Analysis based on statistical distributions: A practical approach for stochastic solvers using discrete and continuous problems
This paper proposes an approach for the analysis and comparison of stochastic solvers based on the statistical distribution of their variables. The observed variables of the stochastic solvers are the runtime and number of function evaluations required to reach a (sub)-optimal solution. These variab...
Saved in:
| Published in: | Information sciences Vol. 633; pp. 469 - 490 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.07.2023
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes an approach for the analysis and comparison of stochastic solvers based on the statistical distribution of their variables. The observed variables of the stochastic solvers are the runtime and number of function evaluations required to reach a (sub)-optimal solution. These variables were measured using a target approach. We extended the conventional approach, which usually predicts the average value of variables, by predicting their statistical distributions. If possible, we can predict, not only the average value, but also all the values of the observed variables according to the identified distribution and given probability. We can also predict the probability of reaching (sub)-optimal solutions according to the variable's values. The approach was empirically validated by comparing solvers for discrete and continuous problems. In our experiment, the differences between predicted and measured values of runtime, number of function evaluations and probability are 10% or less. This proves that the proposed approach is useful and can be used for the analysis and comparison of stochastic solvers. Although, the approach has some limitations, it can mitigate the issue of stochastic solvers being unable to provide (sub)-optimal solutions, and can be used to determine the stopping optimization criteria.
•An approach to the comparison of stochastic solvers.•The predictive modeling based on optimal and sub optimal solutions.•The analysis of the distribution of runtime and number of function evaluations.•The predictive models based on distribution of solvers' variables are established.•The predictive models provide probability of reaching the optimal solutions. |
|---|---|
| AbstractList | This paper proposes an approach for the analysis and comparison of stochastic solvers based on the statistical distribution of their variables. The observed variables of the stochastic solvers are the runtime and number of function evaluations required to reach a (sub)-optimal solution. These variables were measured using a target approach. We extended the conventional approach, which usually predicts the average value of variables, by predicting their statistical distributions. If possible, we can predict, not only the average value, but also all the values of the observed variables according to the identified distribution and given probability. We can also predict the probability of reaching (sub)-optimal solutions according to the variable's values. The approach was empirically validated by comparing solvers for discrete and continuous problems. In our experiment, the differences between predicted and measured values of runtime, number of function evaluations and probability are 10% or less. This proves that the proposed approach is useful and can be used for the analysis and comparison of stochastic solvers. Although, the approach has some limitations, it can mitigate the issue of stochastic solvers being unable to provide (sub)-optimal solutions, and can be used to determine the stopping optimization criteria.
•An approach to the comparison of stochastic solvers.•The predictive modeling based on optimal and sub optimal solutions.•The analysis of the distribution of runtime and number of function evaluations.•The predictive models based on distribution of solvers' variables are established.•The predictive models provide probability of reaching the optimal solutions. |
| Author | Bošković, Borko Herzog, Jana Brest, Janez |
| Author_xml | – sequence: 1 givenname: Jana orcidid: 0000-0001-5555-878X surname: Herzog fullname: Herzog, Jana email: jana.herzog1@um.si – sequence: 2 givenname: Janez orcidid: 0000-0001-5864-3533 surname: Brest fullname: Brest, Janez email: janez.brest@um.si – sequence: 3 givenname: Borko surname: Bošković fullname: Bošković, Borko email: borko.boskovic@um.si |
| BookMark | eNp9kE9LAzEQxYNUsK1-AG_5AluTdP_qqRT_geBFzyE7mbUp26RktoWe_OpmqScPwoMZmPk9eG_GJj54ZOxWioUUsrzbLpynhRJquRBJtbxgU1lXKitVIydsKoQSmVBFccVmRFshRF6V5ZR9r7zpT-SIt4bQ8uA5DWZwNDgwPbdpia49DC54uucrvo8Gziez38dgYMO7EBMTYGNGiFPojxiJH8j5r9EAIg7Ijbccgh-cP4QDJZ_Q9rija3bZmZ7w5nfO2efT48f6JXt7f35dr94yWOZiyLA20GBTtE0uy7JuW9OpKldgRJ4eGixyW8i8UzlUFpdVC9DZCkvVFlaqynbLOZNnX4iBKGKn99HtTDxpKfTYoN7q1KAeG9QiqZaJqf4w4MZuUopoXP8v-XAmMUU6OoyawKEHtC4iDNoG9w_9A8CKkh8 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2024_101623 crossref_primary_10_1109_TIA_2023_3294175 |
| Cites_doi | 10.1016/j.ins.2009.12.010 10.1007/s00500-010-0644-5 10.1016/j.ins.2014.06.009 10.2196/jmir.5870 10.1016/j.ins.2021.12.065 10.1023/A:1018958209290 10.1016/j.swevo.2011.02.002 10.1016/j.ins.2014.02.154 10.18637/jss.v028.i05 10.1080/00031305.1978.10479236 10.1016/j.ins.2019.03.049 10.1016/j.asoc.2017.02.024 10.1016/j.swevo.2020.100665 10.1016/j.conengprac.2021.105002 10.1007/s11633-007-0281-3 10.1016/j.artint.2013.10.003 10.1021/jp970984n 10.1016/j.ins.2018.04.072 10.1016/j.ins.2017.07.015 10.1109/TEVC.2021.3081167 10.1016/j.ins.2021.02.036 10.1198/000313001317098149 10.1016/j.swevo.2020.100710 10.1016/j.ins.2021.05.058 10.1016/j.asoc.2009.03.005 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) |
| Copyright_xml | – notice: 2023 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.ins.2023.03.081 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 490 |
| ExternalDocumentID | 10_1016_j_ins_2023_03_081 S0020025523003869 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c340t-e8ac9e95b941668bbaf2742ca04c349e54d514f24c7de37bccfd7e62b5d127df3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000957819800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 18 21:57:12 EST 2025 Sat Nov 29 06:54:28 EST 2025 Fri Feb 23 02:37:25 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Target approach Stochastic algorithm analysis Statistical distribution Predictive model |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-e8ac9e95b941668bbaf2742ca04c349e54d514f24c7de37bccfd7e62b5d127df3 |
| ORCID | 0000-0001-5555-878X 0000-0001-5864-3533 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.ins.2023.03.081 |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_1016_j_ins_2023_03_081 crossref_citationtrail_10_1016_j_ins_2023_03_081 elsevier_sciencedirect_doi_10_1016_j_ins_2023_03_081 |
| PublicationCentury | 2000 |
| PublicationDate | July 2023 2023-07-00 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2023 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Carrasco, García, Rueda, Das, Herrera (br0330) 2020; 54 Pendharkar, Rodger (br0460) 2000; 95 Derrac, García, Hui, Suganthan, Herrera (br0280) 2014; 289 Tanabe, Fukunaga (br0090) 2014 Brest, Maučec, Bošković (br0080) 2017 Wales, Doye (br0410) 1997; 101 Eftimov, Korošec, Koroušić Seljak (br0310) 2017; 417 Hayslett (br0390) 2014 Luo, Phung, Tran, Gupta, Rana, Karmakar, Shilton, Yearwood, Dimitrova, Ho, Venkatesh, Berk (br0180) 2016; 18 Kasuya (br0490) 2019 Janković, Doerr (br0270) 2019 Mai, Hong, Fu, Lin, Hao, Huang, Zhu (br0420) 2020; 57 McGill, Tukey, Larsen (br0450) 1978; 32 Borwein, Ferguson, Knauer (br0140) 2008; 352 Leyton-Brown, Nudelman, Shoham (br0240) 2002 Brest, Maučec, Bošković (br0100) 2016 LaTorre, Molina, Osaba, Poyatos, Del Ser, Herrera (br0210) 2021 Pétrowski, Ben-Hamida (br0050) 2017 Mattos, Bosch, Olsson (br0320) 2021; 25 Eftimov, Korošec (br0350) 2019; 489 Hu (br0190) 2021; 573 Gallardo, Cotta, Fernández (br0130) 2009; 9 Brest, Maučec (br0150) 2011; 15 Chiarandini, Goegebeur (br0250) 2010 Aubeck, Lenz, Mertes, Zylka, Pischinger (br0430) 2022; 120 Li, Tang, Omidvar, Yang, Qin, China (br0380) 2013; 7 Yu, Gen (br0020) 2010 Price, Storn, Lampinen (br0160) 2005 Bošković, Brest (br0470) 2018; 454–455 Arlinghaus (br0480) 1994 Collet, Rennard (br0010) 2008 Fink (br0230) 1998 Spall (br0040) 2005 Kuhn (br0200) 2008; 28 Hutter, Xu, Hoos, Leyton-Brown (br0220) 2014; 206 Valov, Petkovich, Guo, Fischmeister, Czarnecki (br0260) 2017 Eftimov, Popovski, Kocev, Korošec (br0360) 2020 Lenth (br0500) 2001; 55 Veček, Mernik, Črepinšek (br0370) 2014; 277 Doerr (br0070) 2020 Oliveto, He, Yao (br0060) 2007; 4 García, Fernández, Luengo, Herrera (br0290) 2010; 180 Yang, Xue, Yang, Yin, Qu, Li, Wu (br0170) 2021; 566 Derrac, García, Molina, Herrera (br0300) 2011; 1 Eftimov, Petelin, Hribar, Popovski, Škvorc, Korošec (br0340) 2020 Bošković, Brglez, Brest (br0120) 2017; 56 Buzdalov, Doerr, Doerr, Vinokurov (br0030) 2021 Li, Xiong, Shang (br0440) 2022; 588 Biswas, Saha, De, Cobb, Das, Jalaian (br0110) 2021 Hu (10.1016/j.ins.2023.03.081_br0190) 2021; 573 Derrac (10.1016/j.ins.2023.03.081_br0280) 2014; 289 Yang (10.1016/j.ins.2023.03.081_br0170) 2021; 566 Hayslett (10.1016/j.ins.2023.03.081_br0390) 2014 Janković (10.1016/j.ins.2023.03.081_br0270) 2019 Brest (10.1016/j.ins.2023.03.081_br0080) 2017 Wales (10.1016/j.ins.2023.03.081_br0410) 1997; 101 Li (10.1016/j.ins.2023.03.081_br0440) 2022; 588 Fink (10.1016/j.ins.2023.03.081_br0230) 1998 Yu (10.1016/j.ins.2023.03.081_br0020) 2010 Spall (10.1016/j.ins.2023.03.081_br0040) 2005 Li (10.1016/j.ins.2023.03.081_br0380) 2013; 7 Doerr (10.1016/j.ins.2023.03.081_br0070) 2020 Price (10.1016/j.ins.2023.03.081_br0160) 2005 Pendharkar (10.1016/j.ins.2023.03.081_br0460) 2000; 95 Arlinghaus (10.1016/j.ins.2023.03.081_br0480) 1994 Chiarandini (10.1016/j.ins.2023.03.081_br0250) 2010 Borwein (10.1016/j.ins.2023.03.081_br0140) 2008; 352 Veček (10.1016/j.ins.2023.03.081_br0370) 2014; 277 Leyton-Brown (10.1016/j.ins.2023.03.081_br0240) 2002 Eftimov (10.1016/j.ins.2023.03.081_br0350) 2019; 489 Gallardo (10.1016/j.ins.2023.03.081_br0130) 2009; 9 Brest (10.1016/j.ins.2023.03.081_br0150) 2011; 15 Mai (10.1016/j.ins.2023.03.081_br0420) 2020; 57 Pétrowski (10.1016/j.ins.2023.03.081_br0050) 2017 Carrasco (10.1016/j.ins.2023.03.081_br0330) 2020; 54 Bošković (10.1016/j.ins.2023.03.081_br0470) 2018; 454–455 Biswas (10.1016/j.ins.2023.03.081_br0110) 2021 Oliveto (10.1016/j.ins.2023.03.081_br0060) 2007; 4 Valov (10.1016/j.ins.2023.03.081_br0260) 2017 Eftimov (10.1016/j.ins.2023.03.081_br0310) 2017; 417 Mattos (10.1016/j.ins.2023.03.081_br0320) 2021; 25 Luo (10.1016/j.ins.2023.03.081_br0180) 2016; 18 Tanabe (10.1016/j.ins.2023.03.081_br0090) 2014 LaTorre (10.1016/j.ins.2023.03.081_br0210) Eftimov (10.1016/j.ins.2023.03.081_br0340) 2020 Eftimov (10.1016/j.ins.2023.03.081_br0360) 2020 Brest (10.1016/j.ins.2023.03.081_br0100) 2016 Hutter (10.1016/j.ins.2023.03.081_br0220) 2014; 206 Collet (10.1016/j.ins.2023.03.081_br0010) 2008 Buzdalov (10.1016/j.ins.2023.03.081_br0030) 2021 Derrac (10.1016/j.ins.2023.03.081_br0300) 2011; 1 Lenth (10.1016/j.ins.2023.03.081_br0500) 2001; 55 McGill (10.1016/j.ins.2023.03.081_br0450) 1978; 32 Kuhn (10.1016/j.ins.2023.03.081_br0200) 2008; 28 Kasuya (10.1016/j.ins.2023.03.081_br0490) 2019 Bošković (10.1016/j.ins.2023.03.081_br0120) 2017; 56 Aubeck (10.1016/j.ins.2023.03.081_br0430) 2022; 120 García (10.1016/j.ins.2023.03.081_br0290) 2010; 180 |
| References_xml | – volume: 4 start-page: 281 year: 2007 end-page: 293 ident: br0060 article-title: Time complexity of evolutionary algorithms for combinatorial optimization: a decade of results publication-title: Int. J. Autom. Comput. – volume: 56 start-page: 262 year: 2017 end-page: 285 ident: br0120 article-title: Low-autocorrelation binary sequences: on improved merit factors and runtime predictions to achieve them publication-title: Appl. Soft Comput. – volume: 55 start-page: 187 year: 2001 end-page: 193 ident: br0500 article-title: Some practical guidelines for effective sample size determination publication-title: Am. Stat. – volume: 588 start-page: 196 year: 2022 end-page: 213 ident: br0440 article-title: Adjusted stochastic gradient descent for latent factor analysis publication-title: Inf. Sci. – volume: 101 start-page: 5111 year: 1997 end-page: 5116 ident: br0410 article-title: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms publication-title: J. Phys. Chem. – volume: 120 year: 2022 ident: br0430 article-title: Generic stochastic particle filter algorithm for predictive energy optimization of a Plug-in Hybrid Electric Vehicle extended by a battery temperature control and implemented on a Hardware-in-the-Loop system publication-title: Control Eng. Pract. – start-page: 1 year: 2020 end-page: 87 ident: br0070 article-title: Probabilistic tools for the analysis of randomized optimization heuristics publication-title: Theory of Evolutionary Computation – volume: 180 start-page: 2044 year: 2010 end-page: 2064 ident: br0290 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. – start-page: 1311 year: 2017 end-page: 1318 ident: br0080 article-title: Single objective real-parameter optimization: algorithm jSO publication-title: 2017 IEEE Congress on Evolutionary Computation (CEC) – start-page: 556 year: 2002 end-page: 572 ident: br0240 article-title: Learning the empirical hardness of optimization problems: the case of combinatorial auctions publication-title: International Conference on Principles and Practice of Constraint Programming – volume: 9 start-page: 1252 year: 2009 end-page: 1262 ident: br0130 article-title: Finding low autocorrelation binary sequences with memetic algorithms publication-title: Appl. Soft Comput. – year: 2017 ident: br0050 article-title: Evolutionary Algorithms – volume: 289 start-page: 41 year: 2014 end-page: 58 ident: br0280 article-title: Analyzing convergence performance of evolutionary algorithms: a statistical approach publication-title: Inf. Sci. – start-page: 2032 year: 2019 end-page: 2035 ident: br0270 article-title: Adaptive landscape analysis publication-title: Proceedings of the Genetic and Evolutionary Computation Conference Companion – volume: 454–455 start-page: 178 year: 2018 end-page: 199 ident: br0470 article-title: Protein folding optimization using differential evolution extended with local search and component reinitialization publication-title: Inf. Sci. – volume: 18 start-page: e323 year: 2016 ident: br0180 article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view publication-title: J. Med. Internet Res. – year: 2014 ident: br0390 article-title: Statistics – volume: 489 start-page: 255 year: 2019 end-page: 273 ident: br0350 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Inf. Sci. – start-page: 1658 year: 2014 end-page: 1665 ident: br0090 article-title: Improving the search performance of SHADE using linear population size reduction publication-title: 2014 IEEE Congress on Evolutionary Computation (CEC) – volume: 57 year: 2020 ident: br0420 article-title: Optimization of Lennard-Jones clusters by particle swarm optimization with quasi-physical strategy publication-title: Swarm Evol. Comput. – start-page: 39 year: 2017 end-page: 50 ident: br0260 article-title: Transferring performance prediction models across different hardware platforms publication-title: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering – volume: 206 start-page: 79 year: 2014 end-page: 111 ident: br0220 article-title: Algorithm runtime prediction: methods & evaluation publication-title: Artif. Intell. – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: br0300 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. – volume: 25 start-page: 1163 year: 2021 end-page: 1177 ident: br0320 article-title: Statistical models for the analysis of optimization algorithms with benchmark functions publication-title: IEEE Trans. Evol. Comput. – volume: 54 year: 2020 ident: br0330 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review publication-title: Swarm Evol. Comput. – start-page: 128 year: 1998 end-page: 136 ident: br0230 article-title: How to solve it automatically: selection among problem-solving methods publication-title: Proceedings of the Fourth International Conference on Artificial Intelligence Planning Systems – volume: 7 start-page: 8 year: 2013 ident: br0380 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization publication-title: Gene – start-page: 225 year: 2010 end-page: 264 ident: br0250 article-title: Mixed models for the analysis of optimization algorithms publication-title: Experimental Methods for the Analysis of Optimization Algorithms – volume: 573 start-page: 412 year: 2021 end-page: 432 ident: br0190 article-title: Three-way data analytics: preparing and analyzing data in threes publication-title: Inf. Sci. – volume: 32 start-page: 12 year: 1978 end-page: 16 ident: br0450 article-title: Variations of box plots publication-title: Am. Stat. – start-page: 5 year: 2020 end-page: 6 ident: br0340 article-title: Deep statistics: more robust performance statistics for single-objective optimization benchmarking publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion – volume: 28 start-page: 1 year: 2008 end-page: 26 ident: br0200 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. – volume: 15 start-page: 2157 year: 2011 end-page: 2174 ident: br0150 article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies publication-title: Soft Comput. – year: 2019 ident: br0490 article-title: On the use of r and r Squared in Correlation and Regression – start-page: 832 year: 2021 end-page: 840 ident: br0110 article-title: Improving differential evolution through Bayesian hyperparameter optimization publication-title: 2021 IEEE Congress on Evolutionary Computation (CEC) – volume: 352 start-page: 52 year: 2008 ident: br0140 article-title: The merit factor problem publication-title: Lond. Math. Soc. Lect. Note Ser. – start-page: 1 year: 2021 end-page: 32 ident: br0030 article-title: Fixed-target runtime analysis publication-title: Algorithmica – year: 2005 ident: br0160 article-title: Differential Evolution: A Practical Approach to Global Optimization publication-title: Natural Computing Series – volume: 95 start-page: 251 year: 2000 end-page: 267 ident: br0460 article-title: Nonlinear programming and genetic search application for production scheduling in coal mines publication-title: Ann. Oper. Res. – year: 2021 ident: br0210 article-title: A prescription of methodological guidelines for comparing bio-inspired optimization algorithms, swarm and evolutionary computation – start-page: 1188 year: 2016 end-page: 1195 ident: br0100 article-title: iL-SHADE: improved L-SHADE algorithm for single objective real-parameter optimization publication-title: 2016 IEEE Congress on Evolutionary Computation (CEC) – volume: 417 start-page: 186 year: 2017 end-page: 215 ident: br0310 article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics publication-title: Inf. Sci. – year: 2010 ident: br0020 article-title: Introduction to Evolutionary Algorithms, Decision Engineering – start-page: 1121 year: 2008 end-page: 1137 ident: br0010 article-title: Stochastic optimization algorithms publication-title: Intelligent Information Technologies: Concepts, Methodologies, Tools, and Applications – volume: 566 start-page: 347 year: 2021 end-page: 363 ident: br0170 article-title: A novel prediction model for the inbound passenger flow of urban rail transit publication-title: Inf. Sci. – year: 2005 ident: br0040 article-title: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control, vol. 65 – start-page: 193 year: 2020 end-page: 194 ident: br0360 article-title: Performance2vec: a step further in explainable stochastic optimization algorithm performance publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion – volume: 277 start-page: 656 year: 2014 end-page: 679 ident: br0370 article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms publication-title: Inf. Sci. – year: 1994 ident: br0480 article-title: Practical Handbook of Curve Fitting – volume: 180 start-page: 2044 issue: 10 year: 2010 ident: 10.1016/j.ins.2023.03.081_br0290 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.12.010 – volume: 352 start-page: 52 year: 2008 ident: 10.1016/j.ins.2023.03.081_br0140 article-title: The merit factor problem publication-title: Lond. Math. Soc. Lect. Note Ser. – volume: 15 start-page: 2157 year: 2011 ident: 10.1016/j.ins.2023.03.081_br0150 article-title: Self-adaptive differential evolution algorithm using population size reduction and three strategies publication-title: Soft Comput. doi: 10.1007/s00500-010-0644-5 – volume: 7 start-page: 8 issue: 33 year: 2013 ident: 10.1016/j.ins.2023.03.081_br0380 article-title: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization publication-title: Gene – volume: 289 start-page: 41 year: 2014 ident: 10.1016/j.ins.2023.03.081_br0280 article-title: Analyzing convergence performance of evolutionary algorithms: a statistical approach publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.06.009 – volume: 18 start-page: e323 issue: 12 year: 2016 ident: 10.1016/j.ins.2023.03.081_br0180 article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view publication-title: J. Med. Internet Res. doi: 10.2196/jmir.5870 – volume: 588 start-page: 196 year: 2022 ident: 10.1016/j.ins.2023.03.081_br0440 article-title: Adjusted stochastic gradient descent for latent factor analysis publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.12.065 – start-page: 1188 year: 2016 ident: 10.1016/j.ins.2023.03.081_br0100 article-title: iL-SHADE: improved L-SHADE algorithm for single objective real-parameter optimization – volume: 95 start-page: 251 year: 2000 ident: 10.1016/j.ins.2023.03.081_br0460 article-title: Nonlinear programming and genetic search application for production scheduling in coal mines publication-title: Ann. Oper. Res. doi: 10.1023/A:1018958209290 – year: 2010 ident: 10.1016/j.ins.2023.03.081_br0020 – start-page: 832 year: 2021 ident: 10.1016/j.ins.2023.03.081_br0110 article-title: Improving differential evolution through Bayesian hyperparameter optimization – start-page: 1121 year: 2008 ident: 10.1016/j.ins.2023.03.081_br0010 article-title: Stochastic optimization algorithms – start-page: 556 year: 2002 ident: 10.1016/j.ins.2023.03.081_br0240 article-title: Learning the empirical hardness of optimization problems: the case of combinatorial auctions – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.ins.2023.03.081_br0300 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 277 start-page: 656 year: 2014 ident: 10.1016/j.ins.2023.03.081_br0370 article-title: A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.154 – volume: 28 start-page: 1 issue: 5 year: 2008 ident: 10.1016/j.ins.2023.03.081_br0200 article-title: Building predictive models in R using the caret package publication-title: J. Stat. Softw. doi: 10.18637/jss.v028.i05 – volume: 32 start-page: 12 year: 1978 ident: 10.1016/j.ins.2023.03.081_br0450 article-title: Variations of box plots publication-title: Am. Stat. doi: 10.1080/00031305.1978.10479236 – start-page: 193 year: 2020 ident: 10.1016/j.ins.2023.03.081_br0360 article-title: Performance2vec: a step further in explainable stochastic optimization algorithm performance – volume: 489 start-page: 255 year: 2019 ident: 10.1016/j.ins.2023.03.081_br0350 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.03.049 – volume: 56 start-page: 262 year: 2017 ident: 10.1016/j.ins.2023.03.081_br0120 article-title: Low-autocorrelation binary sequences: on improved merit factors and runtime predictions to achieve them publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.02.024 – ident: 10.1016/j.ins.2023.03.081_br0210 – year: 2017 ident: 10.1016/j.ins.2023.03.081_br0050 – volume: 54 year: 2020 ident: 10.1016/j.ins.2023.03.081_br0330 article-title: Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100665 – volume: 120 year: 2022 ident: 10.1016/j.ins.2023.03.081_br0430 article-title: Generic stochastic particle filter algorithm for predictive energy optimization of a Plug-in Hybrid Electric Vehicle extended by a battery temperature control and implemented on a Hardware-in-the-Loop system publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2021.105002 – start-page: 128 year: 1998 ident: 10.1016/j.ins.2023.03.081_br0230 article-title: How to solve it automatically: selection among problem-solving methods – year: 2014 ident: 10.1016/j.ins.2023.03.081_br0390 – volume: 4 start-page: 281 issue: 3 year: 2007 ident: 10.1016/j.ins.2023.03.081_br0060 article-title: Time complexity of evolutionary algorithms for combinatorial optimization: a decade of results publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-007-0281-3 – year: 2005 ident: 10.1016/j.ins.2023.03.081_br0040 – start-page: 225 year: 2010 ident: 10.1016/j.ins.2023.03.081_br0250 article-title: Mixed models for the analysis of optimization algorithms – start-page: 2032 year: 2019 ident: 10.1016/j.ins.2023.03.081_br0270 article-title: Adaptive landscape analysis – volume: 206 start-page: 79 year: 2014 ident: 10.1016/j.ins.2023.03.081_br0220 article-title: Algorithm runtime prediction: methods & evaluation publication-title: Artif. Intell. doi: 10.1016/j.artint.2013.10.003 – volume: 101 start-page: 5111 year: 1997 ident: 10.1016/j.ins.2023.03.081_br0410 article-title: Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms publication-title: J. Phys. Chem. doi: 10.1021/jp970984n – volume: 454–455 start-page: 178 year: 2018 ident: 10.1016/j.ins.2023.03.081_br0470 article-title: Protein folding optimization using differential evolution extended with local search and component reinitialization publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.04.072 – start-page: 1311 year: 2017 ident: 10.1016/j.ins.2023.03.081_br0080 article-title: Single objective real-parameter optimization: algorithm jSO – year: 2005 ident: 10.1016/j.ins.2023.03.081_br0160 article-title: Differential Evolution: A Practical Approach to Global Optimization – volume: 417 start-page: 186 year: 2017 ident: 10.1016/j.ins.2023.03.081_br0310 article-title: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.015 – volume: 25 start-page: 1163 issue: 6 year: 2021 ident: 10.1016/j.ins.2023.03.081_br0320 article-title: Statistical models for the analysis of optimization algorithms with benchmark functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3081167 – volume: 566 start-page: 347 year: 2021 ident: 10.1016/j.ins.2023.03.081_br0170 article-title: A novel prediction model for the inbound passenger flow of urban rail transit publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.02.036 – volume: 55 start-page: 187 year: 2001 ident: 10.1016/j.ins.2023.03.081_br0500 article-title: Some practical guidelines for effective sample size determination publication-title: Am. Stat. doi: 10.1198/000313001317098149 – volume: 57 year: 2020 ident: 10.1016/j.ins.2023.03.081_br0420 article-title: Optimization of Lennard-Jones clusters by particle swarm optimization with quasi-physical strategy publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100710 – year: 2019 ident: 10.1016/j.ins.2023.03.081_br0490 – start-page: 1 year: 2021 ident: 10.1016/j.ins.2023.03.081_br0030 article-title: Fixed-target runtime analysis publication-title: Algorithmica – year: 1994 ident: 10.1016/j.ins.2023.03.081_br0480 – start-page: 1 year: 2020 ident: 10.1016/j.ins.2023.03.081_br0070 article-title: Probabilistic tools for the analysis of randomized optimization heuristics – start-page: 1658 year: 2014 ident: 10.1016/j.ins.2023.03.081_br0090 article-title: Improving the search performance of SHADE using linear population size reduction – volume: 573 start-page: 412 year: 2021 ident: 10.1016/j.ins.2023.03.081_br0190 article-title: Three-way data analytics: preparing and analyzing data in threes publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.05.058 – start-page: 5 year: 2020 ident: 10.1016/j.ins.2023.03.081_br0340 article-title: Deep statistics: more robust performance statistics for single-objective optimization benchmarking – start-page: 39 year: 2017 ident: 10.1016/j.ins.2023.03.081_br0260 article-title: Transferring performance prediction models across different hardware platforms – volume: 9 start-page: 1252 issue: 4 year: 2009 ident: 10.1016/j.ins.2023.03.081_br0130 article-title: Finding low autocorrelation binary sequences with memetic algorithms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.03.005 |
| SSID | ssj0004766 |
| Score | 2.4306192 |
| Snippet | This paper proposes an approach for the analysis and comparison of stochastic solvers based on the statistical distribution of their variables. The observed... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 469 |
| SubjectTerms | Predictive model Statistical distribution Stochastic algorithm analysis Target approach |
| Title | Analysis based on statistical distributions: A practical approach for stochastic solvers using discrete and continuous problems |
| URI | https://dx.doi.org/10.1016/j.ins.2023.03.081 |
| Volume | 633 |
| WOSCitedRecordID | wos000957819800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEBRQWyjygXKgspTYThxzW1VFhUPFoUh7ixzbK2irpEq7q6oXfkr_KuNXNi0PARLSKlp54yTa-eJ5eL4ZhF6DkqKWMU1UoxThha2IMlIR1ggJmMkry5RvNiGOjqrZTH6aTG4SF2Z5Jtq2urqS5_9V1DAGwnbU2b8Q93BRGIDvIHQ4gtjh-EeCH8qMOAVl3GaAIw35esxhQ2bocXURaOmRKOWKBsQC4z73EKxC_UW5aXvwwC57Y2_hAwuOyNuDrR0pca7VxMIl0sbeNBdjezeynTzIorIdjPhD2193IR9YtaO4gA00FBi018Not7tf7E7z02751du_wgOz60-7cdyCsiHHNQbTEqHmVr6ns16Jc3OCegprciUoKWlo6pUW7ZKx0bLLQ7uXqMF5aED6g3IIcYoT8GhcnXbKfHXb0DDmTs1tt4XtvS1w0DJWlfIeWqeikLBsrk8_HMw-rqi3ImyHp-dOG-c-hfDOjX5u-ozMmePH6FH0Q_A04OcJmth2Az0cVafcQDuR04Lf4JEYcdQGT9G3hDTskYbhtxHS8C2kvcNTPOAMJ5xhuCpe4QxHnGGPM5xwhgFneIUznHD2DH1-f3C8f0hiPw-iGc8uia2UllYWjQQvoKyaRs1dooBWGYcTpC24AfN9TrkWxjLRaD03wpa0KUxOhZmz52it7Vq7ibDimWJG6iwzBVfayEKVeQ72nshdwUO6hbL0V9c6Frt3PVfO6pTVeFKDdGonnTqDT5VvobfDlPNQ6eV3J_Mkvzq-PcEErQFsv562_W_TXqAHqzfoJVq77Bd2B93XSxBp_ypC8jsCb71Y |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+based+on+statistical+distributions%3A+A+practical+approach+for+stochastic+solvers+using+discrete+and+continuous+problems&rft.jtitle=Information+sciences&rft.au=Herzog%2C+Jana&rft.au=Brest%2C+Janez&rft.au=Bo%C5%A1kovi%C4%87%2C+Borko&rft.date=2023-07-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=633&rft.spage=469&rft.epage=490&rft_id=info:doi/10.1016%2Fj.ins.2023.03.081&rft.externalDocID=S0020025523003869 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |