACCESS_2025_3605681
crossref_primary_10_1016_j_spl_2025_110515
crossref_primary_10_1002_qj_4647
crossref_primary_10_1016_j_ijforecast_2024_11_003
ContentType Journal Article
Copyright 2021 Biometrika Trust 2021
Copyright_xml – notice: 2021 Biometrika Trust 2021
DBID TOX
DOI 10.1093/biomet/asab047
DatabaseName Oxford Journals Open Access Collection
DatabaseTitleList
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
EISSN 1464-3510
EndPage 663
ExternalDocumentID 10.1093/biomet/asab047
GroupedDBID -DZ
-E4
-~X
..I
.2P
.55
.DC
.GJ
.I3
0R~
1TH
23N
3R3
4.4
482
48X
53G
5GY
5RE
5VS
5WA
6J9
6OB
70D
79B
8U8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWIL
ABAWQ
ABBHK
ABDFA
ABDTM
ABEJV
ABEUO
ABFAN
ABGNP
ABIME
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABPFR
ABPIB
ABPPZ
ABPQH
ABPQP
ABPTD
ABQLI
ABQTQ
ABSMQ
ABVGC
ABWST
ABXSQ
ABXVV
ABYWD
ABZBJ
ABZEO
ACBEA
ACFRR
ACGFO
ACGFS
ACGOD
ACHJO
ACIPB
ACIWK
ACMTB
ACNCT
ACPQN
ACPRK
ACTMH
ACUBG
ACUFI
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADLSF
ADMHC
ADNBA
ADOCK
ADODI
ADQBN
ADRDM
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFVYC
AFXHP
AFYAG
AGINJ
AGKEF
AGKRT
AGLNM
AGMDO
AGQXC
AGSYK
AHXPO
AIAGR
AIHAF
AIJHB
AJDVS
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALTZX
ALUQC
ALXQX
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
AS~
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DQDLB
DSRWC
DU5
D~K
EBS
ECEWR
EE~
EJD
ELUNK
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
FVMVE
GAUVT
GJXCC
H13
H5~
HAR
HGD
HQ6
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TJP
TN5
TOX
UAP
WH7
X7H
X7M
XSW
YAYTL
YKOAZ
YXANX
ZCG
ZGI
ZKX
~02
~91
ID FETCH-LOGICAL-c341t-845ca624e9bb8fde0ab51e7ca4d497b1e61af7eb4e0e8a77256fb07bc77bf5de3
IEDL.DBID TOX
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844406300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0006-3444
IngestDate Wed Apr 02 07:05:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Consistent scoring function
Forecast dominance
Probability forecast
Sequential inference
Proper scoring rule
E-value
Optional stopping
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-845ca624e9bb8fde0ab51e7ca4d497b1e61af7eb4e0e8a77256fb07bc77bf5de3
ORCID 0000-0002-5916-9746
OpenAccessLink https://dx.doi.org/10.1093/biomet/asab047
PageCount 17
ParticipantIDs oup_primary_10_1093_biomet_asab047
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Biometrika
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0006656
Score 2.5362628
Snippet Summary Probability forecasts for binary events play a central role in many applications. Their quality is commonly assessed with proper scoring rules, which...
SourceID oup
SourceType Publisher
StartPage 647
Title Valid sequential inference on probability forecast performance
Volume 109
WOSCitedRecordID wos000844406300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SFHrxoyp-E8Rr6O4m2WwugojFU_VQpbdlkkxAkG1pV6H_3uxmrSIe9JZDQmDyMW9I3nuEXAkNnksrWZpZYCLDnGmlJZMWOWpvPReuNZtQ43ExnerHTix6-csTvubDlodeD2EJJhENbzyVRbOjJw_T9Z2b561Pa9NiXAixlmf8OTzy2L6lkNHOPybfJdsdTqQ3cWH3yAZWA7IVnSNXA9JvQGLUWN4n188BTDsaf0WHE_tKXz5pfHRW0cYzJqpxr2iAqGhhWdP5F2HggDyN7ia396zzRWA25JyaFUJayDOB2pjCO0zAyBSVBeGEVibFPAWv0AhMsIAAn2XuTaKMVcp46ZAfkl41q_CI0EJpF2oo1xifC5UAhGojYDauU0AOLjsmlyFc5TwqX5TxxZqXMSplF5WTv3Q6Jf2sYQ6037POSK9evOE52bTvIViLi3Y1PwAHyaAy
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Valid+sequential+inference+on+probability+forecast+performance&rft.jtitle=Biometrika&rft.au=Henzi%2C+Alexander&rft.au=Ziegel%2C+Johanna+F&rft.date=2022-09-01&rft.pub=Oxford+University+Press&rft.issn=0006-3444&rft.eissn=1464-3510&rft.volume=109&rft.issue=3&rft.spage=647&rft.epage=663&rft_id=info:doi/10.1093%2Fbiomet%2Fasab047&rft.externalDocID=10.1093%2Fbiomet%2Fasab047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon