Solving chiller loading optimization problems using an improved teaching‐learning‐based optimization algorithm

Summary In this study, we present a novel teaching‐learning‐based optimization (TLBO) algorithm for solving the optimal chiller loading problem. The proposed algorithm uses a novel integer‐based encoding and decoding mechanism that is efficient and easy to implement. The teaching phase can improve t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods Jg. 39; H. 1; S. 65 - 77
Hauptverfasser: Duan, Pei‐yong, Li, Jun‐qing, Wang, Yong, Sang, Hong‐yan, Jia, Bao‐xian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Glasgow Wiley Subscription Services, Inc 01.01.2018
Schlagworte:
ISSN:0143-2087, 1099-1514
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Summary In this study, we present a novel teaching‐learning‐based optimization (TLBO) algorithm for solving the optimal chiller loading problem. The proposed algorithm uses a novel integer‐based encoding and decoding mechanism that is efficient and easy to implement. The teaching phase can improve the quality of learning process and thus enhance the exploitation ability. In addition, a well‐designed learning phase procedure is developed to enhance the learning process between one another in the population. A novel exploration and self‐learning procedures are embedded in the proposed TLBO algorithm, which can enhance the exploitation and exploration capabilities. The proposed algorithm is tested on several well‐known case studies and compared with several efficient algorithms. From the experimental comparisons, the efficient performance of the proposed TLBO is verified.
AbstractList Summary In this study, we present a novel teaching-learning-based optimization (TLBO) algorithm for solving the optimal chiller loading problem. The proposed algorithm uses a novel integer-based encoding and decoding mechanism that is efficient and easy to implement. The teaching phase can improve the quality of learning process and thus enhance the exploitation ability. In addition, a well-designed learning phase procedure is developed to enhance the learning process between one another in the population. A novel exploration and self-learning procedures are embedded in the proposed TLBO algorithm, which can enhance the exploitation and exploration capabilities. The proposed algorithm is tested on several well-known case studies and compared with several efficient algorithms. From the experimental comparisons, the efficient performance of the proposed TLBO is verified.
Summary In this study, we present a novel teaching‐learning‐based optimization (TLBO) algorithm for solving the optimal chiller loading problem. The proposed algorithm uses a novel integer‐based encoding and decoding mechanism that is efficient and easy to implement. The teaching phase can improve the quality of learning process and thus enhance the exploitation ability. In addition, a well‐designed learning phase procedure is developed to enhance the learning process between one another in the population. A novel exploration and self‐learning procedures are embedded in the proposed TLBO algorithm, which can enhance the exploitation and exploration capabilities. The proposed algorithm is tested on several well‐known case studies and compared with several efficient algorithms. From the experimental comparisons, the efficient performance of the proposed TLBO is verified.
In this study, we present a novel teaching‐learning‐based optimization (TLBO) algorithm for solving the optimal chiller loading problem. The proposed algorithm uses a novel integer‐based encoding and decoding mechanism that is efficient and easy to implement. The teaching phase can improve the quality of learning process and thus enhance the exploitation ability. In addition, a well‐designed learning phase procedure is developed to enhance the learning process between one another in the population. A novel exploration and self‐learning procedures are embedded in the proposed TLBO algorithm, which can enhance the exploitation and exploration capabilities. The proposed algorithm is tested on several well‐known case studies and compared with several efficient algorithms. From the experimental comparisons, the efficient performance of the proposed TLBO is verified.
Author Sang, Hong‐yan
Duan, Pei‐yong
Jia, Bao‐xian
Li, Jun‐qing
Wang, Yong
Author_xml – sequence: 1
  givenname: Pei‐yong
  surname: Duan
  fullname: Duan, Pei‐yong
  organization: Shandong Normal University
– sequence: 2
  givenname: Jun‐qing
  orcidid: 0000-0002-3617-6708
  surname: Li
  fullname: Li, Jun‐qing
  email: lijunqing@lcu‐cs.com
  organization: Northeastern University
– sequence: 3
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  organization: Liaocheng University
– sequence: 4
  givenname: Hong‐yan
  surname: Sang
  fullname: Sang, Hong‐yan
  organization: Liaocheng University
– sequence: 5
  givenname: Bao‐xian
  surname: Jia
  fullname: Jia, Bao‐xian
  organization: Liaocheng University
BookMark eNp1kE1OwzAQhS1UJEpB4giR2LBJ8U-a2Muq4k-q1AWwjhxn0rpy7GKnRWXFETgjJyFp2IBgNR7P997Y7xQNrLOA0AXBY4IxvXZKjiljyREaEixETCYkGaAhJgmLKebZCToNYY0xzgijQ-Qfndlpu4zUShsDPjJOll3vNo2u9ZtstLPRxrvCQB2ibehm0ka6bu92UEYNyFZql5_vHwakt_2xkKGd_fCQZum8blb1GTqupAlw_l1H6Pn25ml2H88Xdw-z6TxWLCFJPKEi5UXBFRWVKEWCK14C58BopSoCEgqZMpUWwBgICqxSIk1AZZwwDDwlbIQue9_2pS9bCE2-dltv25U5ETxLKZsI3lJXPaW8C8FDlW-8rqXf5wTnXaJ5m2jeJdqi41-o0s3hc42X2vwliHvBqzaw_9c4X8ymB_4Ld9aN3w
CitedBy_id crossref_primary_10_1016_j_knosys_2018_08_030
crossref_primary_10_1007_s10586_019_03022_z
crossref_primary_10_1016_j_jobe_2023_105980
crossref_primary_10_1080_15567036_2019_1687622
crossref_primary_10_1007_s12555_018_0109_7
crossref_primary_10_1080_0952813X_2019_1673488
crossref_primary_10_1016_j_enbuild_2024_114489
crossref_primary_10_1016_j_enbuild_2021_111571
crossref_primary_10_1109_ACCESS_2019_2908227
crossref_primary_10_1080_0305215X_2018_1561884
crossref_primary_10_1088_1742_6596_1315_1_012020
crossref_primary_10_1016_j_enbuild_2020_110058
crossref_primary_10_1109_ACCESS_2018_2889373
crossref_primary_10_1016_j_ijrefrig_2022_01_014
crossref_primary_10_1016_j_jobe_2022_104066
crossref_primary_10_1016_j_ins_2019_05_065
crossref_primary_10_3390_sym15112005
crossref_primary_10_1016_j_heliyon_2023_e21012
crossref_primary_10_1109_ACCESS_2018_2873401
crossref_primary_10_1080_02286203_2020_1843935
crossref_primary_10_1016_j_buildenv_2021_108100
crossref_primary_10_1007_s40815_019_00736_5
crossref_primary_10_1016_j_apenergy_2023_121623
crossref_primary_10_1109_ACCESS_2018_2849754
crossref_primary_10_1109_ACCESS_2019_2904630
crossref_primary_10_1109_TCYB_2019_2943606
crossref_primary_10_1109_ACCESS_2018_2868971
crossref_primary_10_1155_2018_7567591
crossref_primary_10_1080_00207543_2018_1518603
crossref_primary_10_1109_ACCESS_2018_2840512
crossref_primary_10_1016_j_jobe_2024_109884
crossref_primary_10_1080_01430750_2020_1730954
crossref_primary_10_3390_en13236372
crossref_primary_10_1016_j_enbuild_2019_07_044
crossref_primary_10_1007_s40435_025_01690_x
crossref_primary_10_1177_0142331218773506
crossref_primary_10_1007_s00500_020_05365_x
crossref_primary_10_1080_0305215X_2021_1881078
crossref_primary_10_1016_j_applthermaleng_2023_122037
crossref_primary_10_1109_ACCESS_2019_2917273
crossref_primary_10_1016_j_swevo_2018_12_001
crossref_primary_10_1016_j_enbuild_2024_113942
crossref_primary_10_1080_00207543_2019_1571687
crossref_primary_10_1007_s41660_024_00473_9
crossref_primary_10_1007_s00500_018_3351_2
crossref_primary_10_1109_ACCESS_2019_2960388
crossref_primary_10_3390_en14217066
crossref_primary_10_1186_s13662_019_2043_2
crossref_primary_10_1109_ACCESS_2018_2849731
crossref_primary_10_1080_01605682_2019_1630327
crossref_primary_10_1016_j_physa_2018_11_018
crossref_primary_10_1109_ACCESS_2020_2992793
crossref_primary_10_1016_j_jobe_2021_103800
crossref_primary_10_3390_en13153760
Cites_doi 10.1016/j.enbuild.2012.11.030
10.1016/j.apenergy.2009.05.004
10.1109/TASE.2015.2425404
10.1016/j.enconman.2008.08.036
10.1016/j.applthermaleng.2005.02.010
10.1109/TPDS.2015.2401003
10.1016/j.enbuild.2008.06.010
10.1080/00207543.2015.1120900
10.1016/j.applthermaleng.2011.02.030
10.1016/j.energy.2015.12.030
10.1016/j.energy.2012.10.058
10.1016/j.ins.2011.08.006
10.1109/TIFS.2016.2596138
10.1016/j.energy.2005.10.018
10.1016/j.ins.2014.10.009
10.1016/j.epsr.2003.10.012
10.1016/j.engappai.2012.02.016
10.1587/transcom.E98.B.190
10.1016/j.enconman.2004.10.012
10.3390/pr1030312
10.1016/j.energy.2014.07.060
10.1109/CC.2016.7559082
10.1016/j.engappai.2014.09.015
10.1016/j.enbuild.2004.06.002
10.1016/j.enbuild.2009.10.009
10.1109/TCYB.2015.2444383
10.23919/ECC.2013.6669583
10.1109/TIFS.2016.2590944
10.1016/j.automatica.2015.09.013
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright © 2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
– notice: Copyright © 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
8FD
JQ2
L7M
DOI 10.1002/oca.2334
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1514
EndPage 77
ExternalDocumentID 10_1002_oca_2334
OCA2334
Genre article
GrantInformation_xml – fundername: State Key Laboratory of Synthetical Automation for Process Industries
  funderid: PAL‐N201602
– fundername: National Science Foundation of China
  funderid: 61573178; 61374187; 61603169; 51575212; 61503170
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AENEX
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
UCJ
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7SP
8FD
JQ2
L7M
ID FETCH-LOGICAL-c3414-52968bb8c29f9d940f8de88e32fcf1eaeba63c6be33e92e3fc964ec78130e8613
IEDL.DBID DRFUL
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429305500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-2087
IngestDate Fri Jul 25 08:21:36 EDT 2025
Tue Nov 18 21:48:25 EST 2025
Sat Nov 29 04:09:52 EST 2025
Wed Jan 22 17:01:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3414-52968bb8c29f9d940f8de88e32fcf1eaeba63c6be33e92e3fc964ec78130e8613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3617-6708
PQID 1987623598
PQPubID 1036362
PageCount 13
ParticipantIDs proquest_journals_1987623598
crossref_primary_10_1002_oca_2334
crossref_citationtrail_10_1002_oca_2334
wiley_primary_10_1002_oca_2334_OCA2334
PublicationCentury 2000
PublicationDate January/February 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January/February 2018
PublicationDecade 2010
PublicationPlace Glasgow
PublicationPlace_xml – name: Glasgow
PublicationTitle Optimal control applications & methods
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 183
2015; 37
2013; 26
2006; 31
2013; 1
2015; E98.B
2004; 69
2016; 54
2011; 31
2016; 95
2016; 13
2005; 46
2009; 29
2016; 11
2005; 25
2010; 87
2010; 42
2013; 59
2015; 27
2009; 50
2015; 62
2013; 50
2011; 43
2017
2016
2015; 316
2013
2005; 37
2008; 40
2016; 46
2014; 75
Chang YC (e_1_2_8_19_1) 2006; 31
Powell KM (e_1_2_8_8_1) 2013; 50
e_1_2_8_24_1
Coelho LS (e_1_2_8_2_1) 2014; 75
e_1_2_8_26_1
Fu Z (e_1_2_8_15_1) 2016
Lee WS (e_1_2_8_17_1) 2009; 29
e_1_2_8_5_1
e_1_2_8_4_1
Lee WS (e_1_2_8_22_1) 2011; 43
Chang YC (e_1_2_8_21_1) 2010; 87
e_1_2_8_6_1
e_1_2_8_9_1
Chang YC (e_1_2_8_20_1) 2009; 50
e_1_2_8_23_1
Xue Y (e_1_2_8_32_1) 2017
Shen JN (e_1_2_8_28_1) 2016; 54
Chang YC (e_1_2_8_35_1) 2005; 25
Li JQ (e_1_2_8_30_1) 2017
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_16_1
Platt G (e_1_2_8_3_1) 2010; 42
Chang YC (e_1_2_8_7_1) 2005; 46
Qu Z (e_1_2_8_13_1) 2016; 13
Li J (e_1_2_8_31_1) 2015; 316
e_1_2_8_10_1
Li JQ (e_1_2_8_29_1) 2016; 46
e_1_2_8_11_1
Li JQ (e_1_2_8_27_1) 2015; 37
e_1_2_8_34_1
e_1_2_8_12_1
Rao RV (e_1_2_8_25_1) 2016
e_1_2_8_33_1
Geem ZW (e_1_2_8_36_1) 2011; 31
References_xml – volume: 59
  start-page: 273
  year: 2013
  end-page: 278
  article-title: Improved firefly algorithm approach applied to chiller loading for energy conservation
  publication-title: Energ Buildings
– volume: 1
  start-page: 312
  issue: 3
  year: 2013
  end-page: 329
  article-title: Improved large‐scale process cooling operation through energy optimization
  publication-title: Processes
– volume: E98.B
  start-page: 190
  issue: 1
  year: 2015
  end-page: 200
  article-title: Achieving efficient cloud search services: multi‐keyword ranked search over encrypted cloud data supporting parallel computing
  publication-title: IEICE Transactions on Communications
– volume: 42
  start-page: 412
  issue: 4
  year: 2010
  end-page: 421
  article-title: Adaptive HVAC zone modeling for sustainable buildings
  publication-title: Energ Buildings
– volume: 316
  start-page: 487
  issue: 20
  year: 2015
  end-page: 502
  article-title: Solving the large‐scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm
  publication-title: Inform Sci
– volume: 75
  start-page: 237
  year: 2014
  end-page: 243
  article-title: Optimal chiller loading for energy conservation using a new differential cuckoo search approach
  publication-title: Energy
– volume: 37
  start-page: 147
  issue: 2
  year: 2005
  end-page: 155
  article-title: Optimal chiller loading by genetic algorithm for reducing energy consumption
  publication-title: Energ Buildings
– volume: 25
  start-page: 2800
  issue: 17
  year: 2005
  end-page: 2815
  article-title: Genetic algorithm based optimal chiller loading for energy conservation
  publication-title: Appl Therm Eng
– volume: 46
  start-page: 2158
  year: 2005
  end-page: 2172
  article-title: Optimal chiller sequencing by branch and bound method for saving energy
  publication-title: Energ Conver Manage
– volume: 50
  start-page: 445
  year: 2013
  end-page: 453
  article-title: Optimal chiller loading in a district cooling system with thermal energy storage
  publication-title: Energy
– year: 2017
  article-title: A self‐adaptive articial bee colony algorithm based on global best for global optimization
  publication-title: Soft Computing
– volume: 31
  start-page: 1848
  issue: 10
  year: 2011
  end-page: 1851
  article-title: Solution quality improvement in chiller loading optimization
  publication-title: Appl Therm Eng
– start-page: 4077
  year: 2013
  end-page: 4082
– volume: 29
  start-page: 1730
  issue: 8
  year: 2009
  end-page: 1734
  article-title: Optimal chiller loading by particle swarm algorithm for reducing energy consumption
  publication-title: Appl Therm Eng
– year: 2017
  article-title: A hybrid artificial bee colony for optimizing a reverse logistics network system
  publication-title: Soft Computing
– volume: 31
  start-page: 1883
  year: 2006
  end-page: 1896
  article-title: An innovative approach for demand side management‐optimal chiller loading by simulated annealing
  publication-title: Energy
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  article-title: Teaching‐learning‐based optimisation: an optimisation method for continuous non‐linear large scale problems
  publication-title: Inform Sci
– volume: 26
  start-page: 430
  year: 2013
  end-page: 445
  article-title: Multi‐objective optimisation of two stage thermoelectric cooler using a modified teaching‐learning‐based optimisation algorithm
  publication-title: Eng Appl Artif Intel
– volume: 62
  start-page: 184
  year: 2015
  end-page: 192
  article-title: Local optimization of dynamic programs with guaranteed satisfaction of path constraints
  publication-title: Automatica
– volume: 37
  start-page: 279
  year: 2015
  end-page: 292
  article-title: A discrete teaching‐learning‐based optimisation algorithm for realistic flowshop rescheduling problems
  publication-title: Eng Appl Artif Intel
– volume: 11
  start-page: 2594
  issue: 11
  year: 2016
  end-page: 2608
  article-title: A privacy‐preserving and copy‐deterrence content‐based image retrieval scheme in cloud computing
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 87
  start-page: 1096
  issue: 4
  year: 2010
  end-page: 1101
  article-title: Economic dispatch of chiller plant by gradient method for saving energy
  publication-title: Appl Energy
– year: 2016
  article-title: Enabling semantic search based on conceptual graphs over encrypted outsourced data
  publication-title: IEEE Transactions on Services Computing
– volume: 46
  start-page: 1311
  issue: 6
  year: 2016
  end-page: 1324
  article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping
  publication-title: IEEE transactions on cybernetics
– volume: 27
  start-page: 340
  issue: 2
  year: 2015
  end-page: 352
  article-title: A secure and dynamic multi‐keyword ranked search scheme over encrypted cloud data
  publication-title: IEEE Transactions on Parallel & Distributed Systems
– volume: 54
  start-page: 3622
  issue: 12
  year: 2016
  end-page: 3639
  article-title: A modified teaching‐learning‐based optimisation algorithm for bi‐objective re‐entrant hybrid flowshop scheduling
  publication-title: International Journal of Production Research
– volume: 69
  start-page: 221
  year: 2004
  end-page: 226
  article-title: A novel energy conservation method‐optimal chiller loading
  publication-title: Electr Pow Syst Res
– volume: 43
  start-page: 599
  issue: 2
  year: 2011
  end-page: 604
  article-title: Optimal chiller loading by differential evolution algorithm for reducing energy consumption
  publication-title: Energ Buildings
– start-page: 1
  year: 2016
  end-page: 23
  article-title: Multi‐objective optimization of machining and micro‐machining processes using non‐dominated sorting teaching‐learning‐based optimization algorithm
  publication-title: J Intell Manuf
– volume: 13
  start-page: 932
  issue: 2
  year: 2016
  end-page: 949
  article-title: A hybrid fruit fly optimization algorithm for the realistic hybrid flowshop rescheduling problem in steelmaking systems
  publication-title: IEEE Transactions on Automation Science and Engineering
– volume: 11
  start-page: 2706
  issue: 12
  year: 2016
  end-page: 2716
  article-title: Toward efficient multi‐keyword fuzzy search over encrypted outsourced data with accuracy improvement
  publication-title: IEEE Transactions on Information Forensics and Security
– volume: 50
  start-page: 132
  year: 2009
  end-page: 139
  article-title: Evolution strategy based optimal chiller loading for saving energy
  publication-title: Energ Conver Manage
– volume: 40
  start-page: 2177
  issue: 12
  year: 2008
  end-page: 2187
  article-title: A novel approach for optimal chiller loading using particle swarm optimization
  publication-title: Energ Buildings
– volume: 95
  start-page: 528
  year: 2016
  end-page: 541
  article-title: Multi‐objective optimization of a Stirling heat engine using TS‐TLBO (tutorial training and self learning inspired teaching‐learning based optimization) algorithm
  publication-title: Energy
– volume: 13
  start-page: 108
  issue: 7
  year: 2016
  end-page: 116
  article-title: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks
  publication-title: China Communications
– ident: e_1_2_8_18_1
  doi: 10.1016/j.enbuild.2012.11.030
– volume: 87
  start-page: 1096
  issue: 4
  year: 2010
  ident: e_1_2_8_21_1
  article-title: Economic dispatch of chiller plant by gradient method for saving energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.05.004
– ident: e_1_2_8_33_1
  doi: 10.1109/TASE.2015.2425404
– volume: 50
  start-page: 132
  year: 2009
  ident: e_1_2_8_20_1
  article-title: Evolution strategy based optimal chiller loading for saving energy
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2008.08.036
– volume: 43
  start-page: 599
  issue: 2
  year: 2011
  ident: e_1_2_8_22_1
  article-title: Optimal chiller loading by differential evolution algorithm for reducing energy consumption
  publication-title: Energ Buildings
– volume: 25
  start-page: 2800
  issue: 17
  year: 2005
  ident: e_1_2_8_35_1
  article-title: Genetic algorithm based optimal chiller loading for energy conservation
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.02.010
– ident: e_1_2_8_11_1
  doi: 10.1109/TPDS.2015.2401003
– ident: e_1_2_8_5_1
  doi: 10.1016/j.enbuild.2008.06.010
– volume: 54
  start-page: 3622
  issue: 12
  year: 2016
  ident: e_1_2_8_28_1
  article-title: A modified teaching‐learning‐based optimisation algorithm for bi‐objective re‐entrant hybrid flowshop scheduling
  publication-title: International Journal of Production Research
  doi: 10.1080/00207543.2015.1120900
– volume: 31
  start-page: 1848
  issue: 10
  year: 2011
  ident: e_1_2_8_36_1
  article-title: Solution quality improvement in chiller loading optimization
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.02.030
– ident: e_1_2_8_26_1
  doi: 10.1016/j.energy.2015.12.030
– volume: 50
  start-page: 445
  year: 2013
  ident: e_1_2_8_8_1
  article-title: Optimal chiller loading in a district cooling system with thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.058
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ins.2011.08.006
– ident: e_1_2_8_14_1
  doi: 10.1109/TIFS.2016.2596138
– volume: 31
  start-page: 1883
  year: 2006
  ident: e_1_2_8_19_1
  article-title: An innovative approach for demand side management‐optimal chiller loading by simulated annealing
  publication-title: Energy
  doi: 10.1016/j.energy.2005.10.018
– volume: 29
  start-page: 1730
  issue: 8
  year: 2009
  ident: e_1_2_8_17_1
  article-title: Optimal chiller loading by particle swarm algorithm for reducing energy consumption
  publication-title: Appl Therm Eng
– volume: 316
  start-page: 487
  issue: 20
  year: 2015
  ident: e_1_2_8_31_1
  article-title: Solving the large‐scale hybrid flow shop scheduling problem with limited buffers by a hybrid artificial bee colony algorithm
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2014.10.009
– ident: e_1_2_8_6_1
  doi: 10.1016/j.epsr.2003.10.012
– ident: e_1_2_8_24_1
  doi: 10.1016/j.engappai.2012.02.016
– ident: e_1_2_8_16_1
  doi: 10.1587/transcom.E98.B.190
– volume: 46
  start-page: 2158
  year: 2005
  ident: e_1_2_8_7_1
  article-title: Optimal chiller sequencing by branch and bound method for saving energy
  publication-title: Energ Conver Manage
  doi: 10.1016/j.enconman.2004.10.012
– start-page: 1
  year: 2016
  ident: e_1_2_8_25_1
  article-title: Multi‐objective optimization of machining and micro‐machining processes using non‐dominated sorting teaching‐learning‐based optimization algorithm
  publication-title: J Intell Manuf
– ident: e_1_2_8_9_1
  doi: 10.3390/pr1030312
– volume: 75
  start-page: 237
  year: 2014
  ident: e_1_2_8_2_1
  article-title: Optimal chiller loading for energy conservation using a new differential cuckoo search approach
  publication-title: Energy
  doi: 10.1016/j.energy.2014.07.060
– year: 2017
  ident: e_1_2_8_30_1
  article-title: A hybrid artificial bee colony for optimizing a reverse logistics network system
  publication-title: Soft Computing
– volume: 13
  start-page: 108
  issue: 7
  year: 2016
  ident: e_1_2_8_13_1
  article-title: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks
  publication-title: China Communications
  doi: 10.1109/CC.2016.7559082
– volume: 37
  start-page: 279
  year: 2015
  ident: e_1_2_8_27_1
  article-title: A discrete teaching‐learning‐based optimisation algorithm for realistic flowshop rescheduling problems
  publication-title: Eng Appl Artif Intel
  doi: 10.1016/j.engappai.2014.09.015
– ident: e_1_2_8_4_1
  doi: 10.1016/j.enbuild.2004.06.002
– year: 2017
  ident: e_1_2_8_32_1
  article-title: A self‐adaptive articial bee colony algorithm based on global best for global optimization
  publication-title: Soft Computing
– volume: 42
  start-page: 412
  issue: 4
  year: 2010
  ident: e_1_2_8_3_1
  article-title: Adaptive HVAC zone modeling for sustainable buildings
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2009.10.009
– volume: 46
  start-page: 1311
  issue: 6
  year: 2016
  ident: e_1_2_8_29_1
  article-title: An improved artificial bee colony algorithm for solving hybrid flexible flowshop with dynamic operation skipping
  publication-title: IEEE transactions on cybernetics
  doi: 10.1109/TCYB.2015.2444383
– ident: e_1_2_8_10_1
  doi: 10.23919/ECC.2013.6669583
– year: 2016
  ident: e_1_2_8_15_1
  article-title: Enabling semantic search based on conceptual graphs over encrypted outsourced data
  publication-title: IEEE Transactions on Services Computing
– ident: e_1_2_8_12_1
  doi: 10.1109/TIFS.2016.2590944
– ident: e_1_2_8_34_1
  doi: 10.1016/j.automatica.2015.09.013
SSID ssj0007132
Score 2.4205759
Snippet Summary In this study, we present a novel teaching‐learning‐based optimization (TLBO) algorithm for solving the optimal chiller loading problem. The proposed...
In this study, we present a novel teaching‐learning‐based optimization (TLBO) algorithm for solving the optimal chiller loading problem. The proposed algorithm...
Summary In this study, we present a novel teaching-learning-based optimization (TLBO) algorithm for solving the optimal chiller loading problem. The proposed...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 65
SubjectTerms Algorithms
Decoding
energy conversation
Exploitation
Exploration
Learning
Machine learning
optimal chiller loading
Optimization
teaching‐learning‐based optimization
Title Solving chiller loading optimization problems using an improved teaching‐learning‐based optimization algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Foca.2334
https://www.proquest.com/docview/1987623598
Volume 39
WOSCitedRecordID wos000429305500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007132
  issn: 0143-2087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagZYCBf0ShICMhmELb2EnssSpUDKggoFK3yHYupVLaoLQw8wg8I0-Cnbh_EkhITMlwjiLbd_f5fPcdQucUhNQ4gDheoIhDCaOO8E0hcORFHFgj8IMobzYRdDqs1-MPNqvS1MIU_BCzgJvRjNxeGwUXclybk4ZqU3_lEkJXUdnUVOmDV_n6sd29m9lhffxyiwRGovcCC6bUs3W3Nh277IzmCHMRp-aOpr31n1_cRpsWXuJmsR920AqMdtHGAungHsqe0sREEbCp404gw0ma59HjVFuPoS3LxLbRzBibxPg-FiM8yMMPEOGJTcD8-vi0PSfMq3GH0fI3RNJPs8HkZbiPuu2b59atYzsvOEp7NeqYy1gmJVMuj3nEaT1mETAGxI1V3AABUvhE-RIIAe4CiRX3KaiAaY8ITCOEA1QapSM4RBh8RYhHeCxFTKGuBK0rT_qSSdYQyg8q6HK6BKGytOSmO0YSFoTKbqhnMTSzWEFnM8nXgorjB5nqdBVDq4zj0MRVNMrzOKugi3y9fh0f3rea5nn0V8FjtK4hFCuCMlVUmmRvcILW1PtkMM5O7Zb8BkrY6fY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7BUgk4UChUbIFipKqcArux49jihKArEMu24kfiFtnOhK4UNii77bmPwDPyJNiJs4DUSpU4JQc7ijx_XyYz3wB8Yai0xQE0iGJDA0YFCxR3jcBplEoU3ZjHaTVsIh4MxM2N_DEDB00vTM0PMU24Ocuo_LUzcJeQ3n9mDbW-fi-klM3CHOM0Fi2YO77oXfenjth-f4V1BSO1yiDihnu2E-43e19Ho2eI-RKoVpGm9_5N77gMSx5gksNaI1ZgBkcfYPEF7eAqlJdF7vIIxHVy51iSvKgq6Ulh_cedb8wkftTMmLjS-FuiRmRYJSAwJRNfgvn458FPnXC3LiCmr5-h8tuiHE5-3q3Bde_b1dFJ4GcvBMbGNRa437FCa2FCmclUsk4mUhQCaZiZrIsKteLUcI2UogyRZkZyhiYWNiaisBjhI7RGxQjXgSA3lEZUZlplDDtGsY6JNNdCi64yPG7DbiODxHhicjcfI09qSuUwsaeYuFNsw8505X1NxvGXNZuNGBNvjuPEZVYszoukaMPXSmD_3J98Pzp010__u3Ab5k-uzvtJ_3RwtgELFlCJOkWzCa1J-Qu34J35PRmOy89eP58APW_t5g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC50XEQPPlbF8dnCsp7izKQ7STeeRB0UZZTdFbyF7k5FB-JEMqNnf4K_0V9id9IZFVYQPCWH7hC6Xl8qVV8B_GIolcEB1AsiTT1GOfNkaBuBkyARyDtRGCXlsImo1-PX1-JyAvbrXpiKH2KccLOWUfpra-B4n6StN9ZQ4-v3fErZJEyxQASsAVNHf7pX52NHbL6__KqCkRpl4FHNPdv2W_Xej9HoDWK-B6plpOnOf-sdF2DOAUxyUGnEIkzg4CfMvqMdXILib57ZPAKxndwZFiTLy0p6khv_cecaM4kbNTMktjT-hsgB6ZcJCEzIyJVgvjw9u6kT9tYGxOTjM2R2kxf90e3dMlx1j_8dnnhu9oKnTVxjnv0dy5Xi2hepSARrpzxBzpH6qU47KFHJkOpQIaUofKSpFiFDHXETE5EbjLACjUE-wFUgGGpKAypSJVOGbS1ZWwcqVFzxjtRh1ITdWgaxdsTkdj5GFleUyn5sTjG2p9iEnfHK-4qM4z9rNmoxxs4ch7HNrBicFwjehN-lwD7dH18cHtjr2lcXbsP05VE3Pj_tna3DjMFTvMrQbEBjVDzgJvzQj6P-sNhy6vkK5aTtYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+chiller+loading+optimization+problems+using+an+improved+teaching%E2%80%90learning%E2%80%90based+optimization+algorithm&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=Duan%2C+Pei%E2%80%90yong&rft.au=Li%2C+Jun%E2%80%90qing&rft.au=Wang%2C+Yong&rft.au=Sang%2C+Hong%E2%80%90yan&rft.date=2018-01-01&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=39&rft.issue=1&rft.spage=65&rft.epage=77&rft_id=info:doi/10.1002%2Foca.2334&rft.externalDBID=10.1002%252Foca.2334&rft.externalDocID=OCA2334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon