Analysis based on statistical distributions: A practical approach for stochastic solvers using discrete and continuous problems

This paper proposes an approach for the analysis and comparison of stochastic solvers based on the statistical distribution of their variables. The observed variables of the stochastic solvers are the runtime and number of function evaluations required to reach a (sub)-optimal solution. These variab...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 633; pp. 469 - 490
Main Authors: Herzog, Jana, Brest, Janez, Bošković, Borko
Format: Journal Article
Language:English
Published: Elsevier Inc 01.07.2023
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes an approach for the analysis and comparison of stochastic solvers based on the statistical distribution of their variables. The observed variables of the stochastic solvers are the runtime and number of function evaluations required to reach a (sub)-optimal solution. These variables were measured using a target approach. We extended the conventional approach, which usually predicts the average value of variables, by predicting their statistical distributions. If possible, we can predict, not only the average value, but also all the values of the observed variables according to the identified distribution and given probability. We can also predict the probability of reaching (sub)-optimal solutions according to the variable's values. The approach was empirically validated by comparing solvers for discrete and continuous problems. In our experiment, the differences between predicted and measured values of runtime, number of function evaluations and probability are 10% or less. This proves that the proposed approach is useful and can be used for the analysis and comparison of stochastic solvers. Although, the approach has some limitations, it can mitigate the issue of stochastic solvers being unable to provide (sub)-optimal solutions, and can be used to determine the stopping optimization criteria. •An approach to the comparison of stochastic solvers.•The predictive modeling based on optimal and sub optimal solutions.•The analysis of the distribution of runtime and number of function evaluations.•The predictive models based on distribution of solvers' variables are established.•The predictive models provide probability of reaching the optimal solutions.
AbstractList This paper proposes an approach for the analysis and comparison of stochastic solvers based on the statistical distribution of their variables. The observed variables of the stochastic solvers are the runtime and number of function evaluations required to reach a (sub)-optimal solution. These variables were measured using a target approach. We extended the conventional approach, which usually predicts the average value of variables, by predicting their statistical distributions. If possible, we can predict, not only the average value, but also all the values of the observed variables according to the identified distribution and given probability. We can also predict the probability of reaching (sub)-optimal solutions according to the variable's values. The approach was empirically validated by comparing solvers for discrete and continuous problems. In our experiment, the differences between predicted and measured values of runtime, number of function evaluations and probability are 10% or less. This proves that the proposed approach is useful and can be used for the analysis and comparison of stochastic solvers. Although, the approach has some limitations, it can mitigate the issue of stochastic solvers being unable to provide (sub)-optimal solutions, and can be used to determine the stopping optimization criteria. •An approach to the comparison of stochastic solvers.•The predictive modeling based on optimal and sub optimal solutions.•The analysis of the distribution of runtime and number of function evaluations.•The predictive models based on distribution of solvers' variables are established.•The predictive models provide probability of reaching the optimal solutions.
Author Bošković, Borko
Herzog, Jana
Brest, Janez
Author_xml – sequence: 1
  givenname: Jana
  orcidid: 0000-0001-5555-878X
  surname: Herzog
  fullname: Herzog, Jana
  email: jana.herzog1@um.si
– sequence: 2
  givenname: Janez
  orcidid: 0000-0001-5864-3533
  surname: Brest
  fullname: Brest, Janez
  email: janez.brest@um.si
– sequence: 3
  givenname: Borko
  surname: Bošković
  fullname: Bošković, Borko
  email: borko.boskovic@um.si
BookMark eNp9kE9LAzEQxYNUsK1-AG_5AluTdP_qqRT_geBFzyE7mbUp26RktoWe_OpmqScPwoMZmPk9eG_GJj54ZOxWioUUsrzbLpynhRJquRBJtbxgU1lXKitVIydsKoQSmVBFccVmRFshRF6V5ZR9r7zpT-SIt4bQ8uA5DWZwNDgwPbdpia49DC54uucrvo8Gziez38dgYMO7EBMTYGNGiFPojxiJH8j5r9EAIg7Ijbccgh-cP4QDJZ_Q9rija3bZmZ7w5nfO2efT48f6JXt7f35dr94yWOZiyLA20GBTtE0uy7JuW9OpKldgRJ4eGixyW8i8UzlUFpdVC9DZCkvVFlaqynbLOZNnX4iBKGKn99HtTDxpKfTYoN7q1KAeG9QiqZaJqf4w4MZuUopoXP8v-XAmMUU6OoyawKEHtC4iDNoG9w_9A8CKkh8
CitedBy_id crossref_primary_10_1016_j_swevo_2024_101623
crossref_primary_10_1109_TIA_2023_3294175
Cites_doi 10.1016/j.ins.2009.12.010
10.1007/s00500-010-0644-5
10.1016/j.ins.2014.06.009
10.2196/jmir.5870
10.1016/j.ins.2021.12.065
10.1023/A:1018958209290
10.1016/j.swevo.2011.02.002
10.1016/j.ins.2014.02.154
10.18637/jss.v028.i05
10.1080/00031305.1978.10479236
10.1016/j.ins.2019.03.049
10.1016/j.asoc.2017.02.024
10.1016/j.swevo.2020.100665
10.1016/j.conengprac.2021.105002
10.1007/s11633-007-0281-3
10.1016/j.artint.2013.10.003
10.1021/jp970984n
10.1016/j.ins.2018.04.072
10.1016/j.ins.2017.07.015
10.1109/TEVC.2021.3081167
10.1016/j.ins.2021.02.036
10.1198/000313001317098149
10.1016/j.swevo.2020.100710
10.1016/j.ins.2021.05.058
10.1016/j.asoc.2009.03.005
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ins.2023.03.081
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 490
ExternalDocumentID 10_1016_j_ins_2023_03_081
S0020025523003869
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c340t-e8ac9e95b941668bbaf2742ca04c349e54d514f24c7de37bccfd7e62b5d127df3
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957819800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:57:12 EST 2025
Sat Nov 29 06:54:28 EST 2025
Fri Feb 23 02:37:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Target approach
Stochastic algorithm analysis
Statistical distribution
Predictive model
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-e8ac9e95b941668bbaf2742ca04c349e54d514f24c7de37bccfd7e62b5d127df3
ORCID 0000-0001-5555-878X
0000-0001-5864-3533
OpenAccessLink https://dx.doi.org/10.1016/j.ins.2023.03.081
PageCount 22
ParticipantIDs crossref_primary_10_1016_j_ins_2023_03_081
crossref_citationtrail_10_1016_j_ins_2023_03_081
elsevier_sciencedirect_doi_10_1016_j_ins_2023_03_081
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Carrasco, García, Rueda, Das, Herrera (br0330) 2020; 54
Pendharkar, Rodger (br0460) 2000; 95
Derrac, García, Hui, Suganthan, Herrera (br0280) 2014; 289
Tanabe, Fukunaga (br0090) 2014
Brest, Maučec, Bošković (br0080) 2017
Wales, Doye (br0410) 1997; 101
Eftimov, Korošec, Koroušić Seljak (br0310) 2017; 417
Hayslett (br0390) 2014
Luo, Phung, Tran, Gupta, Rana, Karmakar, Shilton, Yearwood, Dimitrova, Ho, Venkatesh, Berk (br0180) 2016; 18
Kasuya (br0490) 2019
Janković, Doerr (br0270) 2019
Mai, Hong, Fu, Lin, Hao, Huang, Zhu (br0420) 2020; 57
McGill, Tukey, Larsen (br0450) 1978; 32
Borwein, Ferguson, Knauer (br0140) 2008; 352
Leyton-Brown, Nudelman, Shoham (br0240) 2002
Brest, Maučec, Bošković (br0100) 2016
LaTorre, Molina, Osaba, Poyatos, Del Ser, Herrera (br0210) 2021
Pétrowski, Ben-Hamida (br0050) 2017
Mattos, Bosch, Olsson (br0320) 2021; 25
Eftimov, Korošec (br0350) 2019; 489
Hu (br0190) 2021; 573
Gallardo, Cotta, Fernández (br0130) 2009; 9
Brest, Maučec (br0150) 2011; 15
Chiarandini, Goegebeur (br0250) 2010
Aubeck, Lenz, Mertes, Zylka, Pischinger (br0430) 2022; 120
Li, Tang, Omidvar, Yang, Qin, China (br0380) 2013; 7
Yu, Gen (br0020) 2010
Price, Storn, Lampinen (br0160) 2005
Bošković, Brest (br0470) 2018; 454–455
Arlinghaus (br0480) 1994
Collet, Rennard (br0010) 2008
Fink (br0230) 1998
Spall (br0040) 2005
Kuhn (br0200) 2008; 28
Hutter, Xu, Hoos, Leyton-Brown (br0220) 2014; 206
Valov, Petkovich, Guo, Fischmeister, Czarnecki (br0260) 2017
Eftimov, Popovski, Kocev, Korošec (br0360) 2020
Lenth (br0500) 2001; 55
Veček, Mernik, Črepinšek (br0370) 2014; 277
Doerr (br0070) 2020
Oliveto, He, Yao (br0060) 2007; 4
García, Fernández, Luengo, Herrera (br0290) 2010; 180
Yang, Xue, Yang, Yin, Qu, Li, Wu (br0170) 2021; 566
Derrac, García, Molina, Herrera (br0300) 2011; 1
Eftimov, Petelin, Hribar, Popovski, Škvorc, Korošec (br0340) 2020
Bošković, Brglez, Brest (br0120) 2017; 56
Buzdalov, Doerr, Doerr, Vinokurov (br0030) 2021
Li, Xiong, Shang (br0440) 2022; 588
Biswas, Saha, De, Cobb, Das, Jalaian (br0110) 2021
Hu (10.1016/j.ins.2023.03.081_br0190) 2021; 573
Derrac (10.1016/j.ins.2023.03.081_br0280) 2014; 289
Yang (10.1016/j.ins.2023.03.081_br0170) 2021; 566
Hayslett (10.1016/j.ins.2023.03.081_br0390) 2014
Janković (10.1016/j.ins.2023.03.081_br0270) 2019
Brest (10.1016/j.ins.2023.03.081_br0080) 2017
Wales (10.1016/j.ins.2023.03.081_br0410) 1997; 101
Li (10.1016/j.ins.2023.03.081_br0440) 2022; 588
Fink (10.1016/j.ins.2023.03.081_br0230) 1998
Yu (10.1016/j.ins.2023.03.081_br0020) 2010
Spall (10.1016/j.ins.2023.03.081_br0040) 2005
Li (10.1016/j.ins.2023.03.081_br0380) 2013; 7
Doerr (10.1016/j.ins.2023.03.081_br0070) 2020
Price (10.1016/j.ins.2023.03.081_br0160) 2005
Pendharkar (10.1016/j.ins.2023.03.081_br0460) 2000; 95
Arlinghaus (10.1016/j.ins.2023.03.081_br0480) 1994
Chiarandini (10.1016/j.ins.2023.03.081_br0250) 2010
Borwein (10.1016/j.ins.2023.03.081_br0140) 2008; 352
Veček (10.1016/j.ins.2023.03.081_br0370) 2014; 277
Leyton-Brown (10.1016/j.ins.2023.03.081_br0240) 2002
Eftimov (10.1016/j.ins.2023.03.081_br0350) 2019; 489
Gallardo (10.1016/j.ins.2023.03.081_br0130) 2009; 9
Brest (10.1016/j.ins.2023.03.081_br0150) 2011; 15
Mai (10.1016/j.ins.2023.03.081_br0420) 2020; 57
Pétrowski (10.1016/j.ins.2023.03.081_br0050) 2017
Carrasco (10.1016/j.ins.2023.03.081_br0330) 2020; 54
Bošković (10.1016/j.ins.2023.03.081_br0470) 2018; 454–455
Biswas (10.1016/j.ins.2023.03.081_br0110) 2021
Oliveto (10.1016/j.ins.2023.03.081_br0060) 2007; 4
Valov (10.1016/j.ins.2023.03.081_br0260) 2017
Eftimov (10.1016/j.ins.2023.03.081_br0310) 2017; 417
Mattos (10.1016/j.ins.2023.03.081_br0320) 2021; 25
Luo (10.1016/j.ins.2023.03.081_br0180) 2016; 18
Tanabe (10.1016/j.ins.2023.03.081_br0090) 2014
LaTorre (10.1016/j.ins.2023.03.081_br0210)
Eftimov (10.1016/j.ins.2023.03.081_br0340) 2020
Eftimov (10.1016/j.ins.2023.03.081_br0360) 2020
Brest (10.1016/j.ins.2023.03.081_br0100) 2016
Hutter (10.1016/j.ins.2023.03.081_br0220) 2014; 206
Collet (10.1016/j.ins.2023.03.081_br0010) 2008
Buzdalov (10.1016/j.ins.2023.03.081_br0030) 2021
Derrac (10.1016/j.ins.2023.03.081_br0300) 2011; 1
Lenth (10.1016/j.ins.2023.03.081_br0500) 2001; 55
McGill (10.1016/j.ins.2023.03.081_br0450) 1978; 32
Kuhn (10.1016/j.ins.2023.03.081_br0200) 2008; 28
Kasuya (10.1016/j.ins.2023.03.081_br0490) 2019
Bošković (10.1016/j.ins.2023.03.081_br0120) 2017; 56
Aubeck (10.1016/j.ins.2023.03.081_br0430) 2022; 120
García (10.1016/j.ins.2023.03.081_br0290) 2010; 180
References_xml – volume: 4
  start-page: 281
  year: 2007
  end-page: 293
  ident: br0060
  article-title: Time complexity of evolutionary algorithms for combinatorial optimization: a decade of results
  publication-title: Int. J. Autom. Comput.
– volume: 56
  start-page: 262
  year: 2017
  end-page: 285
  ident: br0120
  article-title: Low-autocorrelation binary sequences: on improved merit factors and runtime predictions to achieve them
  publication-title: Appl. Soft Comput.
– volume: 55
  start-page: 187
  year: 2001
  end-page: 193
  ident: br0500
  article-title: Some practical guidelines for effective sample size determination
  publication-title: Am. Stat.
– volume: 588
  start-page: 196
  year: 2022
  end-page: 213
  ident: br0440
  article-title: Adjusted stochastic gradient descent for latent factor analysis
  publication-title: Inf. Sci.
– volume: 101
  start-page: 5111
  year: 1997
  end-page: 5116
  ident: br0410
  article-title: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms
  publication-title: J. Phys. Chem.
– volume: 120
  year: 2022
  ident: br0430
  article-title: Generic stochastic particle filter algorithm for predictive energy optimization of a Plug-in Hybrid Electric Vehicle extended by a battery temperature control and implemented on a Hardware-in-the-Loop system
  publication-title: Control Eng. Pract.
– start-page: 1
  year: 2020
  end-page: 87
  ident: br0070
  article-title: Probabilistic tools for the analysis of randomized optimization heuristics
  publication-title: Theory of Evolutionary Computation
– volume: 180
  start-page: 2044
  year: 2010
  end-page: 2064
  ident: br0290
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci.
– start-page: 1311
  year: 2017
  end-page: 1318
  ident: br0080
  article-title: Single objective real-parameter optimization: algorithm jSO
  publication-title: 2017 IEEE Congress on Evolutionary Computation (CEC)
– start-page: 556
  year: 2002
  end-page: 572
  ident: br0240
  article-title: Learning the empirical hardness of optimization problems: the case of combinatorial auctions
  publication-title: International Conference on Principles and Practice of Constraint Programming
– volume: 9
  start-page: 1252
  year: 2009
  end-page: 1262
  ident: br0130
  article-title: Finding low autocorrelation binary sequences with memetic algorithms
  publication-title: Appl. Soft Comput.
– year: 2017
  ident: br0050
  article-title: Evolutionary Algorithms
– volume: 289
  start-page: 41
  year: 2014
  end-page: 58
  ident: br0280
  article-title: Analyzing convergence performance of evolutionary algorithms: a statistical approach
  publication-title: Inf. Sci.
– start-page: 2032
  year: 2019
  end-page: 2035
  ident: br0270
  article-title: Adaptive landscape analysis
  publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion
– volume: 454–455
  start-page: 178
  year: 2018
  end-page: 199
  ident: br0470
  article-title: Protein folding optimization using differential evolution extended with local search and component reinitialization
  publication-title: Inf. Sci.
– volume: 18
  start-page: e323
  year: 2016
  ident: br0180
  article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view
  publication-title: J. Med. Internet Res.
– year: 2014
  ident: br0390
  article-title: Statistics
– volume: 489
  start-page: 255
  year: 2019
  end-page: 273
  ident: br0350
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Inf. Sci.
– start-page: 1658
  year: 2014
  end-page: 1665
  ident: br0090
  article-title: Improving the search performance of SHADE using linear population size reduction
  publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC)
– volume: 57
  year: 2020
  ident: br0420
  article-title: Optimization of Lennard-Jones clusters by particle swarm optimization with quasi-physical strategy
  publication-title: Swarm Evol. Comput.
– start-page: 39
  year: 2017
  end-page: 50
  ident: br0260
  article-title: Transferring performance prediction models across different hardware platforms
  publication-title: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering
– volume: 206
  start-page: 79
  year: 2014
  end-page: 111
  ident: br0220
  article-title: Algorithm runtime prediction: methods & evaluation
  publication-title: Artif. Intell.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: br0300
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 25
  start-page: 1163
  year: 2021
  end-page: 1177
  ident: br0320
  article-title: Statistical models for the analysis of optimization algorithms with benchmark functions
  publication-title: IEEE Trans. Evol. Comput.
– volume: 54
  year: 2020
  ident: br0330
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
– start-page: 128
  year: 1998
  end-page: 136
  ident: br0230
  article-title: How to solve it automatically: selection among problem-solving methods
  publication-title: Proceedings of the Fourth International Conference on Artificial Intelligence Planning Systems
– volume: 7
  start-page: 8
  year: 2013
  ident: br0380
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
  publication-title: Gene
– start-page: 225
  year: 2010
  end-page: 264
  ident: br0250
  article-title: Mixed models for the analysis of optimization algorithms
  publication-title: Experimental Methods for the Analysis of Optimization Algorithms
– volume: 573
  start-page: 412
  year: 2021
  end-page: 432
  ident: br0190
  article-title: Three-way data analytics: preparing and analyzing data in threes
  publication-title: Inf. Sci.
– volume: 32
  start-page: 12
  year: 1978
  end-page: 16
  ident: br0450
  article-title: Variations of box plots
  publication-title: Am. Stat.
– start-page: 5
  year: 2020
  end-page: 6
  ident: br0340
  article-title: Deep statistics: more robust performance statistics for single-objective optimization benchmarking
  publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: br0200
  article-title: Building predictive models in R using the caret package
  publication-title: J. Stat. Softw.
– volume: 15
  start-page: 2157
  year: 2011
  end-page: 2174
  ident: br0150
  article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies
  publication-title: Soft Comput.
– year: 2019
  ident: br0490
  article-title: On the use of r and r Squared in Correlation and Regression
– start-page: 832
  year: 2021
  end-page: 840
  ident: br0110
  article-title: Improving differential evolution through Bayesian hyperparameter optimization
  publication-title: 2021 IEEE Congress on Evolutionary Computation (CEC)
– volume: 352
  start-page: 52
  year: 2008
  ident: br0140
  article-title: The merit factor problem
  publication-title: Lond. Math. Soc. Lect. Note Ser.
– start-page: 1
  year: 2021
  end-page: 32
  ident: br0030
  article-title: Fixed-target runtime analysis
  publication-title: Algorithmica
– year: 2005
  ident: br0160
  article-title: Differential Evolution: A Practical Approach to Global Optimization
  publication-title: Natural Computing Series
– volume: 95
  start-page: 251
  year: 2000
  end-page: 267
  ident: br0460
  article-title: Nonlinear programming and genetic search application for production scheduling in coal mines
  publication-title: Ann. Oper. Res.
– year: 2021
  ident: br0210
  article-title: A prescription of methodological guidelines for comparing bio-inspired optimization algorithms, swarm and evolutionary computation
– start-page: 1188
  year: 2016
  end-page: 1195
  ident: br0100
  article-title: iL-SHADE: improved L-SHADE algorithm for single objective real-parameter optimization
  publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC)
– volume: 417
  start-page: 186
  year: 2017
  end-page: 215
  ident: br0310
  article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics
  publication-title: Inf. Sci.
– year: 2010
  ident: br0020
  article-title: Introduction to Evolutionary Algorithms, Decision Engineering
– start-page: 1121
  year: 2008
  end-page: 1137
  ident: br0010
  article-title: Stochastic optimization algorithms
  publication-title: Intelligent Information Technologies: Concepts, Methodologies, Tools, and Applications
– volume: 566
  start-page: 347
  year: 2021
  end-page: 363
  ident: br0170
  article-title: A novel prediction model for the inbound passenger flow of urban rail transit
  publication-title: Inf. Sci.
– year: 2005
  ident: br0040
  article-title: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, vol. 65
– start-page: 193
  year: 2020
  end-page: 194
  ident: br0360
  article-title: Performance2vec: a step further in explainable stochastic optimization algorithm performance
  publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
– volume: 277
  start-page: 656
  year: 2014
  end-page: 679
  ident: br0370
  article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms
  publication-title: Inf. Sci.
– year: 1994
  ident: br0480
  article-title: Practical Handbook of Curve Fitting
– volume: 180
  start-page: 2044
  issue: 10
  year: 2010
  ident: 10.1016/j.ins.2023.03.081_br0290
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.12.010
– volume: 352
  start-page: 52
  year: 2008
  ident: 10.1016/j.ins.2023.03.081_br0140
  article-title: The merit factor problem
  publication-title: Lond. Math. Soc. Lect. Note Ser.
– volume: 15
  start-page: 2157
  year: 2011
  ident: 10.1016/j.ins.2023.03.081_br0150
  article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0644-5
– volume: 7
  start-page: 8
  issue: 33
  year: 2013
  ident: 10.1016/j.ins.2023.03.081_br0380
  article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization
  publication-title: Gene
– volume: 289
  start-page: 41
  year: 2014
  ident: 10.1016/j.ins.2023.03.081_br0280
  article-title: Analyzing convergence performance of evolutionary algorithms: a statistical approach
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.06.009
– volume: 18
  start-page: e323
  issue: 12
  year: 2016
  ident: 10.1016/j.ins.2023.03.081_br0180
  article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view
  publication-title: J. Med. Internet Res.
  doi: 10.2196/jmir.5870
– volume: 588
  start-page: 196
  year: 2022
  ident: 10.1016/j.ins.2023.03.081_br0440
  article-title: Adjusted stochastic gradient descent for latent factor analysis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.12.065
– start-page: 1188
  year: 2016
  ident: 10.1016/j.ins.2023.03.081_br0100
  article-title: iL-SHADE: improved L-SHADE algorithm for single objective real-parameter optimization
– volume: 95
  start-page: 251
  year: 2000
  ident: 10.1016/j.ins.2023.03.081_br0460
  article-title: Nonlinear programming and genetic search application for production scheduling in coal mines
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018958209290
– year: 2010
  ident: 10.1016/j.ins.2023.03.081_br0020
– start-page: 832
  year: 2021
  ident: 10.1016/j.ins.2023.03.081_br0110
  article-title: Improving differential evolution through Bayesian hyperparameter optimization
– start-page: 1121
  year: 2008
  ident: 10.1016/j.ins.2023.03.081_br0010
  article-title: Stochastic optimization algorithms
– start-page: 556
  year: 2002
  ident: 10.1016/j.ins.2023.03.081_br0240
  article-title: Learning the empirical hardness of optimization problems: the case of combinatorial auctions
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.ins.2023.03.081_br0300
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 277
  start-page: 656
  year: 2014
  ident: 10.1016/j.ins.2023.03.081_br0370
  article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.154
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 10.1016/j.ins.2023.03.081_br0200
  article-title: Building predictive models in R using the caret package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v028.i05
– volume: 32
  start-page: 12
  year: 1978
  ident: 10.1016/j.ins.2023.03.081_br0450
  article-title: Variations of box plots
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1978.10479236
– start-page: 193
  year: 2020
  ident: 10.1016/j.ins.2023.03.081_br0360
  article-title: Performance2vec: a step further in explainable stochastic optimization algorithm performance
– volume: 489
  start-page: 255
  year: 2019
  ident: 10.1016/j.ins.2023.03.081_br0350
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.03.049
– volume: 56
  start-page: 262
  year: 2017
  ident: 10.1016/j.ins.2023.03.081_br0120
  article-title: Low-autocorrelation binary sequences: on improved merit factors and runtime predictions to achieve them
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.02.024
– ident: 10.1016/j.ins.2023.03.081_br0210
– year: 2017
  ident: 10.1016/j.ins.2023.03.081_br0050
– volume: 54
  year: 2020
  ident: 10.1016/j.ins.2023.03.081_br0330
  article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100665
– volume: 120
  year: 2022
  ident: 10.1016/j.ins.2023.03.081_br0430
  article-title: Generic stochastic particle filter algorithm for predictive energy optimization of a Plug-in Hybrid Electric Vehicle extended by a battery temperature control and implemented on a Hardware-in-the-Loop system
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2021.105002
– start-page: 128
  year: 1998
  ident: 10.1016/j.ins.2023.03.081_br0230
  article-title: How to solve it automatically: selection among problem-solving methods
– year: 2014
  ident: 10.1016/j.ins.2023.03.081_br0390
– volume: 4
  start-page: 281
  issue: 3
  year: 2007
  ident: 10.1016/j.ins.2023.03.081_br0060
  article-title: Time complexity of evolutionary algorithms for combinatorial optimization: a decade of results
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-007-0281-3
– year: 2005
  ident: 10.1016/j.ins.2023.03.081_br0040
– start-page: 225
  year: 2010
  ident: 10.1016/j.ins.2023.03.081_br0250
  article-title: Mixed models for the analysis of optimization algorithms
– start-page: 2032
  year: 2019
  ident: 10.1016/j.ins.2023.03.081_br0270
  article-title: Adaptive landscape analysis
– volume: 206
  start-page: 79
  year: 2014
  ident: 10.1016/j.ins.2023.03.081_br0220
  article-title: Algorithm runtime prediction: methods & evaluation
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2013.10.003
– volume: 101
  start-page: 5111
  year: 1997
  ident: 10.1016/j.ins.2023.03.081_br0410
  article-title: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp970984n
– volume: 454–455
  start-page: 178
  year: 2018
  ident: 10.1016/j.ins.2023.03.081_br0470
  article-title: Protein folding optimization using differential evolution extended with local search and component reinitialization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.04.072
– start-page: 1311
  year: 2017
  ident: 10.1016/j.ins.2023.03.081_br0080
  article-title: Single objective real-parameter optimization: algorithm jSO
– year: 2005
  ident: 10.1016/j.ins.2023.03.081_br0160
  article-title: Differential Evolution: A Practical Approach to Global Optimization
– volume: 417
  start-page: 186
  year: 2017
  ident: 10.1016/j.ins.2023.03.081_br0310
  article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.015
– volume: 25
  start-page: 1163
  issue: 6
  year: 2021
  ident: 10.1016/j.ins.2023.03.081_br0320
  article-title: Statistical models for the analysis of optimization algorithms with benchmark functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3081167
– volume: 566
  start-page: 347
  year: 2021
  ident: 10.1016/j.ins.2023.03.081_br0170
  article-title: A novel prediction model for the inbound passenger flow of urban rail transit
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.02.036
– volume: 55
  start-page: 187
  year: 2001
  ident: 10.1016/j.ins.2023.03.081_br0500
  article-title: Some practical guidelines for effective sample size determination
  publication-title: Am. Stat.
  doi: 10.1198/000313001317098149
– volume: 57
  year: 2020
  ident: 10.1016/j.ins.2023.03.081_br0420
  article-title: Optimization of Lennard-Jones clusters by particle swarm optimization with quasi-physical strategy
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100710
– year: 2019
  ident: 10.1016/j.ins.2023.03.081_br0490
– start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2023.03.081_br0030
  article-title: Fixed-target runtime analysis
  publication-title: Algorithmica
– year: 1994
  ident: 10.1016/j.ins.2023.03.081_br0480
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2023.03.081_br0070
  article-title: Probabilistic tools for the analysis of randomized optimization heuristics
– start-page: 1658
  year: 2014
  ident: 10.1016/j.ins.2023.03.081_br0090
  article-title: Improving the search performance of SHADE using linear population size reduction
– volume: 573
  start-page: 412
  year: 2021
  ident: 10.1016/j.ins.2023.03.081_br0190
  article-title: Three-way data analytics: preparing and analyzing data in threes
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.05.058
– start-page: 5
  year: 2020
  ident: 10.1016/j.ins.2023.03.081_br0340
  article-title: Deep statistics: more robust performance statistics for single-objective optimization benchmarking
– start-page: 39
  year: 2017
  ident: 10.1016/j.ins.2023.03.081_br0260
  article-title: Transferring performance prediction models across different hardware platforms
– volume: 9
  start-page: 1252
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2023.03.081_br0130
  article-title: Finding low autocorrelation binary sequences with memetic algorithms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.03.005
SSID ssj0004766
Score 2.4306192
Snippet This paper proposes an approach for the analysis and comparison of stochastic solvers based on the statistical distribution of their variables. The observed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 469
SubjectTerms Predictive model
Statistical distribution
Stochastic algorithm analysis
Target approach
Title Analysis based on statistical distributions: A practical approach for stochastic solvers using discrete and continuous problems
URI https://dx.doi.org/10.1016/j.ins.2023.03.081
Volume 633
WOSCitedRecordID wos000957819800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEBRQWyjygXKgspTYThxzW1VFhUPFoUh7ixzbK2irpEq7q6oXfkr_KuNXNi0PARLSKlp54yTa-eJ5eL4ZhF6DkqKWMU1UoxThha2IMlIR1ggJmMkry5RvNiGOjqrZTH6aTG4SF2Z5Jtq2urqS5_9V1DAGwnbU2b8Q93BRGIDvIHQ4gtjh-EeCH8qMOAVl3GaAIw35esxhQ2bocXURaOmRKOWKBsQC4z73EKxC_UW5aXvwwC57Y2_hAwuOyNuDrR0pca7VxMIl0sbeNBdjezeynTzIorIdjPhD2193IR9YtaO4gA00FBi018Not7tf7E7z02751du_wgOz60-7cdyCsiHHNQbTEqHmVr6ns16Jc3OCegprciUoKWlo6pUW7ZKx0bLLQ7uXqMF5aED6g3IIcYoT8GhcnXbKfHXb0DDmTs1tt4XtvS1w0DJWlfIeWqeikLBsrk8_HMw-rqi3ImyHp-dOG-c-hfDOjX5u-ozMmePH6FH0Q_A04OcJmth2Az0cVafcQDuR04Lf4JEYcdQGT9G3hDTskYbhtxHS8C2kvcNTPOAMJ5xhuCpe4QxHnGGPM5xwhgFneIUznHD2DH1-f3C8f0hiPw-iGc8uia2UllYWjQQvoKyaRs1dooBWGYcTpC24AfN9TrkWxjLRaD03wpa0KUxOhZmz52it7Vq7ibDimWJG6iwzBVfayEKVeQ72nshdwUO6hbL0V9c6Frt3PVfO6pTVeFKDdGonnTqDT5VvobfDlPNQ6eV3J_Mkvzq-PcEErQFsv562_W_TXqAHqzfoJVq77Bd2B93XSxBp_ypC8jsCb71Y
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+based+on+statistical+distributions%3A+A+practical+approach+for+stochastic+solvers+using+discrete+and+continuous+problems&rft.jtitle=Information+sciences&rft.au=Herzog%2C+Jana&rft.au=Brest%2C+Janez&rft.au=Bo%C5%A1kovi%C4%87%2C+Borko&rft.date=2023-07-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=633&rft.spage=469&rft.epage=490&rft_id=info:doi/10.1016%2Fj.ins.2023.03.081&rft.externalDocID=S0020025523003869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon