A generalizable approach to imbalanced classification of residential electric space heat

Changes in climate and energy technologies motivate a greater understanding of residential electricity usage and its relation to weather conditions. The recent proliferation of smart electricity meters promises an influx of new datasets spanning diverse cities, geographies, and climates worldwide. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research, infrastructure and sustainability : ERIS Jg. 4; H. 3; S. 35008 - 35020
Hauptverfasser: Lee, Christopher S, Zhao, Zhizhen, Stillwell, Ashlynn S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IOP Publishing 01.09.2024
Schlagworte:
ISSN:2634-4505, 2634-4505
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Changes in climate and energy technologies motivate a greater understanding of residential electricity usage and its relation to weather conditions. The recent proliferation of smart electricity meters promises an influx of new datasets spanning diverse cities, geographies, and climates worldwide. However, although analytics for smart meters is a rapidly expanding field of research, issues such as generalizability to new data and robustness to data quality remain underexplored in the literature. We characterize residential electricity consumption patterns from a large, uncurated testbed of smart electricity meter data, revealing challenges in adapting existing methodologies to datasets with different scopes and locations. We propose a novel feature—the proportion of electricity used below a temperature threshold—summarizing a household’s demand-temperature profile that is productive for identifying electric primary space heating in a smart meter data set of Chicago single-family residences. Weighted logistic regression using the proportion of electricity consumed below a selected low temperature mitigates difficulties of the dataset such as skew and class imbalance. Although the limitations of the dataset restrict some approaches, this experiment suggests advantages of the feature that can be adapted to study other datasets beyond the identification of space heating. Such data-driven approaches can be valuable for knowledge distillation from abundant, uncurated smart electricity meter data.
AbstractList Changes in climate and energy technologies motivate a greater understanding of residential electricity usage and its relation to weather conditions. The recent proliferation of smart electricity meters promises an influx of new datasets spanning diverse cities, geographies, and climates worldwide. However, although analytics for smart meters is a rapidly expanding field of research, issues such as generalizability to new data and robustness to data quality remain underexplored in the literature. We characterize residential electricity consumption patterns from a large, uncurated testbed of smart electricity meter data, revealing challenges in adapting existing methodologies to datasets with different scopes and locations. We propose a novel feature—the proportion of electricity used below a temperature threshold—summarizing a household’s demand-temperature profile that is productive for identifying electric primary space heating in a smart meter data set of Chicago single-family residences. Weighted logistic regression using the proportion of electricity consumed below a selected low temperature mitigates difficulties of the dataset such as skew and class imbalance. Although the limitations of the dataset restrict some approaches, this experiment suggests advantages of the feature that can be adapted to study other datasets beyond the identification of space heating. Such data-driven approaches can be valuable for knowledge distillation from abundant, uncurated smart electricity meter data.
Author Lee, Christopher S
Stillwell, Ashlynn S
Zhao, Zhizhen
Author_xml – sequence: 1
  givenname: Christopher S
  orcidid: 0000-0002-3514-7147
  surname: Lee
  fullname: Lee, Christopher S
  organization: Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign , Urbana, IL, United States of America
– sequence: 2
  givenname: Zhizhen
  orcidid: 0000-0003-3594-5840
  surname: Zhao
  fullname: Zhao, Zhizhen
  organization: Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign , Urbana, IL, United States of America
– sequence: 3
  givenname: Ashlynn S
  orcidid: 0000-0002-6781-6480
  surname: Stillwell
  fullname: Stillwell, Ashlynn S
  organization: Department of Civil and Environmental Engineering University of Illinois Urbana-Champaign , Urbana, IL, United States of America
BookMark eNp1kE1LAzEQhoNUsNbePeYHuDZf3c0eS_GjUPCi4C3MJpM2ZbtZkvWgv97WSvHiaYZh3meY55qMutghIbec3XOm9UyUUhVqzuYzcCVU_oKMz6PRn_6KTHPeMcZEVXFesjF5X9ANdpigDV_QtEih71MEu6VDpGHfQAudRUdtCzkHHywMIXY0epowB4fdEKCl2KIdUrA092CRbhGGG3Lpoc04_a0T8vb48Lp8LtYvT6vlYl1YqfhQaCmautYOwValndee1SU4LyVvuMaKl6iVch6F1lWtBDLQwpfKgXRal8zKCVmduC7CzvQp7CF9mgjB_Axi2hhIQ7AtGo9coMK6qkCoRtTApATvPeeH81zwA4udWDbFnBP6M48zcxRtjibN0aQ5iT5E7k6REHuzix-pOzz7__o3w7WB0Q
CODEN ERISAL
Cites_doi 10.1016/j.seta.2020.100921
10.1088/1748-9326/ac2fdf
10.1109/TSG.2016.2584581
10.1016/j.enpol.2008.09.051
10.1016/j.apenergy.2022.120210
10.1016/j.energy.2011.11.056
10.1073/pnas.1613193114
10.1016/j.tej.2023.107254
10.1016/j.energy.2017.09.049
10.1109/TSG.2013.2245926
10.1109/TSG.2017.2753802
10.1109/TSG.2013.2278477
10.1016/j.enbuild.2016.12.084
10.1109/TSG.2021.3066547
10.1109/TSG.2021.3093515
10.1016/j.enbuild.2015.09.033
10.3724/SP.J.1248.2014.074
10.1016/j.apenergy.2020.114920
10.1016/j.enbuild.2017.08.036
10.1109/TCE.2019.2918922
10.1016/j.energy.2014.08.081
10.5255/UKDA-SN-7857-1
10.1109/TSG.2018.2818167
10.1016/j.energy.2011.06.013
10.1146/annurev-publhealth-012420-105026
10.1109/TSG.2019.2933704
10.1016/j.apenergy.2019.05.086
10.1016/j.apenergy.2022.119755
10.1109/TSG.2020.2965958
10.1016/j.segan.2017.03.006
10.1109/TSG.2016.2548565
10.1016/j.enbuild.2012.03.025
10.1021/acs.est.1c00024
10.1088/2634-4505/ac241e
10.1016/j.apenergy.2021.117113
10.1016/j.enbuild.2019.109455
10.1016/j.energy.2017.03.095
10.1088/1748-9326/acfb96
10.1088/1748-9326/ad1724
10.1016/j.apenergy.2019.113497
10.1109/TSG.2015.2409786
10.1109/TSG.2022.3146489
10.1016/j.energy.2021.122500
10.1016/j.energy.2015.06.001
10.1093/oxfordjournals.pan.a004868
10.1016/j.energy.2013.11.004
10.1016/j.apenergy.2018.11.039
10.1175/JTECH-D-11-00103.1
10.1016/j.erss.2021.102106
10.1109/TSG.2020.2991316
10.1016/j.apenergy.2021.116721
10.1016/j.apenergy.2023.121078
10.1016/j.apenergy.2020.114715
10.1016/j.apenergy.2019.01.113
10.1016/j.energy.2016.04.065
10.1088/2634-4505/ac5d60
10.1016/j.scs.2022.104250
10.1088/1748-9326/ab35a8
ContentType Journal Article
Copyright 2024 The Author(s). Published by IOP Publishing Ltd
Copyright_xml – notice: 2024 The Author(s). Published by IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
DOA
DOI 10.1088/2634-4505/ad6a7f
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2634-4505
ExternalDocumentID oai_doaj_org_article_fe12e4e977a24b29a033afff11dea121
10_1088_2634_4505_ad6a7f
erisad6a7f
GrantInformation_xml – fundername: Dynamic Research Enterprise for Multidisciplinary Engineering Sciences
  grantid: DREMES202001
GroupedDBID ABHWH
ACHIP
AKPSB
ALMA_UNASSIGNED_HOLDINGS
CJUJL
GROUPED_DOAJ
M~E
N5L
O3W
OK1
TSCCA
AAYXX
AEINN
CITATION
ID FETCH-LOGICAL-c341t-832b998deac76c59f096adf331b18e716e844dfe2887942e0a82f64da3d8860c3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294908000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2634-4505
IngestDate Fri Oct 03 12:42:08 EDT 2025
Sat Nov 29 03:34:39 EST 2025
Wed Aug 28 02:33:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-832b998deac76c59f096adf331b18e716e844dfe2887942e0a82f64da3d8860c3
Notes ERIS-100481
ORCID 0000-0002-6781-6480
0000-0002-3514-7147
0000-0003-3594-5840
OpenAccessLink https://doaj.org/article/fe12e4e977a24b29a033afff11dea121
PageCount 13
ParticipantIDs iop_journals_10_1088_2634_4505_ad6a7f
doaj_primary_oai_doaj_org_article_fe12e4e977a24b29a033afff11dea121
crossref_primary_10_1088_2634_4505_ad6a7f
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Environmental research, infrastructure and sustainability : ERIS
PublicationTitleAbbrev ERIS
PublicationTitleAlternate Environ. Res.: Infrastruct. Sustain
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Alyami (erisad6a7fbib9) 2021; 1
Peplinski (erisad6a7fbib42) 2023; 18
Dong (erisad6a7fbib30) 2016; 117
Westermann (erisad6a7fbib56) 2020; 264
Ebi (erisad6a7fbib2) 2021; 42
Zhan (erisad6a7fbib61) 2020; 269
Dong (erisad6a7fbib24) 2013; 4
Dirks (erisad6a7fbib13) 2015; 79
Todic (erisad6a7fbib50) 2023; 341
Lin (erisad6a7fbib33) 2021; 12
Kwac (erisad6a7fbib28) 2014; 5
Busby (erisad6a7fbib7) 2021; 77
Devlin (erisad6a7fbib27) 2019; 65
Liang (erisad6a7fbib52) 2020; 11
Birt (erisad6a7fbib43) 2012; 50
Perez (erisad6a7fbib44) 2017; 139
National Academies of Sciences, Engineering and Medicine (erisad6a7fbib1) 2016
Yu (erisad6a7fbib12) 2019; 253
Pesantez (erisad6a7fbib18) 2023; 88
Luan (erisad6a7fbib49) 2022; 324
Alonso (erisad6a7fbib22) 2020; 11
Hou (erisad6a7fbib40) 2014; 5
Chen (erisad6a7fbib53) 2019; 14
Tabatabaei (erisad6a7fbib25) 2017; 8
Li (erisad6a7fbib62) 2021; 291
Schofield (erisad6a7fbib58) 2013
Mayes (erisad6a7fbib10) 2022; 2
Viegas (erisad6a7fbib35) 2016; 107
US Energy Information Administration (erisad6a7fbib11) 2015
Menne (erisad6a7fbib54) 2012
Stone (erisad6a7fbib6) 2021; 55
Song (erisad6a7fbib46) 2021; 12
Wang (erisad6a7fbib23) 2022; 13
Eskander (erisad6a7fbib48) 2021; 43
Pina (erisad6a7fbib8) 2012; 41
Zhang (erisad6a7fbib26) 2017; 10
Kong (erisad6a7fbib31) 2019; 10
Department for Business, Energy, & Industrial Strategy (erisad6a7fbib60) 2021
Wang (erisad6a7fbib19) 2016; 7
Schaeffer (erisad6a7fbib5) 2012; 38
Isaac (erisad6a7fbib3) 2009; 37
Ulmeanu (erisad6a7fbib51) 2017; 154
Rhodes (erisad6a7fbib37) 2014; 65
Auffhammer (erisad6a7fbib14) 2017; 114
Shi (erisad6a7fbib47) 2019; 252
Menne (erisad6a7fbib55) 2012; 29
Jin (erisad6a7fbib63) 2022; 328
Rastogi (erisad6a7fbib41) 2021; 16
Borgeson (erisad6a7fbib64) 2013
Gouveia (erisad6a7fbib45) 2017; 141
White (erisad6a7fbib16) 2021; 298
Haben (erisad6a7fbib20) 2016; 7
Liang (erisad6a7fbib29) 2020; 11
Skiles (erisad6a7fbib15) 2023; 36
Rajabi (erisad6a7fbib21) 2019; 203
US Census Bureau (erisad6a7fbib59) 2015
Bedi (erisad6a7fbib32) 2019; 238
King (erisad6a7fbib57) 2001; 9
Jovanović (erisad6a7fbib39) 2015; 88
Yu (erisad6a7fbib17) 2024; 19
Wang (erisad6a7fbib34) 2019; 10
Burillo (erisad6a7fbib38) 2019; 236
Waite (erisad6a7fbib4) 2017; 127
Tang (erisad6a7fbib36) 2022; 240
References_xml – volume: 43
  year: 2021
  ident: erisad6a7fbib48
  article-title: A complementary unsupervised load disaggregation method for residential loads at very low sampling rate data
  publication-title: Sustain. Energy Technol. Assess.
  doi: 10.1016/j.seta.2020.100921
– volume: 16
  year: 2021
  ident: erisad6a7fbib41
  article-title: The role of humidity in determining future electricity demand in the southeastern United States
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac2fdf
– volume: 8
  start-page: 26
  year: 2017
  ident: erisad6a7fbib25
  article-title: Toward non-intrusive load monitoring via multi-label classification
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2016.2584581
– volume: 37
  start-page: 507
  year: 2009
  ident: erisad6a7fbib3
  article-title: Modeling global residential sector energy demand for heating and air conditioning in the context of climate change
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.09.051
– volume: 328
  year: 2022
  ident: erisad6a7fbib63
  article-title: Semi-supervised learning based framework for urban level building electricity consumption prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120210
– volume: 38
  start-page: 1
  year: 2012
  ident: erisad6a7fbib5
  article-title: Energy sector vulnerability to climate change: a review
  publication-title: Energy
  doi: 10.1016/j.energy.2011.11.056
– volume: 114
  start-page: 1886
  year: 2017
  ident: erisad6a7fbib14
  article-title: Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1613193114
– volume: 36
  year: 2023
  ident: erisad6a7fbib15
  article-title: Perspectives on peak demand: how is ERCOT peak electric load evolving in the context of changing weather and heating electrification?
  publication-title: Electr. J.
  doi: 10.1016/j.tej.2023.107254
– volume: 141
  start-page: 108
  year: 2017
  ident: erisad6a7fbib45
  article-title: Daily electricity consumption profiles from smart meters - proxies of behavior for space heating and cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.049
– volume: 4
  start-page: 1421
  year: 2013
  ident: erisad6a7fbib24
  article-title: Non-intrusive signature extraction for major residential loads
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2013.2245926
– volume: 10
  start-page: 841
  year: 2019
  ident: erisad6a7fbib31
  article-title: Short-term residential load forecasting based on LSTM recurrent neural network
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2017.2753802
– volume: 5
  start-page: 420
  year: 2014
  ident: erisad6a7fbib28
  article-title: Household energy consumption segmentation using hourly data
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2013.2278477
– volume: 139
  start-page: 351
  year: 2017
  ident: erisad6a7fbib44
  article-title: Development and analysis of residential change-point models from smart meter data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.12.084
– year: 2015
  ident: erisad6a7fbib59
– volume: 12
  start-page: 3242
  year: 2021
  ident: erisad6a7fbib46
  article-title: Time–frequency mask estimation based on deep neural network for flexible load disaggregation in buildings
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2021.3066547
– volume: 12
  start-page: 5373
  year: 2021
  ident: erisad6a7fbib33
  article-title: Spatial-temporal residential short-term load forecasting via graph neural networks
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3093515
– volume: 117
  start-page: 341
  year: 2016
  ident: erisad6a7fbib30
  article-title: A hybrid model approach for forecasting future residential electricity consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.09.033
– year: 2016
  ident: erisad6a7fbib1
– volume: 5
  start-page: 74
  year: 2014
  ident: erisad6a7fbib40
  article-title: Influences of urban temperature on the electricity consumption of Shanghai
  publication-title: Adv. Clim. Change Res.
  doi: 10.3724/SP.J.1248.2014.074
– year: 2013
  ident: erisad6a7fbib64
  article-title: Targeted efficiency: using customer meter data to improve efficiency program outcomes
– volume: 269
  year: 2020
  ident: erisad6a7fbib61
  article-title: Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114920
– volume: 154
  start-page: 127
  year: 2017
  ident: erisad6a7fbib51
  article-title: Hidden Markov Models revealing the household thermal profiling from smart meter data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.08.036
– volume: 65
  start-page: 339
  year: 2019
  ident: erisad6a7fbib27
  article-title: Non-intrusive load monitoring and classification of activities of daily living using residential smart meter data
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2019.2918922
– volume: 79
  start-page: 20
  year: 2015
  ident: erisad6a7fbib13
  article-title: Impacts of climate change on energy consumption and peak demand in buildings: a detailed regional approach
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.081
– year: 2013
  ident: erisad6a7fbib58
  article-title: Low Carbon London Project: Data from the dynamic time-of-use electricity pricing trial
  doi: 10.5255/UKDA-SN-7857-1
– volume: 10
  start-page: 3125
  year: 2019
  ident: erisad6a7fbib34
  article-title: Review of smart meter data analytics: Applications, methodologies and challenges
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2018.2818167
– volume: 41
  start-page: 128
  year: 2012
  ident: erisad6a7fbib8
  article-title: The impact of demand side management strategies in the penetration of renewable electricity
  publication-title: Energy
  doi: 10.1016/j.energy.2011.06.013
– volume: 42
  start-page: 293
  year: 2021
  ident: erisad6a7fbib2
  article-title: Extreme weather and climate change: population health and health system implications
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev-publhealth-012420-105026
– volume: 11
  start-page: 1229
  year: 2020
  ident: erisad6a7fbib29
  article-title: A data-driven approach for targeting residential customers for energy efficiency programs
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2019.2933704
– volume: 252
  year: 2019
  ident: erisad6a7fbib47
  article-title: Nonintrusive load monitoring in residential households with low-resolution data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.05.086
– volume: 324
  year: 2022
  ident: erisad6a7fbib49
  article-title: Non-intrusive power waveform modeling and identification of air conditioning load
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119755
– volume: 11
  start-page: 3107
  year: 2020
  ident: erisad6a7fbib52
  article-title: Separation of residential space cooling usage from smart meter data
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2965958
– volume: 10
  start-page: 92
  year: 2017
  ident: erisad6a7fbib26
  article-title: Data mining of smart meters for load category based disaggregation of residential power consumption
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2017.03.006
– volume: 7
  start-page: 2437
  year: 2016
  ident: erisad6a7fbib19
  article-title: Clustering of electricity consumption behavior dynamics toward big data applications
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2016.2548565
– volume: 50
  start-page: 93
  year: 2012
  ident: erisad6a7fbib43
  article-title: Disaggregating categories of electrical energy end-use from whole-house hourly data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.03.025
– volume: 55
  start-page: 6957
  year: 2021
  ident: erisad6a7fbib6
  article-title: Compound climate and infrastructure events: How electrical grid failure alters heat wave risk
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c00024
– volume: 1
  year: 2021
  ident: erisad6a7fbib9
  article-title: Building energy performance simulation: a case study of modelling an existing residential building in Saudi Arabia
  publication-title: Environ. Res. Infrastr. Sustain.
  doi: 10.1088/2634-4505/ac241e
– volume: 298
  year: 2021
  ident: erisad6a7fbib16
  article-title: Quantifying the impact of residential space heating electrification on the texas electric grid
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117113
– volume: 203
  year: 2019
  ident: erisad6a7fbib21
  article-title: A pattern recognition methodology for analyzing residential customers load data and targeting demand response applications
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.109455
– volume: 127
  start-page: 786
  year: 2017
  ident: erisad6a7fbib4
  article-title: Global trends in urban electricity demands for cooling and heating
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.095
– year: 2021
  ident: erisad6a7fbib60
– volume: 18
  year: 2023
  ident: erisad6a7fbib42
  article-title: Investigating whether the inclusion of humid heat metrics improves estimates of AC penetration rates: a case study of Southern California
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/acfb96
– volume: 19
  year: 2024
  ident: erisad6a7fbib17
  article-title: Hot or cold temperature disproportionately impacts U.S. energy burdens
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ad1724
– volume: 253
  year: 2019
  ident: erisad6a7fbib12
  article-title: A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113497
– volume: 7
  start-page: 136
  year: 2016
  ident: erisad6a7fbib20
  article-title: Analysis and clustering of residential customers energy behavioral demand using smart meter data
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2015.2409786
– volume: 13
  start-page: 2425
  year: 2022
  ident: erisad6a7fbib23
  article-title: Federated clustering for electricity consumption pattern extraction
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2022.3146489
– volume: 240
  year: 2022
  ident: erisad6a7fbib36
  article-title: Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122500
– volume: 88
  start-page: 604
  year: 2015
  ident: erisad6a7fbib39
  article-title: The impact of the mean daily air temperature change on electricity consumption
  publication-title: Energy
  doi: 10.1016/j.energy.2015.06.001
– volume: 9
  start-page: 137
  year: 2001
  ident: erisad6a7fbib57
  article-title: Logistic regression in rare events data
  publication-title: Polit. Anal.
  doi: 10.1093/oxfordjournals.pan.a004868
– volume: 65
  start-page: 462
  year: 2014
  ident: erisad6a7fbib37
  article-title: Experimental and data collection methods for a large-scale smart grid deployment: methods and first results
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.004
– year: 2012
  ident: erisad6a7fbib54
– volume: 236
  start-page: 1
  year: 2019
  ident: erisad6a7fbib38
  article-title: Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.11.039
– volume: 29
  start-page: 897
  year: 2012
  ident: erisad6a7fbib55
  article-title: An overview of the global historical climatology network-daily database
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-11-00103.1
– volume: 77
  year: 2021
  ident: erisad6a7fbib7
  article-title: Cascading risks: understanding the 2021 winter blackout in Texas
  publication-title: Energy Res. Social Sci.
  doi: 10.1016/j.erss.2021.102106
– volume: 11
  start-page: 4522
  year: 2020
  ident: erisad6a7fbib22
  article-title: Hierarchical clustering for smart meter electricity loads based on quantile autocovariances
  publication-title: IEEE Trans. on Smart Grid
  doi: 10.1109/TSG.2020.2991316
– volume: 291
  year: 2021
  ident: erisad6a7fbib62
  article-title: Characterizing patterns and variability of building electric load profiles in time and frequency domains
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116721
– volume: 341
  year: 2023
  ident: erisad6a7fbib50
  article-title: An active learning framework for the low-frequency non-intrusive load monitoring problem
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121078
– volume: 264
  year: 2020
  ident: erisad6a7fbib56
  article-title: Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.114715
– volume: 238
  start-page: 1312
  year: 2019
  ident: erisad6a7fbib32
  article-title: Deep learning framework to forecast electricity demand
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.113
– volume: 107
  start-page: 804
  year: 2016
  ident: erisad6a7fbib35
  article-title: Classification of new electricity customers based on surveys and smart metering data
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.065
– year: 2015
  ident: erisad6a7fbib11
  article-title: Residential energy consumption survey
– volume: 2
  year: 2022
  ident: erisad6a7fbib10
  article-title: Quantifying the electricity, CO2 emissions and economic tradeoffs of precooling strategies for a single-family home in Southern California*
  publication-title: Environmental Research: Infrastructure and Sustain.
  doi: 10.1088/2634-4505/ac5d60
– volume: 88
  year: 2023
  ident: erisad6a7fbib18
  article-title: Analysis of single- and multi-family residential electricity consumption in a large urban environment: evidence from Chicago, IL
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.104250
– volume: 14
  year: 2019
  ident: erisad6a7fbib53
  article-title: A new method utilizing smart meter data for identifying the existence of air conditioning in residential homes
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab35a8
SSID ssj0002771160
Score 2.26677
Snippet Changes in climate and energy technologies motivate a greater understanding of residential electricity usage and its relation to weather conditions. The recent...
SourceID doaj
crossref
iop
SourceType Open Website
Index Database
Publisher
StartPage 35008
SubjectTerms classification
feature extraction
regression
residential electricity
smart meter data
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH4qx8DCXVEueYCBITQ-6jhiKqgVAwIGEN0in6gStBUt_H6ek1BAAgmJLUqcOPme_Y74vc8AR0Eba3KcgL6jQiIkp4niacCYJwtceKGkK0lcr7LrazUY5LcNOJvXwownteo_xcOKKLiCsE6IU20muUgEWu62dlJnYQGWuOrIOMhv-MP8BwvLMkplWi9N_nTjN1NUMvajgcFevxiY_tq_Xm0dVmu_knSrphvQ8KNNaPY-y9jwYj2Pp1sw6JLHim86JnU9efJBLU5mYzJ8NjHf0XpHbPStYzJRKT8yDgSj82FZ24vPq7bQGVqCWsl6EtX6Ntz3e3cXl0m9x0Ji0X7NUDDMYMTlUP9m0nbygCGNdoFzaqjyGEx5JYQLnqEyygXzqVYsSOE0d0rJ1PImLI7GI78DxKGqMrFC3flIQ6hN0LpjciYxyA7KuBacfMBdTCoqjaJcAleqiMAVEbiiAq4F51Ee83aRBLs8gagXNepF8JR54dGD1UwYluuUcx1CoBQ_hzLagmMUVFFPyumvne3-sd0erDB0aaoMs31YnL28-gNYtm-z4fTlsBx9703O3K4
  priority: 102
  providerName: IOP Publishing
Title A generalizable approach to imbalanced classification of residential electric space heat
URI https://iopscience.iop.org/article/10.1088/2634-4505/ad6a7f
https://doaj.org/article/fe12e4e977a24b29a033afff11dea121
Volume 4
WOSCitedRecordID wos001294908000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2634-4505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002771160
  issn: 2634-4505
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2634-4505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002771160
  issn: 2634-4505
  databaseCode: O3W
  dateStart: 20210624
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2634-4505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002771160
  issn: 2634-4505
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBvCrKSx5gYIgaP-o4I6AiBl4DiG6RH2cUBC2ihZHfztlJoQyIhcVDEsXRd7mX7u4zIQfBWGdLVEDo65BJJVimRR4w5ymCkCC18onE9aK4utLDYXkzd9RX7Alr6IEb4HoBGAcJGKYYLi0vTS6ECSEw5sGwNELOMeqZS6YeUzmtYEzlbV0SNanHlZCZRH_fM16ZIvzwQ4muH71LPX6Z8y5nq2SlDQvpcfM5a2QBRuukM_ieQsObrRpONsjwmD40dNGxJ-sJ6IwZnE7HtH62sV3RgacuhsaxFyjBT8eBYnJdp9FcfF9zAk7tKBoVBzRa5U1ydza4PT3P2iMSMofuZ4q4cosJE0LhCuX6ZcCMxPggBLNMA-ZCoKX0ATjaklJyyI3mQUlvhNda5U50yOJoPIItQj1aGhsHzD1EFkFjgzF9W3KFOXLQ1nfJ0Qyw6qVhwqhSBVvrKoJbRXCrBtwuOYmIfj0XOazTBZRs1Uq2-kuyXXKI8qhanZr8utn2f2y2Q5Y5hitN99guWZy-vsEeWXLv03ryup9-LlwvPwa4Xov7T6BZ1pE
linkProvider Directory of Open Access Journals
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagX3lWXpw_tgUPY-BHHORboCkS17aFV92b5NdVKsLvqLvx-xon7QAIJiVuUOK9v4nnEM98A7KHzwXc0AVNjsFJa8srIGinmaVGqpIyOPYnrUTudmtmsOyl9TvtamOWqqP73tDkQBQ8QloQ4MxZaqkqR5R67qF2L41XEu3CvkY3MvRuO5fn1TxbRtpzruixP_unk38xRz9pPRobufMvITB799-M9hofFv2QHw_AncCctnsLO4U05Gx0s83n9DGYH7GLgnc7JXd8Su6IYZ5slm3_3Oe8xpMhC9rFzUlEvR7ZERlH6vK_xpesNrXTmgZF2Coll9f4cziaHpx8_V6XXQhXIjm1IQMJT5BVJD7c6NB1SaOMiSsk9N4mCqmSUipgEKaVOiVQ7I1Cr6GQ0RtdB7sDWYrlIu8AiqSyfK9VjynSEzqNzje-EpmAbjY8jeHcFuV0NlBq2Xwo3xmbwbAbPDuCN4EOWyfW4TIbd7yDkbUHeYuIiqUSerBPKi87VUjpE5Jxehws-gn0Sli2Tc_3Xm734x3Fv4cHJp4k9-jL9-hK2BXk5Q9LZK9jaXP5Ir-F--LmZry_f9B_jL-cV4g0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalizable+approach+to+imbalanced+classification+of+residential+electric+space+heat&rft.jtitle=Environmental+research%2C+infrastructure+and+sustainability+%3A+ERIS&rft.au=Christopher+S+Lee&rft.au=Zhizhen+Zhao&rft.au=Ashlynn+S+Stillwell&rft.date=2024-09-01&rft.pub=IOP+Publishing&rft.eissn=2634-4505&rft.volume=4&rft.issue=3&rft.spage=035008&rft_id=info:doi/10.1088%2F2634-4505%2Fad6a7f&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fe12e4e977a24b29a033afff11dea121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2634-4505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2634-4505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2634-4505&client=summon