On some unexpected properties of radial and symmetric eigenvalues and eigenfunctions of the p-Laplacian on a disk
We discuss several properties of eigenvalues and eigenfunctions of the p-Laplacian on a ball subject to zero Dirichlet boundary conditions. Among main results, in two dimensions, we show the existence of nonradial eigenfunctions which correspond to the radial eigenvalues. Also we prove the existence...
Uloženo v:
| Vydáno v: | Journal of Differential Equations Ročník 263; číslo 3; s. 1755 - 1772 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
05.08.2017
|
| Témata: | |
| ISSN: | 0022-0396, 1090-2732 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We discuss several properties of eigenvalues and eigenfunctions of the p-Laplacian on a ball subject to zero Dirichlet boundary conditions. Among main results, in two dimensions, we show the existence of nonradial eigenfunctions which correspond to the radial eigenvalues. Also we prove the existence of eigenfunctions whose shape of the nodal set cannot occur in the linear case p=2. Moreover, the limit behavior of some eigenvalues as p→1+ and p→+∞ is studied. |
|---|---|
| ISSN: | 0022-0396 1090-2732 |
| DOI: | 10.1016/j.jde.2017.03.028 |