A generalizable approach to imbalanced classification of residential electric space heat
Changes in climate and energy technologies motivate a greater understanding of residential electricity usage and its relation to weather conditions. The recent proliferation of smart electricity meters promises an influx of new datasets spanning diverse cities, geographies, and climates worldwide. H...
Gespeichert in:
| Veröffentlicht in: | Environmental research, infrastructure and sustainability : ERIS Jg. 4; H. 3; S. 35008 - 35020 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IOP Publishing
01.09.2024
|
| Schlagworte: | |
| ISSN: | 2634-4505, 2634-4505 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Changes in climate and energy technologies motivate a greater understanding of residential electricity usage and its relation to weather conditions. The recent proliferation of smart electricity meters promises an influx of new datasets spanning diverse cities, geographies, and climates worldwide. However, although analytics for smart meters is a rapidly expanding field of research, issues such as generalizability to new data and robustness to data quality remain underexplored in the literature. We characterize residential electricity consumption patterns from a large, uncurated testbed of smart electricity meter data, revealing challenges in adapting existing methodologies to datasets with different scopes and locations. We propose a novel feature—the proportion of electricity used below a temperature threshold—summarizing a household’s demand-temperature profile that is productive for identifying electric primary space heating in a smart meter data set of Chicago single-family residences. Weighted logistic regression using the proportion of electricity consumed below a selected low temperature mitigates difficulties of the dataset such as skew and class imbalance. Although the limitations of the dataset restrict some approaches, this experiment suggests advantages of the feature that can be adapted to study other datasets beyond the identification of space heating. Such data-driven approaches can be valuable for knowledge distillation from abundant, uncurated smart electricity meter data. |
|---|---|
| AbstractList | Changes in climate and energy technologies motivate a greater understanding of residential electricity usage and its relation to weather conditions. The recent proliferation of smart electricity meters promises an influx of new datasets spanning diverse cities, geographies, and climates worldwide. However, although analytics for smart meters is a rapidly expanding field of research, issues such as generalizability to new data and robustness to data quality remain underexplored in the literature. We characterize residential electricity consumption patterns from a large, uncurated testbed of smart electricity meter data, revealing challenges in adapting existing methodologies to datasets with different scopes and locations. We propose a novel feature—the proportion of electricity used below a temperature threshold—summarizing a household’s demand-temperature profile that is productive for identifying electric primary space heating in a smart meter data set of Chicago single-family residences. Weighted logistic regression using the proportion of electricity consumed below a selected low temperature mitigates difficulties of the dataset such as skew and class imbalance. Although the limitations of the dataset restrict some approaches, this experiment suggests advantages of the feature that can be adapted to study other datasets beyond the identification of space heating. Such data-driven approaches can be valuable for knowledge distillation from abundant, uncurated smart electricity meter data. |
| Author | Lee, Christopher S Stillwell, Ashlynn S Zhao, Zhizhen |
| Author_xml | – sequence: 1 givenname: Christopher S orcidid: 0000-0002-3514-7147 surname: Lee fullname: Lee, Christopher S organization: Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign , Urbana, IL, United States of America – sequence: 2 givenname: Zhizhen orcidid: 0000-0003-3594-5840 surname: Zhao fullname: Zhao, Zhizhen organization: Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign , Urbana, IL, United States of America – sequence: 3 givenname: Ashlynn S orcidid: 0000-0002-6781-6480 surname: Stillwell fullname: Stillwell, Ashlynn S organization: Department of Civil and Environmental Engineering University of Illinois Urbana-Champaign , Urbana, IL, United States of America |
| BookMark | eNp1kE1LAzEQhoNUsNbePeYHuDZf3c0eS_GjUPCi4C3MJpM2ZbtZkvWgv97WSvHiaYZh3meY55qMutghIbec3XOm9UyUUhVqzuYzcCVU_oKMz6PRn_6KTHPeMcZEVXFesjF5X9ANdpigDV_QtEih71MEu6VDpGHfQAudRUdtCzkHHywMIXY0epowB4fdEKCl2KIdUrA092CRbhGGG3Lpoc04_a0T8vb48Lp8LtYvT6vlYl1YqfhQaCmautYOwValndee1SU4LyVvuMaKl6iVch6F1lWtBDLQwpfKgXRal8zKCVmduC7CzvQp7CF9mgjB_Axi2hhIQ7AtGo9coMK6qkCoRtTApATvPeeH81zwA4udWDbFnBP6M48zcxRtjibN0aQ5iT5E7k6REHuzix-pOzz7__o3w7WB0Q |
| CODEN | ERISAL |
| Cites_doi | 10.1016/j.seta.2020.100921 10.1088/1748-9326/ac2fdf 10.1109/TSG.2016.2584581 10.1016/j.enpol.2008.09.051 10.1016/j.apenergy.2022.120210 10.1016/j.energy.2011.11.056 10.1073/pnas.1613193114 10.1016/j.tej.2023.107254 10.1016/j.energy.2017.09.049 10.1109/TSG.2013.2245926 10.1109/TSG.2017.2753802 10.1109/TSG.2013.2278477 10.1016/j.enbuild.2016.12.084 10.1109/TSG.2021.3066547 10.1109/TSG.2021.3093515 10.1016/j.enbuild.2015.09.033 10.3724/SP.J.1248.2014.074 10.1016/j.apenergy.2020.114920 10.1016/j.enbuild.2017.08.036 10.1109/TCE.2019.2918922 10.1016/j.energy.2014.08.081 10.5255/UKDA-SN-7857-1 10.1109/TSG.2018.2818167 10.1016/j.energy.2011.06.013 10.1146/annurev-publhealth-012420-105026 10.1109/TSG.2019.2933704 10.1016/j.apenergy.2019.05.086 10.1016/j.apenergy.2022.119755 10.1109/TSG.2020.2965958 10.1016/j.segan.2017.03.006 10.1109/TSG.2016.2548565 10.1016/j.enbuild.2012.03.025 10.1021/acs.est.1c00024 10.1088/2634-4505/ac241e 10.1016/j.apenergy.2021.117113 10.1016/j.enbuild.2019.109455 10.1016/j.energy.2017.03.095 10.1088/1748-9326/acfb96 10.1088/1748-9326/ad1724 10.1016/j.apenergy.2019.113497 10.1109/TSG.2015.2409786 10.1109/TSG.2022.3146489 10.1016/j.energy.2021.122500 10.1016/j.energy.2015.06.001 10.1093/oxfordjournals.pan.a004868 10.1016/j.energy.2013.11.004 10.1016/j.apenergy.2018.11.039 10.1175/JTECH-D-11-00103.1 10.1016/j.erss.2021.102106 10.1109/TSG.2020.2991316 10.1016/j.apenergy.2021.116721 10.1016/j.apenergy.2023.121078 10.1016/j.apenergy.2020.114715 10.1016/j.apenergy.2019.01.113 10.1016/j.energy.2016.04.065 10.1088/2634-4505/ac5d60 10.1016/j.scs.2022.104250 10.1088/1748-9326/ab35a8 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Published by IOP Publishing Ltd |
| Copyright_xml | – notice: 2024 The Author(s). Published by IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION DOA |
| DOI | 10.1088/2634-4505/ad6a7f |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2634-4505 |
| ExternalDocumentID | oai_doaj_org_article_fe12e4e977a24b29a033afff11dea121 10_1088_2634_4505_ad6a7f erisad6a7f |
| GrantInformation_xml | – fundername: Dynamic Research Enterprise for Multidisciplinary Engineering Sciences grantid: DREMES202001 |
| GroupedDBID | ABHWH ACHIP AKPSB ALMA_UNASSIGNED_HOLDINGS CJUJL GROUPED_DOAJ M~E N5L O3W OK1 TSCCA AAYXX AEINN CITATION |
| ID | FETCH-LOGICAL-c341t-832b998deac76c59f096adf331b18e716e844dfe2887942e0a82f64da3d8860c3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001294908000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2634-4505 |
| IngestDate | Fri Oct 03 12:42:08 EDT 2025 Sat Nov 29 03:34:39 EST 2025 Wed Aug 28 02:33:30 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c341t-832b998deac76c59f096adf331b18e716e844dfe2887942e0a82f64da3d8860c3 |
| Notes | ERIS-100481 |
| ORCID | 0000-0002-6781-6480 0000-0002-3514-7147 0000-0003-3594-5840 |
| OpenAccessLink | https://doaj.org/article/fe12e4e977a24b29a033afff11dea121 |
| PageCount | 13 |
| ParticipantIDs | iop_journals_10_1088_2634_4505_ad6a7f doaj_primary_oai_doaj_org_article_fe12e4e977a24b29a033afff11dea121 crossref_primary_10_1088_2634_4505_ad6a7f |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Environmental research, infrastructure and sustainability : ERIS |
| PublicationTitleAbbrev | ERIS |
| PublicationTitleAlternate | Environ. Res.: Infrastruct. Sustain |
| PublicationYear | 2024 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Alyami (erisad6a7fbib9) 2021; 1 Peplinski (erisad6a7fbib42) 2023; 18 Dong (erisad6a7fbib30) 2016; 117 Westermann (erisad6a7fbib56) 2020; 264 Ebi (erisad6a7fbib2) 2021; 42 Zhan (erisad6a7fbib61) 2020; 269 Dong (erisad6a7fbib24) 2013; 4 Dirks (erisad6a7fbib13) 2015; 79 Todic (erisad6a7fbib50) 2023; 341 Lin (erisad6a7fbib33) 2021; 12 Kwac (erisad6a7fbib28) 2014; 5 Busby (erisad6a7fbib7) 2021; 77 Devlin (erisad6a7fbib27) 2019; 65 Liang (erisad6a7fbib52) 2020; 11 Birt (erisad6a7fbib43) 2012; 50 Perez (erisad6a7fbib44) 2017; 139 National Academies of Sciences, Engineering and Medicine (erisad6a7fbib1) 2016 Yu (erisad6a7fbib12) 2019; 253 Pesantez (erisad6a7fbib18) 2023; 88 Luan (erisad6a7fbib49) 2022; 324 Alonso (erisad6a7fbib22) 2020; 11 Hou (erisad6a7fbib40) 2014; 5 Chen (erisad6a7fbib53) 2019; 14 Tabatabaei (erisad6a7fbib25) 2017; 8 Li (erisad6a7fbib62) 2021; 291 Schofield (erisad6a7fbib58) 2013 Mayes (erisad6a7fbib10) 2022; 2 Viegas (erisad6a7fbib35) 2016; 107 US Energy Information Administration (erisad6a7fbib11) 2015 Menne (erisad6a7fbib54) 2012 Stone (erisad6a7fbib6) 2021; 55 Song (erisad6a7fbib46) 2021; 12 Wang (erisad6a7fbib23) 2022; 13 Eskander (erisad6a7fbib48) 2021; 43 Pina (erisad6a7fbib8) 2012; 41 Zhang (erisad6a7fbib26) 2017; 10 Kong (erisad6a7fbib31) 2019; 10 Department for Business, Energy, & Industrial Strategy (erisad6a7fbib60) 2021 Wang (erisad6a7fbib19) 2016; 7 Schaeffer (erisad6a7fbib5) 2012; 38 Isaac (erisad6a7fbib3) 2009; 37 Ulmeanu (erisad6a7fbib51) 2017; 154 Rhodes (erisad6a7fbib37) 2014; 65 Auffhammer (erisad6a7fbib14) 2017; 114 Shi (erisad6a7fbib47) 2019; 252 Menne (erisad6a7fbib55) 2012; 29 Jin (erisad6a7fbib63) 2022; 328 Rastogi (erisad6a7fbib41) 2021; 16 Borgeson (erisad6a7fbib64) 2013 Gouveia (erisad6a7fbib45) 2017; 141 White (erisad6a7fbib16) 2021; 298 Haben (erisad6a7fbib20) 2016; 7 Liang (erisad6a7fbib29) 2020; 11 Skiles (erisad6a7fbib15) 2023; 36 Rajabi (erisad6a7fbib21) 2019; 203 US Census Bureau (erisad6a7fbib59) 2015 Bedi (erisad6a7fbib32) 2019; 238 King (erisad6a7fbib57) 2001; 9 Jovanović (erisad6a7fbib39) 2015; 88 Yu (erisad6a7fbib17) 2024; 19 Wang (erisad6a7fbib34) 2019; 10 Burillo (erisad6a7fbib38) 2019; 236 Waite (erisad6a7fbib4) 2017; 127 Tang (erisad6a7fbib36) 2022; 240 |
| References_xml | – volume: 43 year: 2021 ident: erisad6a7fbib48 article-title: A complementary unsupervised load disaggregation method for residential loads at very low sampling rate data publication-title: Sustain. Energy Technol. Assess. doi: 10.1016/j.seta.2020.100921 – volume: 16 year: 2021 ident: erisad6a7fbib41 article-title: The role of humidity in determining future electricity demand in the southeastern United States publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac2fdf – volume: 8 start-page: 26 year: 2017 ident: erisad6a7fbib25 article-title: Toward non-intrusive load monitoring via multi-label classification publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2016.2584581 – volume: 37 start-page: 507 year: 2009 ident: erisad6a7fbib3 article-title: Modeling global residential sector energy demand for heating and air conditioning in the context of climate change publication-title: Energy Policy doi: 10.1016/j.enpol.2008.09.051 – volume: 328 year: 2022 ident: erisad6a7fbib63 article-title: Semi-supervised learning based framework for urban level building electricity consumption prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120210 – volume: 38 start-page: 1 year: 2012 ident: erisad6a7fbib5 article-title: Energy sector vulnerability to climate change: a review publication-title: Energy doi: 10.1016/j.energy.2011.11.056 – volume: 114 start-page: 1886 year: 2017 ident: erisad6a7fbib14 article-title: Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1613193114 – volume: 36 year: 2023 ident: erisad6a7fbib15 article-title: Perspectives on peak demand: how is ERCOT peak electric load evolving in the context of changing weather and heating electrification? publication-title: Electr. J. doi: 10.1016/j.tej.2023.107254 – volume: 141 start-page: 108 year: 2017 ident: erisad6a7fbib45 article-title: Daily electricity consumption profiles from smart meters - proxies of behavior for space heating and cooling publication-title: Energy doi: 10.1016/j.energy.2017.09.049 – volume: 4 start-page: 1421 year: 2013 ident: erisad6a7fbib24 article-title: Non-intrusive signature extraction for major residential loads publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2013.2245926 – volume: 10 start-page: 841 year: 2019 ident: erisad6a7fbib31 article-title: Short-term residential load forecasting based on LSTM recurrent neural network publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2017.2753802 – volume: 5 start-page: 420 year: 2014 ident: erisad6a7fbib28 article-title: Household energy consumption segmentation using hourly data publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2013.2278477 – volume: 139 start-page: 351 year: 2017 ident: erisad6a7fbib44 article-title: Development and analysis of residential change-point models from smart meter data publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.12.084 – year: 2015 ident: erisad6a7fbib59 – volume: 12 start-page: 3242 year: 2021 ident: erisad6a7fbib46 article-title: Time–frequency mask estimation based on deep neural network for flexible load disaggregation in buildings publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2021.3066547 – volume: 12 start-page: 5373 year: 2021 ident: erisad6a7fbib33 article-title: Spatial-temporal residential short-term load forecasting via graph neural networks publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2021.3093515 – volume: 117 start-page: 341 year: 2016 ident: erisad6a7fbib30 article-title: A hybrid model approach for forecasting future residential electricity consumption publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.09.033 – year: 2016 ident: erisad6a7fbib1 – volume: 5 start-page: 74 year: 2014 ident: erisad6a7fbib40 article-title: Influences of urban temperature on the electricity consumption of Shanghai publication-title: Adv. Clim. Change Res. doi: 10.3724/SP.J.1248.2014.074 – year: 2013 ident: erisad6a7fbib64 article-title: Targeted efficiency: using customer meter data to improve efficiency program outcomes – volume: 269 year: 2020 ident: erisad6a7fbib61 article-title: Building categorization revisited: A clustering-based approach to using smart meter data for building energy benchmarking publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114920 – volume: 154 start-page: 127 year: 2017 ident: erisad6a7fbib51 article-title: Hidden Markov Models revealing the household thermal profiling from smart meter data publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.08.036 – volume: 65 start-page: 339 year: 2019 ident: erisad6a7fbib27 article-title: Non-intrusive load monitoring and classification of activities of daily living using residential smart meter data publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2019.2918922 – volume: 79 start-page: 20 year: 2015 ident: erisad6a7fbib13 article-title: Impacts of climate change on energy consumption and peak demand in buildings: a detailed regional approach publication-title: Energy doi: 10.1016/j.energy.2014.08.081 – year: 2013 ident: erisad6a7fbib58 article-title: Low Carbon London Project: Data from the dynamic time-of-use electricity pricing trial doi: 10.5255/UKDA-SN-7857-1 – volume: 10 start-page: 3125 year: 2019 ident: erisad6a7fbib34 article-title: Review of smart meter data analytics: Applications, methodologies and challenges publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2018.2818167 – volume: 41 start-page: 128 year: 2012 ident: erisad6a7fbib8 article-title: The impact of demand side management strategies in the penetration of renewable electricity publication-title: Energy doi: 10.1016/j.energy.2011.06.013 – volume: 42 start-page: 293 year: 2021 ident: erisad6a7fbib2 article-title: Extreme weather and climate change: population health and health system implications publication-title: Annu. Rev. Public Health doi: 10.1146/annurev-publhealth-012420-105026 – volume: 11 start-page: 1229 year: 2020 ident: erisad6a7fbib29 article-title: A data-driven approach for targeting residential customers for energy efficiency programs publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2019.2933704 – volume: 252 year: 2019 ident: erisad6a7fbib47 article-title: Nonintrusive load monitoring in residential households with low-resolution data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.05.086 – volume: 324 year: 2022 ident: erisad6a7fbib49 article-title: Non-intrusive power waveform modeling and identification of air conditioning load publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119755 – volume: 11 start-page: 3107 year: 2020 ident: erisad6a7fbib52 article-title: Separation of residential space cooling usage from smart meter data publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.2965958 – volume: 10 start-page: 92 year: 2017 ident: erisad6a7fbib26 article-title: Data mining of smart meters for load category based disaggregation of residential power consumption publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2017.03.006 – volume: 7 start-page: 2437 year: 2016 ident: erisad6a7fbib19 article-title: Clustering of electricity consumption behavior dynamics toward big data applications publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2016.2548565 – volume: 50 start-page: 93 year: 2012 ident: erisad6a7fbib43 article-title: Disaggregating categories of electrical energy end-use from whole-house hourly data publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.03.025 – volume: 55 start-page: 6957 year: 2021 ident: erisad6a7fbib6 article-title: Compound climate and infrastructure events: How electrical grid failure alters heat wave risk publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c00024 – volume: 1 year: 2021 ident: erisad6a7fbib9 article-title: Building energy performance simulation: a case study of modelling an existing residential building in Saudi Arabia publication-title: Environ. Res. Infrastr. Sustain. doi: 10.1088/2634-4505/ac241e – volume: 298 year: 2021 ident: erisad6a7fbib16 article-title: Quantifying the impact of residential space heating electrification on the texas electric grid publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117113 – volume: 203 year: 2019 ident: erisad6a7fbib21 article-title: A pattern recognition methodology for analyzing residential customers load data and targeting demand response applications publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.109455 – volume: 127 start-page: 786 year: 2017 ident: erisad6a7fbib4 article-title: Global trends in urban electricity demands for cooling and heating publication-title: Energy doi: 10.1016/j.energy.2017.03.095 – year: 2021 ident: erisad6a7fbib60 – volume: 18 year: 2023 ident: erisad6a7fbib42 article-title: Investigating whether the inclusion of humid heat metrics improves estimates of AC penetration rates: a case study of Southern California publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/acfb96 – volume: 19 year: 2024 ident: erisad6a7fbib17 article-title: Hot or cold temperature disproportionately impacts U.S. energy burdens publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ad1724 – volume: 253 year: 2019 ident: erisad6a7fbib12 article-title: A data-driven approach to extract operational signatures of HVAC systems and analyze impact on electricity consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113497 – volume: 7 start-page: 136 year: 2016 ident: erisad6a7fbib20 article-title: Analysis and clustering of residential customers energy behavioral demand using smart meter data publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2015.2409786 – volume: 13 start-page: 2425 year: 2022 ident: erisad6a7fbib23 article-title: Federated clustering for electricity consumption pattern extraction publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2022.3146489 – volume: 240 year: 2022 ident: erisad6a7fbib36 article-title: Machine learning approach to uncovering residential energy consumption patterns based on socioeconomic and smart meter data publication-title: Energy doi: 10.1016/j.energy.2021.122500 – volume: 88 start-page: 604 year: 2015 ident: erisad6a7fbib39 article-title: The impact of the mean daily air temperature change on electricity consumption publication-title: Energy doi: 10.1016/j.energy.2015.06.001 – volume: 9 start-page: 137 year: 2001 ident: erisad6a7fbib57 article-title: Logistic regression in rare events data publication-title: Polit. Anal. doi: 10.1093/oxfordjournals.pan.a004868 – volume: 65 start-page: 462 year: 2014 ident: erisad6a7fbib37 article-title: Experimental and data collection methods for a large-scale smart grid deployment: methods and first results publication-title: Energy doi: 10.1016/j.energy.2013.11.004 – year: 2012 ident: erisad6a7fbib54 – volume: 236 start-page: 1 year: 2019 ident: erisad6a7fbib38 article-title: Forecasting peak electricity demand for Los Angeles considering higher air temperatures due to climate change publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.11.039 – volume: 29 start-page: 897 year: 2012 ident: erisad6a7fbib55 article-title: An overview of the global historical climatology network-daily database publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-11-00103.1 – volume: 77 year: 2021 ident: erisad6a7fbib7 article-title: Cascading risks: understanding the 2021 winter blackout in Texas publication-title: Energy Res. Social Sci. doi: 10.1016/j.erss.2021.102106 – volume: 11 start-page: 4522 year: 2020 ident: erisad6a7fbib22 article-title: Hierarchical clustering for smart meter electricity loads based on quantile autocovariances publication-title: IEEE Trans. on Smart Grid doi: 10.1109/TSG.2020.2991316 – volume: 291 year: 2021 ident: erisad6a7fbib62 article-title: Characterizing patterns and variability of building electric load profiles in time and frequency domains publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.116721 – volume: 341 year: 2023 ident: erisad6a7fbib50 article-title: An active learning framework for the low-frequency non-intrusive load monitoring problem publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121078 – volume: 264 year: 2020 ident: erisad6a7fbib56 article-title: Unsupervised learning of energy signatures to identify the heating system and building type using smart meter data publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.114715 – volume: 238 start-page: 1312 year: 2019 ident: erisad6a7fbib32 article-title: Deep learning framework to forecast electricity demand publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.113 – volume: 107 start-page: 804 year: 2016 ident: erisad6a7fbib35 article-title: Classification of new electricity customers based on surveys and smart metering data publication-title: Energy doi: 10.1016/j.energy.2016.04.065 – year: 2015 ident: erisad6a7fbib11 article-title: Residential energy consumption survey – volume: 2 year: 2022 ident: erisad6a7fbib10 article-title: Quantifying the electricity, CO2 emissions and economic tradeoffs of precooling strategies for a single-family home in Southern California* publication-title: Environmental Research: Infrastructure and Sustain. doi: 10.1088/2634-4505/ac5d60 – volume: 88 year: 2023 ident: erisad6a7fbib18 article-title: Analysis of single- and multi-family residential electricity consumption in a large urban environment: evidence from Chicago, IL publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2022.104250 – volume: 14 year: 2019 ident: erisad6a7fbib53 article-title: A new method utilizing smart meter data for identifying the existence of air conditioning in residential homes publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab35a8 |
| SSID | ssj0002771160 |
| Score | 2.26677 |
| Snippet | Changes in climate and energy technologies motivate a greater understanding of residential electricity usage and its relation to weather conditions. The recent... |
| SourceID | doaj crossref iop |
| SourceType | Open Website Index Database Publisher |
| StartPage | 35008 |
| SubjectTerms | classification feature extraction regression residential electricity smart meter data |
| SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH4qx8DCXVEueYCBITQ-6jhiKqgVAwIGEN0in6gStBUt_H6ek1BAAgmJLUqcOPme_Y74vc8AR0Eba3KcgL6jQiIkp4niacCYJwtceKGkK0lcr7LrazUY5LcNOJvXwownteo_xcOKKLiCsE6IU20muUgEWu62dlJnYQGWuOrIOMhv-MP8BwvLMkplWi9N_nTjN1NUMvajgcFevxiY_tq_Xm0dVmu_knSrphvQ8KNNaPY-y9jwYj2Pp1sw6JLHim86JnU9efJBLU5mYzJ8NjHf0XpHbPStYzJRKT8yDgSj82FZ24vPq7bQGVqCWsl6EtX6Ntz3e3cXl0m9x0Ji0X7NUDDMYMTlUP9m0nbygCGNdoFzaqjyGEx5JYQLnqEyygXzqVYsSOE0d0rJ1PImLI7GI78DxKGqMrFC3flIQ6hN0LpjciYxyA7KuBacfMBdTCoqjaJcAleqiMAVEbiiAq4F51Ee83aRBLs8gagXNepF8JR54dGD1UwYluuUcx1CoBQ_hzLagmMUVFFPyumvne3-sd0erDB0aaoMs31YnL28-gNYtm-z4fTlsBx9703O3K4 priority: 102 providerName: IOP Publishing |
| Title | A generalizable approach to imbalanced classification of residential electric space heat |
| URI | https://iopscience.iop.org/article/10.1088/2634-4505/ad6a7f https://doaj.org/article/fe12e4e977a24b29a033afff11dea121 |
| Volume | 4 |
| WOSCitedRecordID | wos001294908000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2634-4505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002771160 issn: 2634-4505 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2634-4505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002771160 issn: 2634-4505 databaseCode: O3W dateStart: 20210624 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2634-4505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002771160 issn: 2634-4505 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBvCrKSx5gYIgaP-o4I6AiBl4DiG6RH2cUBC2ihZHfztlJoQyIhcVDEsXRd7mX7u4zIQfBWGdLVEDo65BJJVimRR4w5ymCkCC18onE9aK4utLDYXkzd9RX7Alr6IEb4HoBGAcJGKYYLi0vTS6ECSEw5sGwNELOMeqZS6YeUzmtYEzlbV0SNanHlZCZRH_fM16ZIvzwQ4muH71LPX6Z8y5nq2SlDQvpcfM5a2QBRuukM_ieQsObrRpONsjwmD40dNGxJ-sJ6IwZnE7HtH62sV3RgacuhsaxFyjBT8eBYnJdp9FcfF9zAk7tKBoVBzRa5U1ydza4PT3P2iMSMofuZ4q4cosJE0LhCuX6ZcCMxPggBLNMA-ZCoKX0ATjaklJyyI3mQUlvhNda5U50yOJoPIItQj1aGhsHzD1EFkFjgzF9W3KFOXLQ1nfJ0Qyw6qVhwqhSBVvrKoJbRXCrBtwuOYmIfj0XOazTBZRs1Uq2-kuyXXKI8qhanZr8utn2f2y2Q5Y5hitN99guWZy-vsEeWXLv03ryup9-LlwvPwa4Xov7T6BZ1pE |
| linkProvider | Directory of Open Access Journals |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BQagX3lWXpw_tgUPY-BHHORboCkS17aFV92b5NdVKsLvqLvx-xon7QAIJiVuUOK9v4nnEM98A7KHzwXc0AVNjsFJa8srIGinmaVGqpIyOPYnrUTudmtmsOyl9TvtamOWqqP73tDkQBQ8QloQ4MxZaqkqR5R67qF2L41XEu3CvkY3MvRuO5fn1TxbRtpzruixP_unk38xRz9pPRobufMvITB799-M9hofFv2QHw_AncCctnsLO4U05Gx0s83n9DGYH7GLgnc7JXd8Su6IYZ5slm3_3Oe8xpMhC9rFzUlEvR7ZERlH6vK_xpesNrXTmgZF2Coll9f4cziaHpx8_V6XXQhXIjm1IQMJT5BVJD7c6NB1SaOMiSsk9N4mCqmSUipgEKaVOiVQ7I1Cr6GQ0RtdB7sDWYrlIu8AiqSyfK9VjynSEzqNzje-EpmAbjY8jeHcFuV0NlBq2Xwo3xmbwbAbPDuCN4EOWyfW4TIbd7yDkbUHeYuIiqUSerBPKi87VUjpE5Jxehws-gn0Sli2Tc_3Xm734x3Fv4cHJp4k9-jL9-hK2BXk5Q9LZK9jaXP5Ir-F--LmZry_f9B_jL-cV4g0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalizable+approach+to+imbalanced+classification+of+residential+electric+space+heat&rft.jtitle=Environmental+research%2C+infrastructure+and+sustainability+%3A+ERIS&rft.au=Christopher+S+Lee&rft.au=Zhizhen+Zhao&rft.au=Ashlynn+S+Stillwell&rft.date=2024-09-01&rft.pub=IOP+Publishing&rft.eissn=2634-4505&rft.volume=4&rft.issue=3&rft.spage=035008&rft_id=info:doi/10.1088%2F2634-4505%2Fad6a7f&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fe12e4e977a24b29a033afff11dea121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2634-4505&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2634-4505&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2634-4505&client=summon |