A constrained approximation problem arising in parameter identification

We pose and solve an extremal problem in the Hardy class H 2 of the disc, involving the best approximation of a function on a subarc of the circle by a H 2 function, subject to a constraint on its imaginary part on the complementary arc. A constructive algorithm is presented for the computation of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 351; S. 487 - 500
Hauptverfasser: Jacob, Birgit, Leblond, Juliette, Marmorat, Jean-Paul, Partington, Jonathan R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.08.2002
Elsevier
Schlagworte:
ISSN:0024-3795, 1873-1856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We pose and solve an extremal problem in the Hardy class H 2 of the disc, involving the best approximation of a function on a subarc of the circle by a H 2 function, subject to a constraint on its imaginary part on the complementary arc. A constructive algorithm is presented for the computation of such a best approximant, and the method is illustrated by a numerical example. The whole problem is motivated by boundary parameter identification problems arising in non-destructive control.
ISSN:0024-3795
1873-1856
DOI:10.1016/S0024-3795(01)00445-1