Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: A use-case life cycle analysis

•Algorithm's capability for accurate and reliable state and parameter estimation is investigated at different dynamics and aging stages.•Initial setup and parameterization of the filter is performed application-oriented.•Strengths and weaknesses of the algorithm are emphasized. One of the most...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of energy storage Ročník 19; s. 73 - 87
Hlavní autoři: Wassiliadis, Nikolaos, Adermann, Jörn, Frericks, Alexander, Pak, Mikhail, Reiter, Christoph, Lohmann, Boris, Lienkamp, Markus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2018
Témata:
ISSN:2352-152X, 2352-1538
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Algorithm's capability for accurate and reliable state and parameter estimation is investigated at different dynamics and aging stages.•Initial setup and parameterization of the filter is performed application-oriented.•Strengths and weaknesses of the algorithm are emphasized. One of the most discussed topics in battery research is the state-of-charge (SOC) and state-of-health (SOH) determination of traction batteries. Unfortunately, neither is directly measurable and both must be derived from sensor signals using model-based algorithms. These signals can be noisy and erroneous, leading to an inaccurate estimate and, hence, to a limitation of usable battery capacity. A popular approach tackling these difficulties is the dual extended Kalman filter (DEKF). It consists of two extended Kalman filters (EKFs), that synchronously estimate both the battery states and parameters. An analysis of the reliability of the DEKF estimation against realistically fading battery parameters is still a widely discussed subject. This work investigates the DEKF performance from a high-level perspective, involving different load dynamics and SOH stages. A numerical optimization-based approach for the crucial filter parameterization is employed. We show that the DEKF partly improves the accuracy of the SOC estimation compared to the simple EKF over battery lifetime within the operational limits of an automotive application. However, capacity and internal resistance estimation becomes unreliable and partly diverges from the reference under constant and realistic load scenarios coupled with advanced degradation. As a consequence, a downstream use of both parameters in a SOC or SOH estimation is hampered over the battery lifetime. Extensions are needed to improve reliability and enable employment in real-world applications.
AbstractList •Algorithm's capability for accurate and reliable state and parameter estimation is investigated at different dynamics and aging stages.•Initial setup and parameterization of the filter is performed application-oriented.•Strengths and weaknesses of the algorithm are emphasized. One of the most discussed topics in battery research is the state-of-charge (SOC) and state-of-health (SOH) determination of traction batteries. Unfortunately, neither is directly measurable and both must be derived from sensor signals using model-based algorithms. These signals can be noisy and erroneous, leading to an inaccurate estimate and, hence, to a limitation of usable battery capacity. A popular approach tackling these difficulties is the dual extended Kalman filter (DEKF). It consists of two extended Kalman filters (EKFs), that synchronously estimate both the battery states and parameters. An analysis of the reliability of the DEKF estimation against realistically fading battery parameters is still a widely discussed subject. This work investigates the DEKF performance from a high-level perspective, involving different load dynamics and SOH stages. A numerical optimization-based approach for the crucial filter parameterization is employed. We show that the DEKF partly improves the accuracy of the SOC estimation compared to the simple EKF over battery lifetime within the operational limits of an automotive application. However, capacity and internal resistance estimation becomes unreliable and partly diverges from the reference under constant and realistic load scenarios coupled with advanced degradation. As a consequence, a downstream use of both parameters in a SOC or SOH estimation is hampered over the battery lifetime. Extensions are needed to improve reliability and enable employment in real-world applications.
Author Lohmann, Boris
Reiter, Christoph
Wassiliadis, Nikolaos
Pak, Mikhail
Frericks, Alexander
Adermann, Jörn
Lienkamp, Markus
Author_xml – sequence: 1
  givenname: Nikolaos
  surname: Wassiliadis
  fullname: Wassiliadis, Nikolaos
  email: wassiliadis@ftm.mw.tum.de
  organization: Chair of Automotive Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), Germany
– sequence: 2
  givenname: Jörn
  surname: Adermann
  fullname: Adermann, Jörn
  organization: Chair of Automotive Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), Germany
– sequence: 3
  givenname: Alexander
  surname: Frericks
  fullname: Frericks, Alexander
  organization: Chair of Automatic Control, Department of Mechanical Engineering, Technical University of Munich (TUM), Germany
– sequence: 4
  givenname: Mikhail
  surname: Pak
  fullname: Pak, Mikhail
  organization: Chair of Automatic Control, Department of Mechanical Engineering, Technical University of Munich (TUM), Germany
– sequence: 5
  givenname: Christoph
  surname: Reiter
  fullname: Reiter, Christoph
  organization: Chair of Automotive Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), Germany
– sequence: 6
  givenname: Boris
  surname: Lohmann
  fullname: Lohmann, Boris
  organization: Chair of Automatic Control, Department of Mechanical Engineering, Technical University of Munich (TUM), Germany
– sequence: 7
  givenname: Markus
  surname: Lienkamp
  fullname: Lienkamp, Markus
  organization: Chair of Automotive Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), Germany
BookMark eNp9kN9KwzAUxoMoOOcewLu8QGvStGmrV2P4DweCKHgX0uR0y8haSbJhH8D3NnOi4MVuznc48Dt833eGjru-A4QuKEkpofxylYIPaUZolZIyJYQfoVHGiiyhBauOf_fs7RRNvF8REqGC0pqP0OczbI03wXQLHJaA9UZaDB8BOg0aP0q7lh1ujQ3gcNs73MgQ1wH7IAMkfZuopXQLwLLTf7clSBuWOJoyaxlM313hKd54SJT0gK1pAatB2R0l7eCNP0cnrbQeJj86Rq-3Ny-z-2T-dPcwm84TxXISkrbKmGxITWhRV1Rz0vBKsayAimsKWRFHFMUolLJkkjSNhjzPcs7rpi45Y2NU7v8q13vvoBXKhG-HwUljBSViV6hYiehd7AoVpBSx0EjSf-S7i-HccJC53jMQI20NOOGVgU6BNg5UELo3B-gv5X2SBw
CitedBy_id crossref_primary_10_1016_j_est_2019_100836
crossref_primary_10_1109_TEC_2025_3535522
crossref_primary_10_1007_s43236_023_00683_3
crossref_primary_10_3390_asi8020029
crossref_primary_10_1016_j_jpowsour_2024_234781
crossref_primary_10_1115_1_4069168
crossref_primary_10_1115_1_4063985
crossref_primary_10_1155_2024_6488186
crossref_primary_10_1109_TIV_2024_3432075
crossref_primary_10_1007_s11581_020_03716_0
crossref_primary_10_3390_electronics9081279
crossref_primary_10_1016_j_est_2021_102638
crossref_primary_10_1016_j_est_2022_105908
crossref_primary_10_1039_D2SE01209J
crossref_primary_10_1016_j_est_2019_101124
crossref_primary_10_1016_j_est_2022_104936
crossref_primary_10_1002_er_6700
crossref_primary_10_1016_j_ymssp_2025_112469
crossref_primary_10_1002_er_7874
crossref_primary_10_1016_j_jpowsour_2019_227156
crossref_primary_10_1109_ACCESS_2024_3482698
crossref_primary_10_1016_j_est_2022_106049
crossref_primary_10_3390_en13071811
crossref_primary_10_1155_2023_8569161
crossref_primary_10_1109_TCST_2022_3196474
crossref_primary_10_1109_ACCESS_2021_3068813
crossref_primary_10_3390_app11083609
crossref_primary_10_3390_en13092138
crossref_primary_10_1002_er_5683
crossref_primary_10_1088_1757_899X_677_3_032077
crossref_primary_10_1109_TIA_2023_3308548
crossref_primary_10_1039_D2EE03019E
crossref_primary_10_1016_j_est_2023_108044
crossref_primary_10_1016_j_egyr_2021_08_113
crossref_primary_10_1016_j_est_2020_101838
crossref_primary_10_1016_j_jpowsour_2022_232586
crossref_primary_10_1016_j_simpat_2022_102590
crossref_primary_10_1016_j_engappai_2023_107199
crossref_primary_10_3390_wevj12030113
crossref_primary_10_3390_en15093404
crossref_primary_10_1016_j_est_2022_106258
crossref_primary_10_1109_ACCESS_2025_3560065
crossref_primary_10_1016_j_jpowsour_2020_228753
crossref_primary_10_1109_ACCESS_2023_3293726
crossref_primary_10_3390_batteries7030052
crossref_primary_10_1109_TIE_2025_3546355
crossref_primary_10_1016_j_asoc_2025_113526
crossref_primary_10_1016_j_est_2024_111089
crossref_primary_10_1016_j_rser_2020_110015
crossref_primary_10_1016_j_apenergy_2023_121991
crossref_primary_10_1016_j_est_2019_101144
crossref_primary_10_1016_j_ress_2022_109066
crossref_primary_10_3390_en13102548
crossref_primary_10_1109_TVT_2021_3051655
crossref_primary_10_3390_en15103717
crossref_primary_10_1155_er_9928721
crossref_primary_10_1016_j_egyr_2024_12_036
crossref_primary_10_3390_en18133542
crossref_primary_10_1016_j_est_2022_106262
crossref_primary_10_1016_j_est_2025_118059
crossref_primary_10_1016_j_est_2022_106260
crossref_primary_10_1016_j_rser_2024_114857
crossref_primary_10_1016_j_est_2025_115346
crossref_primary_10_1515_fca_2019_0076
crossref_primary_10_1016_j_electacta_2020_136098
crossref_primary_10_1016_j_energy_2022_123423
crossref_primary_10_3390_en17205132
crossref_primary_10_1002_ente_202100235
crossref_primary_10_1002_est2_70131
crossref_primary_10_1007_s42835_021_00861_y
crossref_primary_10_1016_j_est_2022_105786
crossref_primary_10_1109_TVT_2021_3079934
crossref_primary_10_1016_j_est_2022_104174
crossref_primary_10_1016_j_energy_2020_117957
crossref_primary_10_3390_wevj12040187
crossref_primary_10_1016_j_est_2023_109071
crossref_primary_10_1016_j_jpowsour_2024_235272
crossref_primary_10_1016_j_ijhydene_2022_01_064
crossref_primary_10_3390_electronics8101118
crossref_primary_10_23919_PCMP_2023_000234
crossref_primary_10_1016_j_jpowsour_2020_228740
crossref_primary_10_1016_j_est_2022_106517
crossref_primary_10_1002_er_6346
crossref_primary_10_1016_j_jpowsour_2024_235827
crossref_primary_10_1016_j_est_2022_105831
crossref_primary_10_1016_j_est_2022_104860
crossref_primary_10_1016_j_est_2022_104584
crossref_primary_10_1016_j_scs_2022_104004
crossref_primary_10_3390_electronics11111795
crossref_primary_10_1016_j_est_2022_106484
crossref_primary_10_1088_1742_6596_2477_1_012015
crossref_primary_10_1016_j_est_2024_110742
crossref_primary_10_1007_s11768_022_00103_0
crossref_primary_10_1016_j_jpowsour_2019_227401
crossref_primary_10_1016_j_est_2021_103518
crossref_primary_10_1007_s12555_023_0382_y
crossref_primary_10_1016_j_resconrec_2020_105249
crossref_primary_10_1016_j_est_2022_104903
crossref_primary_10_1016_j_rser_2019_06_040
crossref_primary_10_1080_01430750_2022_2080261
crossref_primary_10_1016_j_egyr_2022_09_093
crossref_primary_10_1016_j_jpowsour_2020_228051
crossref_primary_10_1016_j_jpowsour_2020_228450
crossref_primary_10_3390_batteries9100509
crossref_primary_10_1016_j_jpowsour_2025_236982
crossref_primary_10_1016_j_est_2022_106298
crossref_primary_10_1016_j_est_2024_111328
crossref_primary_10_1039_D4SE01231C
crossref_primary_10_1016_j_est_2024_114955
crossref_primary_10_1007_s43236_025_00995_6
crossref_primary_10_1016_j_energy_2022_123852
crossref_primary_10_1016_j_measurement_2019_05_040
crossref_primary_10_1016_j_measurement_2025_117081
crossref_primary_10_3390_batteries10010026
crossref_primary_10_1109_ACCESS_2022_3178987
crossref_primary_10_3390_en14185989
crossref_primary_10_1002_er_5750
crossref_primary_10_1016_j_est_2019_100810
crossref_primary_10_1007_s43236_020_00122_7
crossref_primary_10_1016_j_est_2023_108826
crossref_primary_10_1016_j_psep_2023_06_023
crossref_primary_10_1016_j_energy_2024_132884
crossref_primary_10_1016_j_rser_2023_114077
crossref_primary_10_1016_j_prime_2024_100457
crossref_primary_10_1016_j_energy_2019_07_127
crossref_primary_10_1109_ACCESS_2022_3163413
crossref_primary_10_1051_e3sconf_202560100071
crossref_primary_10_1016_j_est_2022_105495
crossref_primary_10_1016_j_est_2025_116078
crossref_primary_10_1016_j_energy_2022_126064
crossref_primary_10_1080_15435075_2022_2027773
crossref_primary_10_3390_app14209569
crossref_primary_10_1016_j_apenergy_2025_126375
crossref_primary_10_1016_j_est_2023_108390
crossref_primary_10_1016_j_est_2024_111179
crossref_primary_10_1016_j_est_2020_101818
crossref_primary_10_1016_j_est_2023_108385
crossref_primary_10_1016_j_est_2023_110221
crossref_primary_10_3390_app13021132
crossref_primary_10_1016_j_est_2023_107573
crossref_primary_10_1016_j_est_2021_103855
crossref_primary_10_1016_j_est_2024_113074
crossref_primary_10_1002_er_8216
crossref_primary_10_1016_j_applthermaleng_2025_125430
crossref_primary_10_1016_j_est_2023_108667
crossref_primary_10_1016_j_eswa_2023_123123
crossref_primary_10_1016_j_jpowsour_2021_230526
crossref_primary_10_1038_s41598_024_61596_0
Cites_doi 10.1016/j.jpowsour.2006.06.003
10.1016/j.energy.2011.03.059
10.1016/j.jpowsour.2015.08.087
10.1016/j.jpowsour.2016.12.011
10.1016/j.jpowsour.2004.02.031
10.1016/j.jpowsour.2005.03.172
10.1109/TEC.2012.2222884
10.1016/j.jpowsour.2012.10.001
10.1016/j.energy.2016.06.088
10.1016/j.apenergy.2014.08.081
10.1016/j.jpowsour.2016.12.087
10.1109/TCST.2014.2382635
10.1016/j.jpowsour.2012.10.058
10.1016/j.microrel.2012.11.010
10.1016/j.jpowsour.2017.03.090
10.1016/j.jpowsour.2012.12.057
10.1109/TPEL.2009.2034966
10.1016/j.jpowsour.2013.06.108
10.1016/j.electacta.2018.04.045
10.1109/TIE.2011.2159691
10.1109/IECON.2016.7793527
10.1016/j.jpowsour.2014.07.143
10.1016/j.jpowsour.2005.01.006
10.1109/VPPC.2009.5289803
10.1016/j.jpowsour.2008.08.103
10.1016/j.rser.2017.05.001
10.1016/j.ifacol.2017.08.045
10.1109/ACC.2012.6315019
10.1016/j.jpowsour.2010.08.035
10.1016/j.jpowsour.2004.02.033
10.1016/j.apenergy.2013.07.061
10.1016/j.est.2016.10.004
10.1016/j.jpowsour.2004.09.020
10.1109/TCST.2014.2356503
10.1109/TMECH.2017.2675920
10.1109/PESC.2007.4342463
10.1016/j.jpowsour.2014.02.064
10.1016/j.jpowsour.2012.10.060
10.1115/DSCC2009-2725
10.1016/j.jpowsour.2016.03.042
10.1109/EUROCON.2013.6625179
10.1016/j.energy.2016.03.028
10.1109/TAC.1977.1101601
10.1016/j.est.2017.04.011
10.1016/j.jpowsour.2012.11.102
10.1016/j.est.2016.05.007
10.1016/j.jpowsour.2017.01.098
10.1016/j.jpowsour.2005.04.039
10.1109/TPEL.2008.924629
10.1016/j.apenergy.2018.01.008
10.1109/TVT.2016.2582721
10.1016/j.jpowsour.2013.03.131
10.1109/TCST.2016.2542115
10.1016/S0378-7753(01)00560-2
10.1016/j.jpowsour.2014.09.146
10.1109/TTE.2015.2512237
10.1016/j.jpowsour.2004.02.032
10.1016/j.est.2018.04.031
10.1109/TVT.2012.2235474
10.1016/j.jpowsour.2006.06.004
10.1016/S1474-6670(17)52291-0
10.1016/j.rser.2015.11.042
10.1016/j.apenergy.2013.08.008
10.1016/j.apenergy.2011.08.002
10.1016/j.apenergy.2014.02.072
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.est.2018.07.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
EndPage 87
ExternalDocumentID 10_1016_j_est_2018_07_006
S2352152X18301786
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c340t-f823ab09015981d60b68c325e86d1e25d1e1e2c31e7a73a0bbde4424669b97633
ISICitedReferencesCount 174
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444117200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-152X
IngestDate Tue Nov 18 19:37:06 EST 2025
Thu Nov 13 04:26:47 EST 2025
Fri Feb 23 02:48:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Battery state estimation
State-of-charge estimation
State-of-health estimation
Battery management systems
Dual extended Kalman filter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-f823ab09015981d60b68c325e86d1e25d1e1e2c31e7a73a0bbde4424669b97633
OpenAccessLink http://mediatum.ub.tum.de/node?id=1449723
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_est_2018_07_006
crossref_primary_10_1016_j_est_2018_07_006
elsevier_sciencedirect_doi_10_1016_j_est_2018_07_006
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationTitle Journal of energy storage
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xiong, Sun, Chen, He (bib0245) 2014; 113
Remmlinger, Buchholz, Soczka-Guth, Dietmayer (bib0320) 2013; 239
Plett (bib0100) 2004; 134
Sepasi, Ghorbani, Liaw (bib0300) 2014; 245
Waag, Fleischer, Sauer (bib0025) 2014; 258
Shen, Ouyang, Lu, Li (bib0310) 2016
Campestrini, Heil, Kosch, Jossen (bib0255) 2016; 8
Dey, Ayalew, Pisu (bib0180) 2015; 23
Adermann, Brecheisen, Wacker, Lienkamp (bib0355) 2017
Mastali, Vazquez-Arenas, Fraser, Fowler, Afshar, Stevens (bib0230) 2013; 239
Hansen, Wang (bib0085) 2005; 141
Martinez, Hu, Cao, Velenis, Gao, Wellers (bib0005) 2017; 66
Campestrini, Horsche, Zilberman, Heil, Zimmermann, Jossen (bib0325) 2016; 7
Wang, Zhang, Chen (bib0015) 2014; 135
Singh, Vinjamuri, Wang, Reisner (bib0075) 2006; 162
Plett (bib0115) 2006; 161
Lin, Fukui, Takaba (bib0330) 2015
Nejad, Gladwin, Stone (bib0280) 2016; 316
Propp, Auger, Fotouhi, Longo, Knap (bib0040) 2017; 343
Zhao, Duncan, Howey (bib0350) 2017; 25
Schwunk, Armbruster, Straub, Kehl, Vetter (bib0200) 2013; 239
Zhong, Zhang, He, Chen (bib0140) 2014; 113
Nejad, Gladwin, Stone (bib0260) 2016
Campestrini, Walder, Jossen, Lienkamp (bib0250) 2014
Remmlinger, Buchholz, Meiler, Bernreuter, Dietmayer (bib0315) 2011; 196
Andre, Appel, Soczka-Guth, Sauer (bib0190) 2013; 224
Kim, Cho (bib0225) 2013; 28
Firouz, Relan, Timmermans, Omar, van den Bossche, van Mierlo (bib0285) 2016; 106
Wang, Fang, Sahinoglu, Wada, Hara (bib0175) 2015; 23
Berecibar, Gandiaga, Villarreal, Omar, van Mierlo, van den Bossche (bib0055) 2016; 56
Zou, Hu, Ma, Li (bib0185) 2015; 273
Farmann, Waag, Sauer (bib0290) 2016; 112
Schmitt, Maheshwari, Heck, Lux, Vetter (bib0070) 2017; 353
Tian, Xia, Sun, Xu, Zheng (bib0135) 2014; 270
Hu, Youn, Chung (bib0220) 2012; 92
S. Knupfer, R. Hensley, P. Hertzke, P. Schaufuss, N. Laverty, N. Kramer, Electrifying insights: how automakers can drive electrified vehicle sales and profitability.
Baumann, Wildfeuer, Rohr, Lienkamp (bib0360) 2018; 18
Hermann, Krener (bib0335) 1977; 22
Sun, Hu, Zou, Li (bib0125) 2011; 36
Plett (bib0090) 2004; 134
Li, Pischinger, He, Liang, Stapelbroek (bib0265) 2018; 212
Haykin (bib0295) 2001
Hannan, Lipu, Hussain, Mohamed (bib0270) 2017; 78
Plett (bib0120) 2006; 161
Zhang, Liu, Fang, Wang (bib0170) 2012; 59
Lu, Han, Li, Hua, Ouyang (bib0030) 2013; 226
Birk, Zeitz (bib0340) 1992; 25
Kim (bib0195) 2010; 25
He, Williard, Chen, Pecht (bib0130) 2013; 53
Vetter, Novák, Wagner, Veit, Möller, Besenhard, Winter, Wohlfahrt-Mehrens, Vogler, Hammouche (bib0050) 2005; 147
Rubagotti, Onori, Rizzoni (bib0215) 2009
Walder, Campestrini, Lienkamp, Jossen (bib0240) 2014
Liu, Chen, Zhang, Wu (bib0145) 2014; 123
Kim (bib0160) 2008; 23
Moura, Chaturvedi, Krstic (bib0165) 2012
Chen, Fu, Mi (bib0105) 2013; 62
Broussely, Biensan, Bonhomme, Blanchard, Herreyre, Nechev, Staniewicz (bib0045) 2005; 146
Farmann, Sauer (bib0365) 2017; 347
Dragicevic, Sucic, Guerrero (bib0235) 2013
Maheshwari, Heck, Santarelli (bib0065) 2018; 273
Hu, Li, Yang (bib0080) 2016; 2
Birkl, Roberts, McTurk, Bruce, Howey (bib0060) 2017; 341
Marano, Onori, Guezennec, Rizzoni, Madella (bib0020) 2009
Wang, Wang, Wang, Li, Ahmed, Habibi, Emadi (bib0150) 2016
Farmann, Waag, Sauer (bib0275) 2015; 299
Lee, Kim, Lee, Cho (bib0210) 2008; 185
Piller, Perrin, Jossen (bib0035) 2001; 96
Niermeyer, Pak, Lohmann (bib0345) 2017; 50
Campestrini, Kosch, Jossen (bib0305) 2017; 12
Plett (bib0095) 2004; 134
Li, Klee Barillas, Guenther, Danzer (bib0110) 2013; 230
Urbain, Rael, Davat, Desprez (bib0205) 2007
Hu, Cao, Egardt (bib0155) 2018; 23
Remmlinger (10.1016/j.est.2018.07.006_bib0320) 2013; 239
Chen (10.1016/j.est.2018.07.006_bib0105) 2013; 62
Xiong (10.1016/j.est.2018.07.006_bib0245) 2014; 113
Sepasi (10.1016/j.est.2018.07.006_bib0300) 2014; 245
Wang (10.1016/j.est.2018.07.006_bib0015) 2014; 135
Berecibar (10.1016/j.est.2018.07.006_bib0055) 2016; 56
Remmlinger (10.1016/j.est.2018.07.006_bib0315) 2011; 196
Kim (10.1016/j.est.2018.07.006_bib0160) 2008; 23
Hansen (10.1016/j.est.2018.07.006_bib0085) 2005; 141
Farmann (10.1016/j.est.2018.07.006_bib0275) 2015; 299
Dragicevic (10.1016/j.est.2018.07.006_bib0235) 2013
Lee (10.1016/j.est.2018.07.006_bib0210) 2008; 185
Campestrini (10.1016/j.est.2018.07.006_bib0255) 2016; 8
Niermeyer (10.1016/j.est.2018.07.006_bib0345) 2017; 50
Waag (10.1016/j.est.2018.07.006_bib0025) 2014; 258
Plett (10.1016/j.est.2018.07.006_bib0120) 2006; 161
Martinez (10.1016/j.est.2018.07.006_bib0005) 2017; 66
Mastali (10.1016/j.est.2018.07.006_bib0230) 2013; 239
Rubagotti (10.1016/j.est.2018.07.006_bib0215) 2009
Hu (10.1016/j.est.2018.07.006_bib0220) 2012; 92
Plett (10.1016/j.est.2018.07.006_bib0115) 2006; 161
Hu (10.1016/j.est.2018.07.006_bib0080) 2016; 2
Baumann (10.1016/j.est.2018.07.006_bib0360) 2018; 18
Haykin (10.1016/j.est.2018.07.006_bib0295) 2001
Piller (10.1016/j.est.2018.07.006_bib0035) 2001; 96
Shen (10.1016/j.est.2018.07.006_bib0310) 2016
Moura (10.1016/j.est.2018.07.006_bib0165) 2012
Zou (10.1016/j.est.2018.07.006_bib0185) 2015; 273
Lu (10.1016/j.est.2018.07.006_bib0030) 2013; 226
Hannan (10.1016/j.est.2018.07.006_bib0270) 2017; 78
Hermann (10.1016/j.est.2018.07.006_bib0335) 1977; 22
Kim (10.1016/j.est.2018.07.006_bib0195) 2010; 25
Plett (10.1016/j.est.2018.07.006_bib0090) 2004; 134
Dey (10.1016/j.est.2018.07.006_bib0180) 2015; 23
Hu (10.1016/j.est.2018.07.006_bib0155) 2018; 23
Zhong (10.1016/j.est.2018.07.006_bib0140) 2014; 113
Nejad (10.1016/j.est.2018.07.006_bib0260) 2016
Firouz (10.1016/j.est.2018.07.006_bib0285) 2016; 106
Campestrini (10.1016/j.est.2018.07.006_bib0325) 2016; 7
Li (10.1016/j.est.2018.07.006_bib0265) 2018; 212
Zhang (10.1016/j.est.2018.07.006_bib0170) 2012; 59
Singh (10.1016/j.est.2018.07.006_bib0075) 2006; 162
Schwunk (10.1016/j.est.2018.07.006_bib0200) 2013; 239
Farmann (10.1016/j.est.2018.07.006_bib0365) 2017; 347
Marano (10.1016/j.est.2018.07.006_bib0020) 2009
Adermann (10.1016/j.est.2018.07.006_bib0355) 2017
Birk (10.1016/j.est.2018.07.006_bib0340) 1992; 25
Kim (10.1016/j.est.2018.07.006_bib0225) 2013; 28
Maheshwari (10.1016/j.est.2018.07.006_bib0065) 2018; 273
Nejad (10.1016/j.est.2018.07.006_bib0280) 2016; 316
Tian (10.1016/j.est.2018.07.006_bib0135) 2014; 270
Propp (10.1016/j.est.2018.07.006_bib0040) 2017; 343
Wang (10.1016/j.est.2018.07.006_bib0175) 2015; 23
10.1016/j.est.2018.07.006_bib0010
Birkl (10.1016/j.est.2018.07.006_bib0060) 2017; 341
Liu (10.1016/j.est.2018.07.006_bib0145) 2014; 123
Andre (10.1016/j.est.2018.07.006_bib0190) 2013; 224
Wang (10.1016/j.est.2018.07.006_bib0150) 2016
Walder (10.1016/j.est.2018.07.006_bib0240) 2014
Li (10.1016/j.est.2018.07.006_bib0110) 2013; 230
Urbain (10.1016/j.est.2018.07.006_bib0205) 2007
Sun (10.1016/j.est.2018.07.006_bib0125) 2011; 36
Plett (10.1016/j.est.2018.07.006_bib0100) 2004; 134
He (10.1016/j.est.2018.07.006_bib0130) 2013; 53
Zhao (10.1016/j.est.2018.07.006_bib0350) 2017; 25
Campestrini (10.1016/j.est.2018.07.006_bib0305) 2017; 12
Campestrini (10.1016/j.est.2018.07.006_bib0250) 2014
Broussely (10.1016/j.est.2018.07.006_bib0045) 2005; 146
Plett (10.1016/j.est.2018.07.006_bib0095) 2004; 134
Farmann (10.1016/j.est.2018.07.006_bib0290) 2016; 112
Vetter (10.1016/j.est.2018.07.006_bib0050) 2005; 147
Schmitt (10.1016/j.est.2018.07.006_bib0070) 2017; 353
Lin (10.1016/j.est.2018.07.006_bib0330) 2015
References_xml – volume: 134
  start-page: 252
  year: 2004
  end-page: 261
  ident: bib0090
  article-title: Extended Kalman filtering for battery management systems of LiPB-based hev battery packs: Part 1
  publication-title: J. Power Sources
– volume: 258
  start-page: 321
  year: 2014
  end-page: 339
  ident: bib0025
  article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
  publication-title: J. Power Sources
– volume: 123
  start-page: 263
  year: 2014
  end-page: 272
  ident: bib0145
  article-title: A novel temperature-compensated model for power li-ion batteries with dual-particle-filter state of charge estimation
  publication-title: Appl. Energy
– volume: 66
  start-page: 4534
  year: 2017
  end-page: 4549
  ident: bib0005
  article-title: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective
  publication-title: IEEE Trans. Veh. Technol.
– volume: 7
  start-page: 38
  year: 2016
  end-page: 51
  ident: bib0325
  article-title: Validation and benchmark methods for battery management system functionalities: state of charge estimation algorithms
  publication-title: J. Energy Storage
– volume: 212
  start-page: 1522
  year: 2018
  end-page: 1536
  ident: bib0265
  article-title: A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test
  publication-title: Appl. Energy
– volume: 299
  start-page: 176
  year: 2015
  end-page: 188
  ident: bib0275
  article-title: Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles
  publication-title: J. Power Sources
– volume: 141
  start-page: 351
  year: 2005
  end-page: 358
  ident: bib0085
  article-title: Support vector based battery state of charge estimator
  publication-title: J. Power Sources
– volume: 23
  start-page: 167
  year: 2018
  end-page: 178
  ident: bib0155
  article-title: Condition monitoring in advanced battery management systems: Moving horizon estimation using a reduced electrochemical model
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 23
  start-page: 2027
  year: 2008
  end-page: 2034
  ident: bib0160
  article-title: Nonlinear state of charge estimator for hybrid electric vehicle battery
  publication-title: IEEE Trans. Power Electron.
– volume: 316
  start-page: 183
  year: 2016
  end-page: 196
  ident: bib0280
  article-title: A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states
  publication-title: J. Power Sources
– volume: 341
  start-page: 373
  year: 2017
  end-page: 386
  ident: bib0060
  article-title: Degradation diagnostics for lithium ion cells
  publication-title: J. Power Sources
– volume: 162
  start-page: 829
  year: 2006
  end-page: 836
  ident: bib0075
  article-title: Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators
  publication-title: J. Power Sources
– volume: 343
  start-page: 254
  year: 2017
  end-page: 267
  ident: bib0040
  article-title: Kalman-variant estimators for state of charge in lithium-sulfur batteries
  publication-title: J. Power Sources
– volume: 106
  start-page: 602
  year: 2016
  end-page: 617
  ident: bib0285
  article-title: Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: nonlinear characterization and non-parametric modeling
  publication-title: Energy
– volume: 22
  start-page: 728
  year: 1977
  end-page: 740
  ident: bib0335
  article-title: Nonlinear controllability and observability
  publication-title: IEEE Trans. Autom. Control
– volume: 347
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib0365
  article-title: A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries
  publication-title: J. Power Sources
– volume: 196
  start-page: 5357
  year: 2011
  end-page: 5363
  ident: bib0315
  article-title: State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
  publication-title: J. Power Sources
– start-page: 33
  year: 2015
  end-page: 36
  ident: bib0330
  article-title: An accurate SOC estimation system for lithium-ion batteries by EKF with dynamic noise adjustment
  publication-title: ISCIT 2015, IEEE, Piscataway, NJ and Piscataway, NJ
– volume: 78
  start-page: 834
  year: 2017
  end-page: 854
  ident: bib0270
  article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations
  publication-title: Renew. Sustain. Energy Rev.
– volume: 135
  start-page: 81
  year: 2014
  end-page: 87
  ident: bib0015
  article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries
  publication-title: Appl. Energy
– volume: 113
  start-page: 558
  year: 2014
  end-page: 564
  ident: bib0140
  article-title: A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis
  publication-title: Appl. Energy
– start-page: 257
  year: 2009
  end-page: 263
  ident: bib0215
  article-title: Automotive battery prognostics using dual extended Kalman filter
  publication-title: ASME 2009 Dynamic Systems and Control Conference, Volume 2, ASME
– volume: 12
  start-page: 149
  year: 2017
  end-page: 156
  ident: bib0305
  article-title: Influence of change in open circuit voltage on the state of charge estimation with an extended Kalman filter
  publication-title: J. Energy Storage
– volume: 185
  start-page: 1367
  year: 2008
  end-page: 1373
  ident: bib0210
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J. Power Sources
– start-page: 1
  year: 2016
  end-page: 6
  ident: bib0150
  article-title: Comparison of Kalman filter-based state of charge estimation strategies for Li-Ion batteries
  publication-title: 2016 IEEE Transportation Electrification Conference and Expo (ITEC), IEEE
– volume: 62
  start-page: 1020
  year: 2013
  end-page: 1030
  ident: bib0105
  article-title: State of charge estimation of lithium-ion batteries in electric drive vehicles using extended Kalman filtering
  publication-title: IEEE Trans. Veh. Technol.
– volume: 245
  start-page: 337
  year: 2014
  end-page: 344
  ident: bib0300
  article-title: A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter
  publication-title: J. Power Sources
– volume: 25
  start-page: 326
  year: 2017
  end-page: 333
  ident: bib0350
  article-title: Observability analysis and state estimation of lithium-ion batteries in the presence of sensor biases
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 226
  start-page: 272
  year: 2013
  end-page: 288
  ident: bib0030
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J. Power Sources
– volume: 56
  start-page: 572
  year: 2016
  end-page: 587
  ident: bib0055
  article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 270
  start-page: 619
  year: 2014
  end-page: 626
  ident: bib0135
  article-title: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter
  publication-title: J. Power Sources
– volume: 50
  start-page: 270
  year: 2017
  end-page: 275
  ident: bib0345
  article-title: A control effectiveness estimator with a moving horizon robustness modification for fault-tolerant hexacopter control
  publication-title: IFAC-PapersOnLine
– volume: 23
  start-page: 948
  year: 2015
  end-page: 962
  ident: bib0175
  article-title: Adaptive estimation of the state of charge for lithium-ion batteries: nonlinear geometric observer approach
  publication-title: IEEE Trans. Control Syst. Technol.
– start-page: 1519
  year: 2013
  end-page: 1525
  ident: bib0235
  article-title: Battery state-of-charge and parameter estimation algorithm based on Kalman filter
  publication-title: Eurocon 2013, IEEE
– volume: 25
  start-page: 1013
  year: 2010
  end-page: 1022
  ident: bib0195
  article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
  publication-title: IEEE Trans. Power Electron.
– volume: 161
  start-page: 1356
  year: 2006
  end-page: 1368
  ident: bib0120
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based hev battery packs
  publication-title: J. Power Sources
– volume: 53
  start-page: 840
  year: 2013
  end-page: 847
  ident: bib0130
  article-title: State of charge estimation for electric vehicle batteries using unscented Kalman filtering
  publication-title: Microelectron. Reliab.
– volume: 8
  start-page: 142
  year: 2016
  end-page: 159
  ident: bib0255
  article-title: A comparative study and review of different Kalman filters by applying an enhanced validation method
  publication-title: J. Energy Storage
– volume: 134
  start-page: 262
  year: 2004
  end-page: 276
  ident: bib0095
  article-title: Extended Kalman filtering for battery management systems of LiPB-based hev battery packs: Part 2
  publication-title: J. Power Sources
– volume: 18
  start-page: 295
  year: 2018
  end-page: 307
  ident: bib0360
  article-title: Parameter variations within Li-Ion battery packs – theoretical investigations and experimental quantification
  publication-title: J. Energy Storage
– volume: 353
  start-page: 183
  year: 2017
  end-page: 194
  ident: bib0070
  article-title: Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging
  publication-title: J. Power Sources
– volume: 2
  start-page: 140
  year: 2016
  end-page: 149
  ident: bib0080
  article-title: Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles
  publication-title: IEEE Trans. Transp. Electr.
– volume: 230
  start-page: 244
  year: 2013
  end-page: 250
  ident: bib0110
  article-title: A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles
  publication-title: J. Power Sources
– year: 2014
  ident: bib0240
  article-title: Adaptive state and parameter estimation of lithium-ion batteries based on a dual linear Kalman filter
  publication-title: The Second International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE2014), The Society of Digital Information and Wireless Communication
– volume: 113
  start-page: 463
  year: 2014
  end-page: 476
  ident: bib0245
  article-title: A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles
  publication-title: Appl. Energy
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib0310
  article-title: State of charge, state of health and state of function co-estimation of lithium-ion batteries for electric vehicles
  publication-title: 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE
– volume: 273
  start-page: 335
  year: 2018
  end-page: 348
  ident: bib0065
  article-title: Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy
  publication-title: Electrochim. Acta
– volume: 224
  start-page: 20
  year: 2013
  end-page: 27
  ident: bib0190
  article-title: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries
  publication-title: J. Power Sources
– start-page: 559
  year: 2012
  end-page: 565
  ident: bib0165
  article-title: Pde estimation techniques for advanced battery management systems – Part I: SOC estimation
  publication-title: 2012 American Control Conference (ACC), IEEE
– reference: S. Knupfer, R. Hensley, P. Hertzke, P. Schaufuss, N. Laverty, N. Kramer, Electrifying insights: how automakers can drive electrified vehicle sales and profitability.
– volume: 25
  start-page: 257
  year: 1992
  end-page: 262
  ident: bib0340
  article-title: Computer-aided analysis of nonlinear observation problems
  publication-title: IFAC Proc. Vol.
– volume: 161
  start-page: 1369
  year: 2006
  end-page: 1384
  ident: bib0115
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based hev battery packs
  publication-title: J. Power Sources
– start-page: 5513
  year: 2016
  end-page: 5518
  ident: bib0260
  article-title: On-chip implementation of extended Kalman filter for adaptive battery states monitoring
  publication-title: Proceedings of the IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, IEEE, [Piscataway, N.J.]
– volume: 59
  start-page: 1086
  year: 2012
  end-page: 1095
  ident: bib0170
  article-title: Estimation of battery state of charge with h-infinity observer: applied to a robot for inspecting power transmission lines
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 2804
  year: 2007
  end-page: 2810
  ident: bib0205
  article-title: State estimation of a lithium-ion battery through Kalman filter
  publication-title: 2007 IEEE Power Electronics Specialists Conference, IEEE
– volume: 28
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib0225
  article-title: Pattern recognition for temperature-dependent state-of-charge/capacity estimation of a Li-ion cell
  publication-title: IEEE Trans. Energy Convers.
– volume: 147
  start-page: 269
  year: 2005
  end-page: 281
  ident: bib0050
  article-title: Ageing mechanisms in lithium-ion batteries
  publication-title: J. Power Sources
– volume: 96
  start-page: 113
  year: 2001
  end-page: 120
  ident: bib0035
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J. Power Sources
– volume: 134
  start-page: 277
  year: 2004
  end-page: 292
  ident: bib0100
  article-title: Extended Kalman filtering for battery management systems of LiPB-based hev battery packs: Part 3
  publication-title: J. Power Sources
– volume: 239
  start-page: 294
  year: 2013
  end-page: 307
  ident: bib0230
  article-title: Battery state of the charge estimation using Kalman filtering
  publication-title: J. Power Sources
– volume: 146
  start-page: 90
  year: 2005
  end-page: 96
  ident: bib0045
  article-title: Main aging mechanisms in Li-ion batteries
  publication-title: J. Power Sources
– volume: 23
  start-page: 1935
  year: 2015
  end-page: 1942
  ident: bib0180
  article-title: Nonlinear robust observers for state-of-charge estimation of lithium-ion cells based on a reduced electrochemical model
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 239
  start-page: 689
  year: 2013
  end-page: 695
  ident: bib0320
  article-title: On-board state-of-health monitoring of lithium-ion batteries using linear parameter-varying models
  publication-title: J. Power Sources
– volume: 239
  start-page: 705
  year: 2013
  end-page: 710
  ident: bib0200
  article-title: Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries
  publication-title: J. Power Sources
– year: 2014
  ident: bib0250
  article-title: Temperature influences on state and parameter estimation based on a dual Kalman filter
  publication-title: Conference on Future Automotive Technology (CoFAT)
– volume: 36
  start-page: 3531
  year: 2011
  end-page: 3540
  ident: bib0125
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
– start-page: 1
  year: 2017
  end-page: 7
  ident: bib0355
  article-title: Parameter estimation of traction batteries by energy and charge counting during reference cycles
  publication-title: Conference on Future Automotive Technology (CoFAT)
– volume: 273
  start-page: 793
  year: 2015
  end-page: 803
  ident: bib0185
  article-title: Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles
  publication-title: J. Power Sources
– volume: 92
  start-page: 694
  year: 2012
  end-page: 704
  ident: bib0220
  article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
  publication-title: Appl. Energy
– year: 2001
  ident: bib0295
  article-title: Kalman Filtering and Neural Networks, 1st Edition, Wiley series on adaptive and learning systems for signal processing, communications, and control, [s. n.], [S. l.]
– start-page: 536
  year: 2009
  end-page: 543
  ident: bib0020
  article-title: Lithium-ion batteries life estimation for plug-in hybrid electric vehicles
  publication-title: 2009 IEEE Vehicle Power and Propulsion Conference, IEEE
– volume: 112
  start-page: 294
  year: 2016
  end-page: 306
  ident: bib0290
  article-title: Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles
  publication-title: Energy
– volume: 161
  start-page: 1356
  issue: 2
  year: 2006
  ident: 10.1016/j.est.2018.07.006_bib0120
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based hev battery packs
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.06.003
– volume: 36
  start-page: 3531
  issue: 5
  year: 2011
  ident: 10.1016/j.est.2018.07.006_bib0125
  article-title: Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2011.03.059
– volume: 299
  start-page: 176
  year: 2015
  ident: 10.1016/j.est.2018.07.006_bib0275
  article-title: Adaptive approach for on-board impedance parameters and voltage estimation of lithium-ion batteries in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.08.087
– volume: 341
  start-page: 373
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0060
  article-title: Degradation diagnostics for lithium ion cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.011
– volume: 134
  start-page: 252
  issue: 2
  year: 2004
  ident: 10.1016/j.est.2018.07.006_bib0090
  article-title: Extended Kalman filtering for battery management systems of LiPB-based hev battery packs: Part 1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.02.031
– volume: 146
  start-page: 90
  issue: 1-2
  year: 2005
  ident: 10.1016/j.est.2018.07.006_bib0045
  article-title: Main aging mechanisms in Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.03.172
– volume: 28
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0225
  article-title: Pattern recognition for temperature-dependent state-of-charge/capacity estimation of a Li-ion cell
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2012.2222884
– volume: 224
  start-page: 20
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0190
  article-title: Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.001
– volume: 112
  start-page: 294
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0290
  article-title: Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2016.06.088
– volume: 135
  start-page: 81
  year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0015
  article-title: A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.08.081
– volume: 343
  start-page: 254
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0040
  article-title: Kalman-variant estimators for state of charge in lithium-sulfur batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.12.087
– volume: 23
  start-page: 1935
  issue: 5
  year: 2015
  ident: 10.1016/j.est.2018.07.006_bib0180
  article-title: Nonlinear robust observers for state-of-charge estimation of lithium-ion cells based on a reduced electrochemical model
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2382635
– volume: 239
  start-page: 705
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0200
  article-title: Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.058
– year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0250
  article-title: Temperature influences on state and parameter estimation based on a dual Kalman filter
  publication-title: Conference on Future Automotive Technology (CoFAT)
– volume: 53
  start-page: 840
  issue: 6
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0130
  article-title: State of charge estimation for electric vehicle batteries using unscented Kalman filtering
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2012.11.010
– volume: 353
  start-page: 183
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0070
  article-title: Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.090
– volume: 230
  start-page: 244
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0110
  article-title: A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.057
– volume: 25
  start-page: 1013
  issue: 4
  year: 2010
  ident: 10.1016/j.est.2018.07.006_bib0195
  article-title: A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2009.2034966
– volume: 245
  start-page: 337
  year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0300
  article-title: A novel on-board state-of-charge estimation method for aged Li-ion batteries based on model adaptive extended Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.06.108
– volume: 273
  start-page: 335
  year: 2018
  ident: 10.1016/j.est.2018.07.006_bib0065
  article-title: Cycle aging studies of lithium nickel manganese cobalt oxide-based batteries using electrochemical impedance spectroscopy
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.04.045
– volume: 59
  start-page: 1086
  issue: 2
  year: 2012
  ident: 10.1016/j.est.2018.07.006_bib0170
  article-title: Estimation of battery state of charge with h-infinity observer: applied to a robot for inspecting power transmission lines
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2159691
– start-page: 5513
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0260
  article-title: On-chip implementation of extended Kalman filter for adaptive battery states monitoring
  publication-title: Proceedings of the IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, IEEE, [Piscataway, N.J.]
  doi: 10.1109/IECON.2016.7793527
– volume: 270
  start-page: 619
  year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0135
  article-title: A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.143
– ident: 10.1016/j.est.2018.07.006_bib0010
– year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0240
  article-title: Adaptive state and parameter estimation of lithium-ion batteries based on a dual linear Kalman filter
  publication-title: The Second International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE2014), The Society of Digital Information and Wireless Communication
– volume: 147
  start-page: 269
  issue: 1-2
  year: 2005
  ident: 10.1016/j.est.2018.07.006_bib0050
  article-title: Ageing mechanisms in lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.01.006
– start-page: 536
  year: 2009
  ident: 10.1016/j.est.2018.07.006_bib0020
  article-title: Lithium-ion batteries life estimation for plug-in hybrid electric vehicles
  publication-title: 2009 IEEE Vehicle Power and Propulsion Conference, IEEE
  doi: 10.1109/VPPC.2009.5289803
– volume: 185
  start-page: 1367
  issue: 2
  year: 2008
  ident: 10.1016/j.est.2018.07.006_bib0210
  article-title: State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.08.103
– volume: 78
  start-page: 834
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0270
  article-title: A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.001
– volume: 50
  start-page: 270
  issue: 1
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0345
  article-title: A control effectiveness estimator with a moving horizon robustness modification for fault-tolerant hexacopter control
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.045
– start-page: 559
  year: 2012
  ident: 10.1016/j.est.2018.07.006_bib0165
  article-title: Pde estimation techniques for advanced battery management systems – Part I: SOC estimation
  publication-title: 2012 American Control Conference (ACC), IEEE
  doi: 10.1109/ACC.2012.6315019
– volume: 196
  start-page: 5357
  issue: 12
  year: 2011
  ident: 10.1016/j.est.2018.07.006_bib0315
  article-title: State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.08.035
– volume: 134
  start-page: 277
  issue: 2
  year: 2004
  ident: 10.1016/j.est.2018.07.006_bib0100
  article-title: Extended Kalman filtering for battery management systems of LiPB-based hev battery packs: Part 3
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.02.033
– volume: 113
  start-page: 463
  year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0245
  article-title: A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.061
– volume: 8
  start-page: 142
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0255
  article-title: A comparative study and review of different Kalman filters by applying an enhanced validation method
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2016.10.004
– volume: 141
  start-page: 351
  issue: 2
  year: 2005
  ident: 10.1016/j.est.2018.07.006_bib0085
  article-title: Support vector based battery state of charge estimator
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.09.020
– volume: 23
  start-page: 948
  issue: 3
  year: 2015
  ident: 10.1016/j.est.2018.07.006_bib0175
  article-title: Adaptive estimation of the state of charge for lithium-ion batteries: nonlinear geometric observer approach
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2014.2356503
– volume: 23
  start-page: 167
  issue: 1
  year: 2018
  ident: 10.1016/j.est.2018.07.006_bib0155
  article-title: Condition monitoring in advanced battery management systems: Moving horizon estimation using a reduced electrochemical model
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2675920
– start-page: 2804
  year: 2007
  ident: 10.1016/j.est.2018.07.006_bib0205
  article-title: State estimation of a lithium-ion battery through Kalman filter
  publication-title: 2007 IEEE Power Electronics Specialists Conference, IEEE
  doi: 10.1109/PESC.2007.4342463
– start-page: 1
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0310
  article-title: State of charge, state of health and state of function co-estimation of lithium-ion batteries for electric vehicles
  publication-title: 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), IEEE
– volume: 258
  start-page: 321
  year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0025
  article-title: Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.02.064
– volume: 226
  start-page: 272
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0030
  article-title: A review on the key issues for lithium-ion battery management in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.060
– start-page: 257
  year: 2009
  ident: 10.1016/j.est.2018.07.006_bib0215
  article-title: Automotive battery prognostics using dual extended Kalman filter
  publication-title: ASME 2009 Dynamic Systems and Control Conference, Volume 2, ASME
  doi: 10.1115/DSCC2009-2725
– volume: 316
  start-page: 183
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0280
  article-title: A systematic review of lumped-parameter equivalent circuit models for real-time estimation of lithium-ion battery states
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.03.042
– start-page: 1519
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0235
  article-title: Battery state-of-charge and parameter estimation algorithm based on Kalman filter
  publication-title: Eurocon 2013, IEEE
  doi: 10.1109/EUROCON.2013.6625179
– volume: 106
  start-page: 602
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0285
  article-title: Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: nonlinear characterization and non-parametric modeling
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.028
– volume: 22
  start-page: 728
  issue: 5
  year: 1977
  ident: 10.1016/j.est.2018.07.006_bib0335
  article-title: Nonlinear controllability and observability
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1977.1101601
– volume: 12
  start-page: 149
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0305
  article-title: Influence of change in open circuit voltage on the state of charge estimation with an extended Kalman filter
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2017.04.011
– volume: 239
  start-page: 689
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0320
  article-title: On-board state-of-health monitoring of lithium-ion batteries using linear parameter-varying models
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.102
– volume: 7
  start-page: 38
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0325
  article-title: Validation and benchmark methods for battery management system functionalities: state of charge estimation algorithms
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2016.05.007
– volume: 347
  start-page: 1
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0365
  article-title: A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.01.098
– volume: 162
  start-page: 829
  issue: 2
  year: 2006
  ident: 10.1016/j.est.2018.07.006_bib0075
  article-title: Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.04.039
– volume: 23
  start-page: 2027
  issue: 4
  year: 2008
  ident: 10.1016/j.est.2018.07.006_bib0160
  article-title: Nonlinear state of charge estimator for hybrid electric vehicle battery
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2008.924629
– start-page: 33
  year: 2015
  ident: 10.1016/j.est.2018.07.006_bib0330
  article-title: An accurate SOC estimation system for lithium-ion batteries by EKF with dynamic noise adjustment
  publication-title: ISCIT 2015, IEEE, Piscataway, NJ and Piscataway, NJ
– volume: 212
  start-page: 1522
  year: 2018
  ident: 10.1016/j.est.2018.07.006_bib0265
  article-title: A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.008
– start-page: 1
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0355
  article-title: Parameter estimation of traction batteries by energy and charge counting during reference cycles
  publication-title: Conference on Future Automotive Technology (CoFAT)
– volume: 66
  start-page: 4534
  issue: 6
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0005
  article-title: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2582721
– volume: 239
  start-page: 294
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0230
  article-title: Battery state of the charge estimation using Kalman filtering
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.131
– volume: 25
  start-page: 326
  issue: 1
  year: 2017
  ident: 10.1016/j.est.2018.07.006_bib0350
  article-title: Observability analysis and state estimation of lithium-ion batteries in the presence of sensor biases
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2016.2542115
– volume: 96
  start-page: 113
  issue: 1
  year: 2001
  ident: 10.1016/j.est.2018.07.006_bib0035
  article-title: Methods for state-of-charge determination and their applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00560-2
– volume: 273
  start-page: 793
  year: 2015
  ident: 10.1016/j.est.2018.07.006_bib0185
  article-title: Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.09.146
– volume: 2
  start-page: 140
  issue: 2
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0080
  article-title: Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles
  publication-title: IEEE Trans. Transp. Electr.
  doi: 10.1109/TTE.2015.2512237
– start-page: 1
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0150
  article-title: Comparison of Kalman filter-based state of charge estimation strategies for Li-Ion batteries
  publication-title: 2016 IEEE Transportation Electrification Conference and Expo (ITEC), IEEE
– volume: 134
  start-page: 262
  issue: 2
  year: 2004
  ident: 10.1016/j.est.2018.07.006_bib0095
  article-title: Extended Kalman filtering for battery management systems of LiPB-based hev battery packs: Part 2
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2004.02.032
– volume: 18
  start-page: 295
  year: 2018
  ident: 10.1016/j.est.2018.07.006_bib0360
  article-title: Parameter variations within Li-Ion battery packs – theoretical investigations and experimental quantification
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.04.031
– volume: 62
  start-page: 1020
  issue: 3
  year: 2013
  ident: 10.1016/j.est.2018.07.006_bib0105
  article-title: State of charge estimation of lithium-ion batteries in electric drive vehicles using extended Kalman filtering
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2012.2235474
– year: 2001
  ident: 10.1016/j.est.2018.07.006_bib0295
– volume: 161
  start-page: 1369
  issue: 2
  year: 2006
  ident: 10.1016/j.est.2018.07.006_bib0115
  article-title: Sigma-point Kalman filtering for battery management systems of LiPB-based hev battery packs
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.06.004
– volume: 25
  start-page: 257
  issue: 13
  year: 1992
  ident: 10.1016/j.est.2018.07.006_bib0340
  article-title: Computer-aided analysis of nonlinear observation problems
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)52291-0
– volume: 56
  start-page: 572
  year: 2016
  ident: 10.1016/j.est.2018.07.006_bib0055
  article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.042
– volume: 113
  start-page: 558
  year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0140
  article-title: A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.08.008
– volume: 92
  start-page: 694
  year: 2012
  ident: 10.1016/j.est.2018.07.006_bib0220
  article-title: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.08.002
– volume: 123
  start-page: 263
  year: 2014
  ident: 10.1016/j.est.2018.07.006_bib0145
  article-title: A novel temperature-compensated model for power li-ion batteries with dual-particle-filter state of charge estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.02.072
SSID ssj0001651196
Score 2.5214243
Snippet •Algorithm's capability for accurate and reliable state and parameter estimation is investigated at different dynamics and aging stages.•Initial setup and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 73
SubjectTerms Battery management systems
Battery state estimation
Dual extended Kalman filter
State-of-charge estimation
State-of-health estimation
Title Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: A use-case life cycle analysis
URI https://dx.doi.org/10.1016/j.est.2018.07.006
Volume 19
WOSCitedRecordID wos000444117200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-1538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651196
  issn: 2352-152X
  databaseCode: AIEXJ
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLbKDAc4IFYxbPKBE5GRs9SxuQU0IxapQmiQeoscx4FMQzpqO6OZH8DP4r_xHNtJW6aIOXBxKit2lvfV74vfhtBLFRfGNzEkQrKSgMbTRJYFJVyXvIyk4GJcdMUm0smET6fi82j0y8fCnDdp2_KLC3H6X0UNfSBsEzp7DXH3k0IH_AahQwtih_afBP-lixdf-TCoLtbKb3UHn2RjNu2r2hjJratml2DzMugii8i8Il3uJGtU6PtstGRgMnL86N1BsuBsqYkCNRg0daUDdQl3AuNslpMdrFfbWEPjkym_DXYhoPB1U8vSZjyY1DP44p73dD8rjf5w1ZyNaf8tW_SgPloYm9NsuRGuM1jGZjY4YPbdO5O4LY6Q985ybiWMgCUSIBrTjWVbrK27thzKhgb_QzfYbYqT1_CujEsf75K20ivycG_px95r0TvEneQwRW6myKmx3rMbaD9KxwL0wn724XD6cdjkY8ZMawscukfwlvXOx3DrVq7mRmt85_guuuNEhjMLsHtopNv76PZa-soH6OcANQxQwwZq2EMNW6hhCzUMUMMOangLahgkhreghgeovcEZ9kDDBmi4Axr2QHuIvh4dHr97T1xZD6LihK5IxaNYFtQQUQFfS4wWjKs4GmvOylBHY2jgoOJQpzKNJS2KUidJlDAmCiDPcfwI7bXzVj9GOAxTVVAN64mOk0SHogJGG0o4sESmjB0g6l9orlzOe1N6pcl3yvIAveqHnNqEL387OfFSyh1jtUw0B9DtHvbkOtd4im4N_4lnaG-1ONPP0U11vqqXixcOcb8Bcca6kg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+dual+extended+Kalman+filter+for+battery+state-of-charge+and+state-of-health+estimation%3A+A+use-case+life+cycle+analysis&rft.jtitle=Journal+of+energy+storage&rft.au=Wassiliadis%2C+Nikolaos&rft.au=Adermann%2C+J%C3%B6rn&rft.au=Frericks%2C+Alexander&rft.au=Pak%2C+Mikhail&rft.date=2018-10-01&rft.issn=2352-152X&rft.volume=19&rft.spage=73&rft.epage=87&rft_id=info:doi/10.1016%2Fj.est.2018.07.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_est_2018_07_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon