PredMaX: Predictive maintenance with explainable deep convolutional autoencoders
A novel data exploration framework (PredMaX) for predictive maintenance is introduced in the present paper. PredMaX offers automatic time period clustering and efficient identification of sensitive machine parts by exploiting hidden knowledge in high-dimensional, unlabeled temporal data. Condition m...
Uložené v:
| Vydané v: | Advanced engineering informatics Ročník 54; s. 101778 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.10.2022
|
| Predmet: | |
| ISSN: | 1474-0346, 1873-5320 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!