Kovács, S., Bühlmann, P., Li, H., & Munk, A. (2023). Seeded binary segmentation: A general methodology for fast and optimal changepoint detection. Biometrika, 110(1), 249-256. https://doi.org/10.1093/biomet/asac052
Chicago Style (17th ed.) CitationKovács, S., P. Bühlmann, H. Li, and A. Munk. "Seeded Binary Segmentation: A General Methodology for Fast and Optimal Changepoint Detection." Biometrika 110, no. 1 (2023): 249-256. https://doi.org/10.1093/biomet/asac052.
MLA (9th ed.) CitationKovács, S., et al. "Seeded Binary Segmentation: A General Methodology for Fast and Optimal Changepoint Detection." Biometrika, vol. 110, no. 1, 2023, pp. 249-256, https://doi.org/10.1093/biomet/asac052.
Warning: These citations may not always be 100% accurate.