On stability of maximal entropy OWA operator weights
The maximal entropy OWA operator (MEOWA) weights can be obtained by solving a nonlinear programming problem with a linear constraint for the level of orness. Since the exact MEOWA weights are not known for the general case we can only find approximate solutions. We will prove that the nonlinear prog...
Saved in:
| Published in: | Fuzzy sets and systems Vol. 448; pp. 145 - 156 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
05.11.2022
|
| Subjects: | |
| ISSN: | 0165-0114, 1872-6801 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The maximal entropy OWA operator (MEOWA) weights can be obtained by solving a nonlinear programming problem with a linear constraint for the level of orness. Since the exact MEOWA weights are not known for the general case we can only find approximate solutions. We will prove that the nonlinear programming problem for obtaining MEOWA weights is well-posed: it has a unique solution and each MEOWA weight changes continuously with the initial level of orness. Using the implicit function theorem we will show that MEOWA weights are Lipschitz-continuous functions of the orness level. The stability property of the MEOWA weights under small changes of the orness level guarantees that small rounding errors of digital computation and small errors of measurement of the orness level can cause only a small deviation in MEOWA weights, i.e. every successive approximation method can be applied to the computation of the approximation of the exact MEOWA weights. |
|---|---|
| AbstractList | The maximal entropy OWA operator (MEOWA) weights can be obtained by solving a nonlinear programming problem with a linear constraint for the level of orness. Since the exact MEOWA weights are not known for the general case we can only find approximate solutions. We will prove that the nonlinear programming problem for obtaining MEOWA weights is well-posed: it has a unique solution and each MEOWA weight changes continuously with the initial level of orness. Using the implicit function theorem we will show that MEOWA weights are Lipschitz-continuous functions of the orness level. The stability property of the MEOWA weights under small changes of the orness level guarantees that small rounding errors of digital computation and small errors of measurement of the orness level can cause only a small deviation in MEOWA weights, i.e. every successive approximation method can be applied to the computation of the approximation of the exact MEOWA weights. |
| Author | Harmati, István Á. Fullér, Robert Felde, Imre |
| Author_xml | – sequence: 1 givenname: István Á. orcidid: 0000-0002-0915-9718 surname: Harmati fullname: Harmati, István Á. email: harmati@sze.hu organization: Department of Mathematics and Computational Sciences, Széchenyi István University, Egyetem tér 1, Győr 9026, Hungary – sequence: 2 givenname: Robert surname: Fullér fullname: Fullér, Robert email: rfuller@sze.hu organization: Department of Informatics, Széchenyi István University, Egyetem tér 1, Győr 9026, Hungary – sequence: 3 givenname: Imre surname: Felde fullname: Felde, Imre email: felde@uni-obuda.hu organization: John von Neumann Faculty of Informatics, Óbuda University, Bécsi út 96b, Budapest 1034, Hungary |
| BookMark | eNp9z71OwzAQwHELFYm28ABseYGEOydxUjFVFV9SpS4gRst2LuAqjSvbAvr2uCoTQyff4P_pfjM2Gd1IjN0iFAgo7rZFH0LBgfMCsAAoL9gU24bnogWcsGn6U-eAWF2xWQhbgDQLmLJqM2YhKm0HGw-Z67Od-rE7NWQ0Ru_2h2zzvszcnryKzmffZD8-Y7hml70aAt38vXP29vjwunrO15unl9VynZuygphThw1o3gihdVeXra64aXDBNakSuFataFVbGyLsTGMUllpVuhLCgFn0WKtyzprTXuNdCJ56aWxU0bp0m7KDRJBHvNzKhJdHvASUCZ9K_FfufWL5w9nm_tRQIn1Z8jIYS6OhznoyUXbOnql_AZIedG8 |
| CitedBy_id | crossref_primary_10_1007_s41066_022_00316_3 crossref_primary_10_1016_j_fss_2024_109039 crossref_primary_10_1016_j_eswa_2023_121979 crossref_primary_10_3390_electronics12153269 crossref_primary_10_1007_s10479_024_05926_5 crossref_primary_10_1016_j_asoc_2023_111205 crossref_primary_10_1016_j_fss_2024_108998 crossref_primary_10_1007_s10462_025_11205_x crossref_primary_10_3233_JIFS_222241 crossref_primary_10_1016_j_fss_2024_108859 crossref_primary_10_1007_s00500_025_10559_2 crossref_primary_10_1111_acfi_13282 |
| Cites_doi | 10.1016/j.cie.2007.11.012 10.1109/TSMCB.2007.912745 10.1109/21.87068 10.1016/S0165-0114(02)00267-1 10.1016/S0165-0114(01)00007-0 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.fss.2022.01.003 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1872-6801 |
| EndPage | 156 |
| ExternalDocumentID | 10_1016_j_fss_2022_01_003 S0165011422000045 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29H 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY1 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 VH1 WH7 WUQ XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c340t-ed170b2766bbd538b42c7192bea302ba868a85cee1dc7ca13ba4b466c0c9f15a3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862759400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0165-0114 |
| IngestDate | Sat Nov 29 07:25:17 EST 2025 Tue Nov 18 21:09:56 EST 2025 Fri Feb 23 02:40:55 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Maximal entropy OWA operator weights Implicit function theorem Stability |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-ed170b2766bbd538b42c7192bea302ba868a85cee1dc7ca13ba4b466c0c9f15a3 |
| ORCID | 0000-0002-0915-9718 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.fss.2022.01.003 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_fss_2022_01_003 crossref_primary_10_1016_j_fss_2022_01_003 elsevier_sciencedirect_doi_10_1016_j_fss_2022_01_003 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-05 |
| PublicationDateYYYYMMDD | 2022-11-05 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Fuzzy sets and systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zarghami, Szidarovszky (br0040) 2008; 54 Hong, Kim (br0090) 2006; 17 Torra (br0010) 2001 Yager (br0050) 1988; 18 Carbonell, Mas, Mayor (br0070) 1997 Fullér, Majlender (br0110) 2003; 136 O'Hagan (br0060) 1988 Fullér, Majlender (br0080) 2001; 124 Zarghami, Szidarovszky, Ardakanian (br0030) 2008; 38 Zarghaami, Ardakanian, Szidarovszky (br0020) 2007 Sohrab (br0100) 2014 Zarghami (10.1016/j.fss.2022.01.003_br0040) 2008; 54 Fullér (10.1016/j.fss.2022.01.003_br0080) 2001; 124 Yager (10.1016/j.fss.2022.01.003_br0050) 1988; 18 Zarghaami (10.1016/j.fss.2022.01.003_br0020) 2007 Torra (10.1016/j.fss.2022.01.003_br0010) 2001 O'Hagan (10.1016/j.fss.2022.01.003_br0060) 1988 Carbonell (10.1016/j.fss.2022.01.003_br0070) 1997 Fullér (10.1016/j.fss.2022.01.003_br0110) 2003; 136 Zarghami (10.1016/j.fss.2022.01.003_br0030) 2008; 38 Hong (10.1016/j.fss.2022.01.003_br0090) 2006; 17 Sohrab (10.1016/j.fss.2022.01.003_br0100) 2014 |
| References_xml | – start-page: 134 year: 2001 end-page: 137 ident: br0010 article-title: Sensitivity analysis for WOWA, OWA and WM operators publication-title: ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings, Vol. 1 – volume: 54 start-page: 1006 year: 2008 end-page: 1018 ident: br0040 article-title: Fuzzy quantifiers in sensitivity analysis of OWA operator publication-title: Comput. Ind. Eng. – volume: 136 start-page: 203 year: 2003 end-page: 215 ident: br0110 article-title: On obtaining minimal variability OWA operator weights publication-title: Fuzzy Sets Syst. – start-page: 1695 year: 1997 end-page: 1700 ident: br0070 article-title: On a class of monotonic extended OWA operators publication-title: Proceedings of 6th International Fuzzy Systems Conference, Vol. 3 – start-page: 280 year: 2007 end-page: 287 ident: br0020 article-title: Obtaining robust decisions under uncertainty by sensitivity analysis on OWA operator publication-title: 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making – start-page: 681 year: 1988 end-page: 689 ident: br0060 article-title: Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic publication-title: Twenty-Second Asilomar Conference on Signals, Systems and Computers, Vol. 2 – volume: 38 start-page: 547 year: 2008 end-page: 552 ident: br0030 article-title: Sensitivity analysis of the OWA operator publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern. – volume: 124 start-page: 53 year: 2001 end-page: 57 ident: br0080 article-title: An analytic approach for obtaining maximal entropy OWA operator weights publication-title: Fuzzy Sets Syst. – volume: 17 start-page: 537 year: 2006 end-page: 541 ident: br0090 article-title: A note on maximal entropy OWA operator weights publication-title: J. Korean Data Inf. Sci. Soc. – year: 2014 ident: br0100 article-title: Basic Real Analysis – volume: 18 start-page: 183 year: 1988 end-page: 190 ident: br0050 article-title: On ordered weighted averaging aggregation operators in multicriteria decisionmaking publication-title: IEEE Trans. Syst. Man Cybern. – start-page: 280 year: 2007 ident: 10.1016/j.fss.2022.01.003_br0020 article-title: Obtaining robust decisions under uncertainty by sensitivity analysis on OWA operator – volume: 54 start-page: 1006 issue: 4 year: 2008 ident: 10.1016/j.fss.2022.01.003_br0040 article-title: Fuzzy quantifiers in sensitivity analysis of OWA operator publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2007.11.012 – start-page: 134 year: 2001 ident: 10.1016/j.fss.2022.01.003_br0010 article-title: Sensitivity analysis for WOWA, OWA and WM operators – volume: 38 start-page: 547 issue: 2 year: 2008 ident: 10.1016/j.fss.2022.01.003_br0030 article-title: Sensitivity analysis of the OWA operator publication-title: IEEE Trans. Syst. Man Cybern., Part B, Cybern. doi: 10.1109/TSMCB.2007.912745 – year: 2014 ident: 10.1016/j.fss.2022.01.003_br0100 – volume: 18 start-page: 183 issue: 1 year: 1988 ident: 10.1016/j.fss.2022.01.003_br0050 article-title: On ordered weighted averaging aggregation operators in multicriteria decisionmaking publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.87068 – volume: 136 start-page: 203 issue: 2 year: 2003 ident: 10.1016/j.fss.2022.01.003_br0110 article-title: On obtaining minimal variability OWA operator weights publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(02)00267-1 – start-page: 681 year: 1988 ident: 10.1016/j.fss.2022.01.003_br0060 article-title: Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic – start-page: 1695 year: 1997 ident: 10.1016/j.fss.2022.01.003_br0070 article-title: On a class of monotonic extended OWA operators – volume: 17 start-page: 537 issue: 2 year: 2006 ident: 10.1016/j.fss.2022.01.003_br0090 article-title: A note on maximal entropy OWA operator weights publication-title: J. Korean Data Inf. Sci. Soc. – volume: 124 start-page: 53 issue: 1 year: 2001 ident: 10.1016/j.fss.2022.01.003_br0080 article-title: An analytic approach for obtaining maximal entropy OWA operator weights publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(01)00007-0 |
| SSID | ssj0001160 |
| Score | 2.4684522 |
| Snippet | The maximal entropy OWA operator (MEOWA) weights can be obtained by solving a nonlinear programming problem with a linear constraint for the level of orness.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 145 |
| SubjectTerms | Implicit function theorem Maximal entropy OWA operator weights Stability |
| Title | On stability of maximal entropy OWA operator weights |
| URI | https://dx.doi.org/10.1016/j.fss.2022.01.003 |
| Volume | 448 |
| WOSCitedRecordID | wos000862759400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6801 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001160 issn: 0165-0114 databaseCode: AIEXJ dateStart: 19950113 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwGLWg4wEeJq5iDFAeeKJKZceJ7TxWaBNDsCIxoG-Rb5E2bWm1ZKPbr-fzJWnFAAESL2llxWnr89U-_i7HCL2yNSOGMZxyWF_TvHb_OWxoanNhSCa1Ln244Mt7fngo5vPyYzz4r_XHCfCmEatVufyvUEMbgO1KZ_8C7uGh0ADvAXS4Auxw_SPgZ43zD_ic1xA9l6vjMwDCuXEXy6vx7Ot0vFhaH14ff_Oe0XaTou5fXF9fjVvbBfXmdkPS3M9UnuP6qaXtLn2cnYABwasgk8EaYGMbQvAb6dtr1nkatH4PzmLmbfQ6wIbVeVKLtSvsRjlM8E4ylwkYqkInNsyogmcpE8FjcWO-Dq6Dk0ndOun0LPMSqpiuF6chZfCTe3io_PX7muI22sp4UYoR2poe7M3fDesvIb42fPgyfSzbZ_X98EE_ZyMbDOPoPtqOW4NkGiB9gG7Z5iG692HQ1W0foXzWJAO4yaJOIrhJBDcBcJMe3CSC-xh93t87evM2jedepJrmuEutIRyrjDOmlIEFSeWZ5sDElZUUZ0oKJqQogN0Qo7mWhCqZq5wxjXVZk0LSJ2jULBr7FCWZVNDEa8NonVtaKiNr6iQb4WajqNxBuP_9lY6i8O5sktOqz_47qWDIKjdkFSZOSXYHvR66LIMiyu9uzvtBrSKlC1StAgv4dbdn_9ZtF91d2-pzNOrOL-wLdEdfdsft-ctoJ98BIKVq7A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+stability+of+maximal+entropy+OWA+operator+weights&rft.jtitle=Fuzzy+sets+and+systems&rft.au=Harmati%2C+Istv%C3%A1n+%C3%81.&rft.au=Full%C3%A9r%2C+Robert&rft.au=Felde%2C+Imre&rft.date=2022-11-05&rft.pub=Elsevier+B.V&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016%2Fj.fss.2022.01.003&rft.externalDocID=S0165011422000045 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0114&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0114&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0114&client=summon |