A constrained approximation problem arising in parameter identification
We pose and solve an extremal problem in the Hardy class H 2 of the disc, involving the best approximation of a function on a subarc of the circle by a H 2 function, subject to a constraint on its imaginary part on the complementary arc. A constructive algorithm is presented for the computation of s...
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 351; s. 487 - 500 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2002
Elsevier |
| Témata: | |
| ISSN: | 0024-3795, 1873-1856 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We pose and solve an extremal problem in the Hardy class
H
2 of the disc, involving the best approximation of a function on a subarc of the circle by a
H
2 function, subject to a constraint on its imaginary part on the complementary arc. A constructive algorithm is presented for the computation of such a best approximant, and the method is illustrated by a numerical example. The whole problem is motivated by boundary parameter identification problems arising in non-destructive control. |
|---|---|
| ISSN: | 0024-3795 1873-1856 |
| DOI: | 10.1016/S0024-3795(01)00445-1 |