A constrained approximation problem arising in parameter identification

We pose and solve an extremal problem in the Hardy class H 2 of the disc, involving the best approximation of a function on a subarc of the circle by a H 2 function, subject to a constraint on its imaginary part on the complementary arc. A constructive algorithm is presented for the computation of s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 351; s. 487 - 500
Hlavní autoři: Jacob, Birgit, Leblond, Juliette, Marmorat, Jean-Paul, Partington, Jonathan R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.08.2002
Elsevier
Témata:
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We pose and solve an extremal problem in the Hardy class H 2 of the disc, involving the best approximation of a function on a subarc of the circle by a H 2 function, subject to a constraint on its imaginary part on the complementary arc. A constructive algorithm is presented for the computation of such a best approximant, and the method is illustrated by a numerical example. The whole problem is motivated by boundary parameter identification problems arising in non-destructive control.
ISSN:0024-3795
1873-1856
DOI:10.1016/S0024-3795(01)00445-1