A machine learning approach for predicting the best heuristic for a large scaled Capacitated Lotsizing Problem

For some NP-hard lotsizing problems, many different heuristics exist, but they have different solution qualities and computation times depending on the characteristics of the instance. The computation times of the individual heuristics increase significantly with the problem size, so that testing al...

Full description

Saved in:
Bibliographic Details
Published in:OR Spectrum Vol. 47; no. 3; pp. 889 - 931
Main Authors: Kärcher, Jens, Meyr, Herbert
Format: Journal Article
Language:English
Published: Berlin, Heidelberg Springer 01.09.2025
Springer Nature B.V
Subjects:
ISSN:1436-6304, 0171-6468, 1436-6304
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract For some NP-hard lotsizing problems, many different heuristics exist, but they have different solution qualities and computation times depending on the characteristics of the instance. The computation times of the individual heuristics increase significantly with the problem size, so that testing all available heuristics for large instances requires extensive time. Therefore, it is necessary to develop a method that allows a prediction of the best heuristic for the respective instance without testing all available heuristics. The Capacitated Lotsizing Problem (CLSP) is chosen as the problem to be solved, since it is a fundamental model in the field of lotsizing, well researched and several different heuristics exist for it. The CLSP addresses the problem of determining lotsizes on a production line given limited capacity, product-dependent setup costs, and deterministic, dynamic demand for multiple products. The objective is to minimize setup and inventory holding costs. Two different forecasting methods are presented. One of them is a two-layer neural network called CLSP-Net. It is trained on small CLSP instances, which can be solved very fast with the considered heuristics. Due to the use of a fixed number of wisely chosen features that are relative, relevant, and computationally efficient, and which leverage problem-specific knowledge, CLSP-Net is also capable of predicting the most suitable heuristic for large instances.
AbstractList For some NP-hard lotsizing problems, many different heuristics exist, but they have different solution qualities and computation times depending on the characteristics of the instance. The computation times of the individual heuristics increase significantly with the problem size, so that testing all available heuristics for large instances requires extensive time. Therefore, it is necessary to develop a method that allows a prediction of the best heuristic for the respective instance without testing all available heuristics. The Capacitated Lotsizing Problem (CLSP) is chosen as the problem to be solved, since it is a fundamental model in the field of lotsizing, well researched and several different heuristics exist for it. The CLSP addresses the problem of determining lotsizes on a production line given limited capacity, product-dependent setup costs, and deterministic, dynamic demand for multiple products. The objective is to minimize setup and inventory holding costs. Two different forecasting methods are presented. One of them is a two-layer neural network called CLSP-Net. It is trained on small CLSP instances, which can be solved very fast with the considered heuristics. Due to the use of a fixed number of wisely chosen features that are relative, relevant, and computationally efficient, and which leverage problem-specific knowledge, CLSP-Net is also capable of predicting the most suitable heuristic for large instances.
Author Kärcher, Jens
Meyr, Herbert
Author_xml – sequence: 1
  givenname: Jens
  surname: Kärcher
  fullname: Kärcher, Jens
– sequence: 2
  givenname: Herbert
  surname: Meyr
  fullname: Meyr, Herbert
BookMark eNp9kEFrGzEQhUVJobbbP1AoCHreZrQje3ePxiRpwdAekrOQ5FlbZi1tJfmQ_PrI3h5CDznNMLxv5s2bsxsfPDH2VcAPAdDcJoC6ExXUsgJoQVbdBzYTElfVCkHevOk_sXlKR4Bl02A7Y37NT9oenCc-kI7e-T3X4xhDGfI-RD5G2jmbL_N8IG4oZX6gc3QpO3tVaD7ouCeerB5oxzd61NZlnUu_DTm5lwv7JwYz0Okz-9jrIdGXf3XBnu7vHjc_q-3vh1-b9bayKEUuRluiHuXSWtEbCbaYrcF0hiRCg6JrsTHGINWGgEwnqbY7IXC1A5Rtq3HBvk97yyd_z8WzOoZz9OWkwnrZYduIsmfB2kllY0gpUq-uxl3wOWo3KAHqkq6a0lUlXXVNV3UFrf9Dx-hOOj6_D32bILLBu6QuJeUQFSIsUeIrUwyJTQ
CitedBy_id crossref_primary_10_3390_electronics14132642
Cites_doi 10.1016/S0065-2458(08)60520-3
10.1007/978-3-031-60599-4_16
10.1080/05695558108974565
10.1016/0167-6377(86)90027-1
10.1080/05695557908974478
10.1016/0377-2217(78)90121-2
10.1016/j.asoc.2012.02.026
10.1007/s10994-008-5077-3
10.1162/evco_a_00242
10.1016/j.ifacol.2019.11.397
10.1007/978-3-030-58942-4_7
10.1007/s10462-011-9290-2
10.1007/978-3-030-58861-8_9
10.1287/mnsc.35.3.353
10.1287/mnsc.28.10.1174
10.1007/s00291-008-0150-7
10.1016/j.ins.2018.10.013
10.1016/S0305-0483(03)00059-8
10.1007/s00291-015-0429-4
10.1016/j.ejor.2005.12.008
10.1016/j.simpat.2004.12.003
10.1109/IJCNN.2008.4634391
10.1016/j.cor.2018.02.007
10.1080/05695557508974999
10.1145/372202.372210
10.1016/S0305-0483(99)00035-3
10.1007/s00170-004-2306-1
10.1016/j.eswa.2018.10.036
10.1080/00207540600902262
10.1109/ICMLA.2011.153
10.1016/0272-6963(81)90033-4
10.1147/sj.71.0030
10.1016/j.ejor.2005.01.066
10.1016/0377-2217(87)90026-9
10.1080/00207543.2022.2056540
10.1007/978-3-642-34487-9_59
10.1109/BRACIS.2018.00037
10.1016/j.apm.2011.08.017
10.1007/BF02248584
10.1016/j.ejor.2021.04.032
10.1007/s10462-011-9272-4
10.1016/j.neucom.2016.04.027
10.1007/978-3-030-53552-0_15
10.1057/jors.1988.169
10.1007/s10462-022-10275-5
10.3923/jas.2010.1991.2000
10.1016/S0377-2217(99)00237-4
10.1007/s00291-004-0170-x
10.1007/978-3-642-13800-3_29
10.1007/978-3-540-73263-1
10.1007/s00521-012-0863-z
10.1016/0377-2217(94)90078-7
10.1109/CEC.2018.8477989
ContentType Journal Article
Copyright The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID OT2
AAYXX
CITATION
7SP
7TA
7TB
8FD
FR3
JG9
JQ2
KR7
L7M
DOI 10.1007/s00291-024-00804-9
DatabaseName EconStor
CrossRef
Electronics & Communications Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Engineering Research Database
Advanced Technologies Database with Aerospace
Materials Business File
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1436-6304
EndPage 931
ExternalDocumentID 10_1007_s00291_024_00804_9
330534
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1SB
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8TC
8V8
95-
95.
95~
96X
AAAVM
AABHQ
AABXT
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYQZM
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBO
EBS
EBU
EIOEI
EJD
EMK
EOH
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HMJXF
HQYDN
HRMNR
HVGLF
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
LLZTM
M0C
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
O93
O9G
O9I
OAM
OT2
P19
P2P
P62
P9M
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S26
S28
S3B
SAP
SBE
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T16
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZYFGU
~8M
AAYXX
CITATION
7SP
7TA
7TB
8FD
AESKC
FR3
JG9
JQ2
KR7
L7M
ID FETCH-LOGICAL-c341t-638eef345cc1fb40c77320b9be4307319837bbb3e2be0eb94e2cd1136d03488a3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001412737400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1436-6304
0171-6468
IngestDate Wed Nov 05 08:38:17 EST 2025
Sat Nov 29 07:08:55 EST 2025
Tue Nov 18 21:51:57 EST 2025
Fri Dec 05 12:07:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c341t-638eef345cc1fb40c77320b9be4307319837bbb3e2be0eb94e2cd1136d03488a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9856-3789
0009-0000-7022-3558
OpenAccessLink https://www.econstor.eu/handle/10419/330534
PQID 3259387107
PQPubID 49049
PageCount 43
ParticipantIDs proquest_journals_3259387107
crossref_citationtrail_10_1007_s00291_024_00804_9
crossref_primary_10_1007_s00291_024_00804_9
econis_econstor_330534
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Heidelberg
PublicationTitle OR Spectrum
PublicationYear 2025
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
References N Megala (804_CR39) 2006; 27
K Copil (804_CR10) 2017; 39
B Karimi (804_CR29) 2003; 31
H Rummukainen (804_CR49) 2019; 52
J Rohde (804_CR48) 2004; 26
E Aarts (804_CR1) 2000; 122
804_CR63
804_CR23
LK Gaafar (804_CR18) 2000; 28
804_CR66
804_CR27
I Goodfellow (804_CR19) 2016
804_CR28
N Srivastava (804_CR57) 2014; 15
PS Eisenhut (804_CR17) 1975; 7
EA Silver (804_CR53) 1969; 10
L van Hezewijk (804_CR60) 2023; 61
VG Costa (804_CR11) 2023; 56
804_CR36
804_CR35
PS Dixon (804_CR14) 1981; 2
WW Trigeiro (804_CR59) 1989; 35
F Arnold (804_CR2) 2019; 106
A Dogramaci (804_CR15) 1981; 13
J Maes (804_CR38) 1988; 39
CM Bishop (804_CR4) 2006
SB Kotsiantis (804_CR33) 2013; 39
L Buschkühl (804_CR7) 2010; 32
T Stützle (804_CR58) 2006; 174
P Kerschke (804_CR31) 2019; 27
GR Bitran (804_CR5) 1982; 28
KP Murphy (804_CR41) 2012
J-T Wong (804_CR64) 2012; 36
804_CR40
J Maes (804_CR37) 1986; 4
804_CR44
X Chu (804_CR9) 2019; 476
804_CR43
R Jans (804_CR24) 2007; 177
804_CR47
804_CR46
M Karimi-Mamaghan (804_CR30) 2022; 296
W-H Chen (804_CR8) 1990; 26
Ö Kirca (804_CR32) 1994; 75
J Kanda (804_CR26) 2016; 205
M Zennaki (804_CR65) 2010; 10
P Brazdil (804_CR6) 2009
EA Silver (804_CR54) 1973; 14
804_CR52
804_CR51
804_CR50
804_CR3
JJ DeMatteis (804_CR13) 1968; 7
804_CR12
MR Lambrecht (804_CR34) 1979; 11
804_CR56
R Jans (804_CR25) 2008; 46
804_CR55
AE Gutierrez-Rodríguez (804_CR22) 2019; 118
J van Nunen (804_CR61) 1978; 2
CD Paternina-Arboleda (804_CR45) 2005; 13
804_CR16
C Vens (804_CR62) 2008; 73
H-O Günther (804_CR21) 1987; 31
GK Groff (804_CR20) 1979; 20
M Nikolić (804_CR42) 2013; 40
References_xml – ident: 804_CR47
  doi: 10.1016/S0065-2458(08)60520-3
– ident: 804_CR63
  doi: 10.1007/978-3-031-60599-4_16
– volume: 13
  start-page: 294
  issue: 4
  year: 1981
  ident: 804_CR15
  publication-title: AIIE Trans
  doi: 10.1080/05695558108974565
– ident: 804_CR43
– volume: 4
  start-page: 265
  issue: 6
  year: 1986
  ident: 804_CR37
  publication-title: Oper Res Lett
  doi: 10.1016/0167-6377(86)90027-1
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: 804_CR57
  publication-title: J Mach Learn Res
– volume: 11
  start-page: 319
  issue: 4
  year: 1979
  ident: 804_CR34
  publication-title: AIIE Trans
  doi: 10.1080/05695557908974478
– volume: 2
  start-page: 36
  issue: 1
  year: 1978
  ident: 804_CR61
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(78)90121-2
– ident: 804_CR66
– ident: 804_CR52
  doi: 10.1016/j.asoc.2012.02.026
– volume: 73
  start-page: 185
  issue: 2
  year: 2008
  ident: 804_CR62
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5077-3
– volume: 27
  start-page: 3
  issue: 1
  year: 2019
  ident: 804_CR31
  publication-title: Evol Comput
  doi: 10.1162/evco_a_00242
– volume: 52
  start-page: 1415
  issue: 13
  year: 2019
  ident: 804_CR49
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.11.397
– ident: 804_CR3
  doi: 10.1007/978-3-030-58942-4_7
– volume: 40
  start-page: 457
  issue: 4
  year: 2013
  ident: 804_CR42
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9290-2
– ident: 804_CR50
  doi: 10.1007/978-3-030-58861-8_9
– volume: 14
  start-page: 64
  issue: 2
  year: 1973
  ident: 804_CR54
  publication-title: Prod Invent Manag
– volume: 35
  start-page: 353
  issue: 3
  year: 1989
  ident: 804_CR59
  publication-title: Manage Sci
  doi: 10.1287/mnsc.35.3.353
– volume: 28
  start-page: 1174
  issue: 10
  year: 1982
  ident: 804_CR5
  publication-title: Manage Sci
  doi: 10.1287/mnsc.28.10.1174
– volume: 32
  start-page: 231
  issue: 2
  year: 2010
  ident: 804_CR7
  publication-title: OR Spectrum
  doi: 10.1007/s00291-008-0150-7
– volume: 476
  start-page: 192
  year: 2019
  ident: 804_CR9
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2018.10.013
– ident: 804_CR44
– ident: 804_CR23
– volume: 31
  start-page: 365
  issue: 5
  year: 2003
  ident: 804_CR29
  publication-title: Omega
  doi: 10.1016/S0305-0483(03)00059-8
– volume: 39
  start-page: 1
  issue: 1
  year: 2017
  ident: 804_CR10
  publication-title: OR Spectrum
  doi: 10.1007/s00291-015-0429-4
– volume: 177
  start-page: 1855
  issue: 3
  year: 2007
  ident: 804_CR24
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.12.008
– volume: 13
  start-page: 389
  issue: 5
  year: 2005
  ident: 804_CR45
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2004.12.003
– ident: 804_CR55
  doi: 10.1109/IJCNN.2008.4634391
– volume: 106
  start-page: 280
  year: 2019
  ident: 804_CR2
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2018.02.007
– volume-title: Deep learning
  year: 2016
  ident: 804_CR19
– volume: 7
  start-page: 170
  issue: 2
  year: 1975
  ident: 804_CR17
  publication-title: AIIE Trans
  doi: 10.1080/05695557508974999
– ident: 804_CR35
  doi: 10.1145/372202.372210
– volume: 28
  start-page: 175
  issue: 2
  year: 2000
  ident: 804_CR18
  publication-title: Omega
  doi: 10.1016/S0305-0483(99)00035-3
– volume: 27
  start-page: 1178
  issue: 11
  year: 2006
  ident: 804_CR39
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2306-1
– volume: 118
  start-page: 470
  year: 2019
  ident: 804_CR22
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.10.036
– volume: 46
  start-page: 1619
  issue: 6
  year: 2008
  ident: 804_CR25
  publication-title: Int J Prod Res
  doi: 10.1080/00207540600902262
– ident: 804_CR27
  doi: 10.1109/ICMLA.2011.153
– volume: 2
  start-page: 23
  issue: 1
  year: 1981
  ident: 804_CR14
  publication-title: J Oper Manag
  doi: 10.1016/0272-6963(81)90033-4
– volume: 7
  start-page: 30
  issue: 1
  year: 1968
  ident: 804_CR13
  publication-title: IBM Syst J
  doi: 10.1147/sj.71.0030
– volume: 174
  start-page: 1519
  issue: 3
  year: 2006
  ident: 804_CR58
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.01.066
– volume: 20
  start-page: 47
  issue: 1
  year: 1979
  ident: 804_CR20
  publication-title: Prod Invent Manag
– volume: 31
  start-page: 223
  issue: 2
  year: 1987
  ident: 804_CR21
  publication-title: Eur J Oper Res
  doi: 10.1016/0377-2217(87)90026-9
– volume: 61
  start-page: 1955
  issue: 6
  year: 2023
  ident: 804_CR60
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2022.2056540
– ident: 804_CR28
  doi: 10.1007/978-3-642-34487-9_59
– ident: 804_CR16
– ident: 804_CR40
  doi: 10.1109/BRACIS.2018.00037
– volume: 36
  start-page: 2003
  issue: 5
  year: 2012
  ident: 804_CR64
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2011.08.017
– volume: 26
  start-page: 29
  issue: 1–4
  year: 1990
  ident: 804_CR8
  publication-title: Annals Oper Res
  doi: 10.1007/BF02248584
– volume-title: Machine learning: a probabilistic perspective. Adaptive computation and machine learning series
  year: 2012
  ident: 804_CR41
– volume-title: Pattern recognition and machine learning
  year: 2006
  ident: 804_CR4
– volume: 296
  start-page: 393
  issue: 2
  year: 2022
  ident: 804_CR30
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.04.032
– volume: 10
  start-page: 51
  issue: 4
  year: 1969
  ident: 804_CR53
  publication-title: Prod Invent Manag
– volume: 39
  start-page: 261
  issue: 4
  year: 2013
  ident: 804_CR33
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9272-4
– volume: 205
  start-page: 393
  year: 2016
  ident: 804_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.04.027
– ident: 804_CR46
– ident: 804_CR36
  doi: 10.1007/978-3-030-53552-0_15
– volume: 39
  start-page: 991
  issue: 11
  year: 1988
  ident: 804_CR38
  publication-title: J Oper Res Soc
  doi: 10.1057/jors.1988.169
– volume: 56
  start-page: 4765
  issue: 5
  year: 2023
  ident: 804_CR11
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10275-5
– volume: 10
  start-page: 1991
  issue: 18
  year: 2010
  ident: 804_CR65
  publication-title: J Appl Sci
  doi: 10.3923/jas.2010.1991.2000
– volume: 122
  start-page: 339
  issue: 2
  year: 2000
  ident: 804_CR1
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(99)00237-4
– volume: 26
  start-page: 471
  issue: 4
  year: 2004
  ident: 804_CR48
  publication-title: OR Spectrum
  doi: 10.1007/s00291-004-0170-x
– ident: 804_CR56
  doi: 10.1007/978-3-642-13800-3_29
– volume-title: Metalearning: applications to data mining
  year: 2009
  ident: 804_CR6
  doi: 10.1007/978-3-540-73263-1
– ident: 804_CR51
  doi: 10.1007/s00521-012-0863-z
– volume: 75
  start-page: 332
  issue: 2
  year: 1994
  ident: 804_CR32
  publication-title: Eur J Oper Res Lotsizing Models Prod Plan
  doi: 10.1016/0377-2217(94)90078-7
– ident: 804_CR12
  doi: 10.1109/CEC.2018.8477989
SSID ssj0057738
ssj0004889
Score 2.41189
Snippet For some NP-hard lotsizing problems, many different heuristics exist, but they have different solution qualities and computation times depending on the...
SourceID proquest
crossref
econis
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 889
SubjectTerms Algorithm selection problem
Algorithms
Capacitated lotsizing problem
Classification
Computation
Forecasting
Heuristic
Heuristics
Literature reviews
Machine learning
Mixed-integer linear programming
Neural network
Neural networks
Optimization
Production lines
Scheduling
Title A machine learning approach for predicting the best heuristic for a large scaled Capacitated Lotsizing Problem
URI https://www.econstor.eu/handle/10419/330534
https://www.proquest.com/docview/3259387107
Volume 47
WOSCitedRecordID wos001412737400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-6304
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057738
  issn: 1436-6304
  databaseCode: RSV
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0hhCo4dNttEUtp5QO31pK_skmOaFXUA0KoLYibFTuTdiXYRZuFQ389M04CrUorcYoj2Yk1Y3tm5Jn3AA5jXmc6oJbk2vM1Y6Zl1aggM0u-dVC1002CzD_JT0-Ly8vybAM-_fMGn-E-DWfnGCfZvXGSq_X01DBdwddvF49FkAXjpncvWZ4nDmsGg5FTNy36cpmnv_eHSdriOHTe_nU0J3tzPHreTF_By96vFEfdQngNG7gYw4shrX0Mo4G-QfS7eQw7v2ERvoHFkbhOiZUoeiaJH2IAHBfk2YqbFd_pcJa0IKdRBJqz-Im3HdJz6lGJK84rFy3pHWsxIzscuYSN2ifLdTv_xWPPOgabt3B-_Pn77IvsyRhkJEO3lrRPERvrshh1E5yKJGKjQhnQ8TGhS4p0QwgWTUCFoXRoYs2EMbWypJrK7sLmYrnAPRBNyMpQKxOxUY48hKIutDN1VRkstdU4AT3ow8ceqZwJM678A8ZykrQnSfskaV9O4OPDmJsOp-O_vXc7NXt-cBqqt3TwWTeBg0Htvt_MrbcUIloKLFW-_6y_vINtw2zBKSPtADbXq1t8D1vxbj1vVx_S6r0H8nPisQ
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+approach+for+predicting+the+best+heuristic+for+a+large+scaled+Capacitated+Lotsizing+Problem&rft.jtitle=OR+spectrum&rft.au=K%C3%A4rcher%2C+Jens&rft.au=Meyr%2C+Herbert&rft.date=2025-09-01&rft.pub=Springer&rft.issn=1436-6304&rft.volume=47&rft.issue=3&rft.spage=889&rft.epage=931&rft_id=info:doi/10.1007%2Fs00291-024-00804-9&rft.externalDBID=OT2&rft.externalDocID=330534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-6304&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-6304&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-6304&client=summon