DLP 3D printing of alumina catalyst architectures: Design, kinetics and modeling of structure effects on catalyst performance

[Display omitted] •Periodic alumina catalyst structures were designed and printed with DLP printing technology.•The catalyst performance was demonstrated in the ethanol dehydration to diethyl ether.•A mathematical model, including relevant geometrical features, was derived and solved numerically.•Th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chemical engineering journal (Lausanne, Switzerland : 1996) Ročník 501; s. 157691
Hlavní autoři: Mastroianni, Luca, Jesus Medina Ferrer, Ananias De, De Domenico, Anna Maria, Eränen, Kari, Serio, Martino Di, Murzin, Dmitry, Russo, Vincenzo, Salmi, Tapio
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2024
Témata:
ISSN:1385-8947
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •Periodic alumina catalyst structures were designed and printed with DLP printing technology.•The catalyst performance was demonstrated in the ethanol dehydration to diethyl ether.•A mathematical model, including relevant geometrical features, was derived and solved numerically.•The model gave a successful description of the experimental data. The impact of the 3D structural design on the catalytic performance was investigated in this work. Four catalyst architectures (squared honeycomb, Schwartz P, face centered cubic and gyroid), made of alumina, were designed and printed with the Digital Light Processing (DLP) printing technology. The obtained shaped catalysts were loaded in a tubular reactor and their activities were evaluated in continuous ethanol dehydration to diethyl ether. The kinetic experiments revealed that both the conversion per unit of the reactor volume and the specific activity were highly affected by the selected design of the catalyst geometry. An advanced 1-D heterogeneous mathematical model employing geometrical features of the catalyst structures was proposed to describe the experimental data. The model included local variations of contact perimeters and cross-section areas to describe the periodic architectures. The assumption of plug flow pattern in the catalyst channels was revealed to be inadequate in predicting the structure effects, thus axial dispersion effects were included to obtain a successful and statistically significant description of the experimental observations. The proposed approach forms a solid basis to describe chemical processes operated with 3D printed catalyst structures.
AbstractList [Display omitted] •Periodic alumina catalyst structures were designed and printed with DLP printing technology.•The catalyst performance was demonstrated in the ethanol dehydration to diethyl ether.•A mathematical model, including relevant geometrical features, was derived and solved numerically.•The model gave a successful description of the experimental data. The impact of the 3D structural design on the catalytic performance was investigated in this work. Four catalyst architectures (squared honeycomb, Schwartz P, face centered cubic and gyroid), made of alumina, were designed and printed with the Digital Light Processing (DLP) printing technology. The obtained shaped catalysts were loaded in a tubular reactor and their activities were evaluated in continuous ethanol dehydration to diethyl ether. The kinetic experiments revealed that both the conversion per unit of the reactor volume and the specific activity were highly affected by the selected design of the catalyst geometry. An advanced 1-D heterogeneous mathematical model employing geometrical features of the catalyst structures was proposed to describe the experimental data. The model included local variations of contact perimeters and cross-section areas to describe the periodic architectures. The assumption of plug flow pattern in the catalyst channels was revealed to be inadequate in predicting the structure effects, thus axial dispersion effects were included to obtain a successful and statistically significant description of the experimental observations. The proposed approach forms a solid basis to describe chemical processes operated with 3D printed catalyst structures.
ArticleNumber 157691
Author Jesus Medina Ferrer, Ananias De
Russo, Vincenzo
Eränen, Kari
Murzin, Dmitry
Mastroianni, Luca
Serio, Martino Di
De Domenico, Anna Maria
Salmi, Tapio
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0003-4062-3934
  surname: Mastroianni
  fullname: Mastroianni, Luca
  organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland
– sequence: 2
  givenname: Ananias De
  surname: Jesus Medina Ferrer
  fullname: Jesus Medina Ferrer, Ananias De
  organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland
– sequence: 3
  givenname: Anna Maria
  surname: De Domenico
  fullname: De Domenico, Anna Maria
  organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland
– sequence: 4
  givenname: Kari
  surname: Eränen
  fullname: Eränen, Kari
  organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland
– sequence: 5
  givenname: Martino Di
  surname: Serio
  fullname: Serio, Martino Di
  organization: Naples Industrial Chemistry Laboratory (NICL), Università di Napoli ‘Federico II’, IT- 80126 Napoli, Italy
– sequence: 6
  givenname: Dmitry
  orcidid: 0000-0003-0788-2643
  surname: Murzin
  fullname: Murzin, Dmitry
  organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland
– sequence: 7
  givenname: Vincenzo
  orcidid: 0000-0002-1867-739X
  surname: Russo
  fullname: Russo, Vincenzo
  email: v.russo@unina.it
  organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland
– sequence: 8
  givenname: Tapio
  surname: Salmi
  fullname: Salmi, Tapio
  email: tapio.salmi@abo.fi
  organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland
BookMark eNp9kM1KAzEUhbOoYFt9AHd5AGdMJjOZia6k9Q8KutB1iJmbmnGalCQVuvDdndqC4KKrC4f7HTjfBI2cd4DQBSU5JZRfdbmGLi9IUea0qrmgIzSmrKmyRpT1KZrE2BFChlyM0fd88YLZHK-Ddcm6JfYGq36zsk5hrZLqtzFhFfSHTaDTJkC8xnOIduku8ad1kKyOWLkWr3wL_aEgprD5fcZgzIBF7N1f2xqC8WGlnIYzdGJUH-H8cKfo7f7udfaYLZ4fnma3i0yzkqQMSsqJoeS94IZp3RrOgJS0gprzWjS6gBpYUYBiQgldaNFUglANpOCV4KJlU1Tve3XwMQYwUtukkvUuBWV7SYncmZOdHMzJnTm5NzeQ9B85mFqpsD3K3OwZGCZ9WQgyagvD3NaGwYZsvT1C_wD7cIw9
CitedBy_id crossref_primary_10_1016_j_apcata_2025_120466
crossref_primary_10_1016_j_ceramint_2025_05_230
crossref_primary_10_1080_01614940_2025_2556095
crossref_primary_10_1016_j_ces_2025_122037
crossref_primary_10_1016_j_fuel_2025_136554
Cites_doi 10.1016/j.ces.2020.116030
10.1016/j.cej.2011.05.014
10.1016/j.ces.2018.07.021
10.1080/01614949408013925
10.1016/j.ces.2022.117920
10.1016/j.ceja.2022.100438
10.1039/C7CS00631D
10.1021/acs.chemrev.1c00060
10.1111/ijac.12745
10.1016/j.fuel.2020.117848
10.1016/j.ceramint.2021.12.275
10.1016/j.cherd.2024.05.045
10.1016/S0021-9614(72)80017-X
10.1021/acssuschemeng.1c01980
10.1002/aic.11291
10.3390/ma13204534
10.1016/j.cej.2019.123988
10.1016/j.msea.2019.138768
10.1039/C8TA01597J
10.1016/j.cherd.2015.06.011
10.3390/chemengineering4020024
10.3390/fluids8120312
10.1002/smtd.202201302
10.1039/D3CY01592K
10.1016/j.cej.2021.131756
10.1021/acs.iecr.1c03098
10.1002/cctc.202101947
10.1016/j.micromeso.2017.04.010
10.1016/j.cej.2021.134341
10.1002/aic.17732
10.3390/app11178239
10.1016/j.enconman.2022.115464
10.1021/acs.iecr.1c01951
10.1021/ie50677a007
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.cej.2024.157691
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2024_157691
S1385894724091824
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
9DU
AATTM
AAYWO
AAYXX
ABXDB
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HVGLF
HZ~
M41
R2-
ZY4
~HD
ID FETCH-LOGICAL-c340t-e4160f10b26f3ccdf63e0415e766798c2e7e322ea39a9c2c985901ce0265969d3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001407822200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1385-8947
IngestDate Sat Nov 29 02:54:13 EST 2025
Tue Nov 18 22:23:28 EST 2025
Sat Dec 14 16:15:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DLP
Ethanol dehydration
Kinetic modeling
Structured catalysts
3D printing
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-e4160f10b26f3ccdf63e0415e766798c2e7e322ea39a9c2c985901ce0265969d3
ORCID 0000-0002-1867-739X
0000-0003-4062-3934
0000-0003-0788-2643
OpenAccessLink https://dx.doi.org/10.1016/j.cej.2024.157691
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2024_157691
crossref_primary_10_1016_j_cej_2024_157691
elsevier_sciencedirect_doi_10_1016_j_cej_2024_157691
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – sequence: 0
  name: Elsevier B.V
References Shah, Morris, Plaisted, Amirkhizi, Hansen (b0050) 2021; 37
Santoliquido, Bianchi, Dimopoulos Eggenschwiler, Ortona (b0005) 2017; 14
Piedra, Gómez-Ortega, Pérez-Barrera (b0200) 2023; 8
Lawson, Li, Thakkar, Rownaghi, Rezaei (b0100) 2021; 121
Visconti, Tronconi, Groppi, Lietti, Iovane, Rossini, Zennaro (b0120) 2011; 171
Wang, Gu, Zhao, Xuan, Zeng, Tang, Sun (b0025) 2019; 195
Li, Chen, Cai, Hong, Wu, Xu, Zou, Chen (b0145) 2018; 6
Zeng, Sun, Yao, Chen (b0080) 2022; 48
Chen, Tian, Wang, Mo, Xu, Zhu (b0040) 2023; 7
Mastroianni, Vajglová, Eränen, Peurla, Di Serio, Murzin, Russo, Salmi (b0170) 2022; 260
Hock, Rein, Rose (b0110) 2022; 14
Bui, Fischer, Szesni, Tonigold, Achterhold, Pfeiffer, Hinrichsen (b0045) 2022; 50
Lucentini, García Colli, Luzi, Serrano, Soler, Divins, Martínez, Llorca (b0115) 2022; 427
Salmi, Freites Aguilera, Russo (b0130) 2024; 207
Goodarzi Hosseinabadi, Nieto, Yousefinejad, Fattel, Ionov, Miri (b0055) 2023; 30
Wu, Zhou, Li (b0185) 2007; 53
Santoliquido, Camerota, Ortona (b0070) 2021; 5
Kolitcheff, Jolimaitre, Hugon, Verstraete, Carrette, Tayakout-Fayolle (b0180) 2017; 248
Fratalocchi, Groppi, Visconti, Lietti, Tronconi (b0035) 2020; 386
Russo, Kilpiö, Di Serio, Tesser, Santacesaria, Murzin, Salmi (b0155) 2015; 102
Connett (b0175) 1972; 4
Santoliquido, Camerota, Pelanconi, Ferri, Elsener, Eggenschwiler, Ortona (b0085) 2021; 11
Russo, Mastroianni, Tesser, Salmi, Di Serio (b0150) 2020; 4
Najarnezhadmashhadi, Braz, Russo, Eränen, Matos, Salmi (b0125) 2022; 68
Bogdan, Michorczyk (b0010) 2020; 13
Santoliquido, Camerota, Rosa, Ortona (b0065) 2021; 5
Suerz, Eränen, Kumar, Wärnå, Russo, Peurla, Aho, Murzin, Salmi (b0160) 2021; 229
Dayant, Levenspiels (b0195) 1968
Cybulski, Moulin (b0190) 1994; 36
Baena-Moreno, González-Castaño, Navarro De Miguel, Miah, Ossenbrink, Odriozola, Arellano-García (b0095) 2021; 9
González-Castaño, Baena-Moreno, Carlos Navarro de Miguel, Miah, Arroyo-Torralvo, Ossenbrink, Odriozola, Benzinger, Hensel, Wenka, Arellano-García (b0105) 2022; 258
Zhu, Wu, Chao, Yu, Zhu, Liu, Xu (b0015) 2022; 433
Quintanilla, Vega, Lopez, Garcia, Madurga, Belmonte, Casas (b0140) 2021; 60
García-López, Águeda, Garrido-Escudero (b0030) 2023; 13
Hajimirzaee, Doyle (b0135) 2020; 274
Parra-Cabrera, Achille, Kuhn, Ameloot (b0020) 2018; 47
Zhang, He, Ding, Feng, Song, Fang (b0060) 2020; 774
Wang, Wang, Wang, Zhang, Zhang (b0075) 2021; 60
Mastroianni, Russo, Eränen, Di Serio, Murzin, Salmi (b0090) 2024; 14
Fuller, Schettler, Giddings (b0165) 1966; 58
Baena-Moreno (10.1016/j.cej.2024.157691_b0095) 2021; 9
Lucentini (10.1016/j.cej.2024.157691_b0115) 2022; 427
Hajimirzaee (10.1016/j.cej.2024.157691_b0135) 2020; 274
Visconti (10.1016/j.cej.2024.157691_b0120) 2011; 171
Bui (10.1016/j.cej.2024.157691_b0045) 2022; 50
Russo (10.1016/j.cej.2024.157691_b0155) 2015; 102
Connett (10.1016/j.cej.2024.157691_b0175) 1972; 4
Piedra (10.1016/j.cej.2024.157691_b0200) 2023; 8
Kolitcheff (10.1016/j.cej.2024.157691_b0180) 2017; 248
Najarnezhadmashhadi (10.1016/j.cej.2024.157691_b0125) 2022; 68
Dayant (10.1016/j.cej.2024.157691_b0195) 1968
Li (10.1016/j.cej.2024.157691_b0145) 2018; 6
Wang (10.1016/j.cej.2024.157691_b0075) 2021; 60
Mastroianni (10.1016/j.cej.2024.157691_b0170) 2022; 260
Russo (10.1016/j.cej.2024.157691_b0150) 2020; 4
Wu (10.1016/j.cej.2024.157691_b0185) 2007; 53
Zhu (10.1016/j.cej.2024.157691_b0015) 2022; 433
Hock (10.1016/j.cej.2024.157691_b0110) 2022; 14
Bogdan (10.1016/j.cej.2024.157691_b0010) 2020; 13
Salmi (10.1016/j.cej.2024.157691_b0130) 2024; 207
Shah (10.1016/j.cej.2024.157691_b0050) 2021; 37
Santoliquido (10.1016/j.cej.2024.157691_b0070) 2021; 5
Fuller (10.1016/j.cej.2024.157691_b0165) 1966; 58
Wang (10.1016/j.cej.2024.157691_b0025) 2019; 195
Quintanilla (10.1016/j.cej.2024.157691_b0140) 2021; 60
Suerz (10.1016/j.cej.2024.157691_b0160) 2021; 229
Zeng (10.1016/j.cej.2024.157691_b0080) 2022; 48
Mastroianni (10.1016/j.cej.2024.157691_b0090) 2024; 14
Chen (10.1016/j.cej.2024.157691_b0040) 2023; 7
Cybulski (10.1016/j.cej.2024.157691_b0190) 1994; 36
Zhang (10.1016/j.cej.2024.157691_b0060) 2020; 774
Goodarzi Hosseinabadi (10.1016/j.cej.2024.157691_b0055) 2023; 30
Fratalocchi (10.1016/j.cej.2024.157691_b0035) 2020; 386
González-Castaño (10.1016/j.cej.2024.157691_b0105) 2022; 258
Santoliquido (10.1016/j.cej.2024.157691_b0005) 2017; 14
García-López (10.1016/j.cej.2024.157691_b0030) 2023; 13
Parra-Cabrera (10.1016/j.cej.2024.157691_b0020) 2018; 47
Santoliquido (10.1016/j.cej.2024.157691_b0085) 2021; 11
Lawson (10.1016/j.cej.2024.157691_b0100) 2021; 121
Santoliquido (10.1016/j.cej.2024.157691_b0065) 2021; 5
References_xml – volume: 102
  start-page: 171
  year: 2015
  end-page: 185
  ident: b0155
  article-title: Dynamic non-isothermal trickle bed reactor with both internal diffusion and heat conduction: sugar hydrogenation as a case study
  publication-title: Chem. Eng. Res. Des.
– volume: 171
  start-page: 1294
  year: 2011
  end-page: 1307
  ident: b0120
  article-title: Monolithic catalysts with high thermal conductivity for the Fischer-Tropsch synthesis in tubular reactors
  publication-title: Chem. Eng. J.
– volume: 58
  start-page: 18
  year: 1966
  end-page: 27
  ident: b0165
  article-title: New method for prediction of binary gas-phase diffusion coefficients
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  year: 2023
  ident: b0040
  article-title: Recent progress and perspectives of direct ink writing applications for mass transfer enhancement in gas-phase adsorption and catalysis
  publication-title: Small Methods
– volume: 68
  year: 2022
  ident: b0125
  article-title: Modeling of three-phase continuously operating open-cell foam catalyst packings: sugar hydrogenation to sugar alcohols
  publication-title: AIChE J.
– volume: 4
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0150
  article-title: Intraparticle modeling of non-uniform active phase distribution catalyst
  publication-title: ChemEngineering
– volume: 248
  start-page: 91
  year: 2017
  end-page: 98
  ident: b0180
  article-title: Tortuosity of mesoporous alumina catalyst supports: influence of the pore network organization
  publication-title: Microporous Mesoporous Mater.
– volume: 260
  year: 2022
  ident: b0170
  article-title: Microreactor technology in experimental and modelling study of alcohol oxidation on nanogold
  publication-title: Chem. Eng. Sci.
– volume: 53
  start-page: 2618
  year: 2007
  end-page: 2629
  ident: b0185
  article-title: Mechanical strength of solid catalysts: Recent developments and future prospects
  publication-title: AIChE J.
– volume: 4
  start-page: 135
  year: 1972
  end-page: 138
  ident: b0175
  article-title: Chemical equilibria 4. Enthalpy of dehydration of ethanol to diethyl ether by measurement of equilibrium constants in ethanol + ether + water by a vapour flow technique
  publication-title: J. Chem. Thermodyn.
– volume: 60
  start-page: 13107
  year: 2021
  end-page: 13114
  ident: b0075
  article-title: Preparation of a high-precision gama-Al
  publication-title: Ind. Eng. Chem. Res.
– volume: 258
  year: 2022
  ident: b0105
  article-title: 3D-printed structured catalysts for CO
  publication-title: Energy Convers. Manag.
– volume: 37
  year: 2021
  ident: b0050
  article-title: Highly filled resins for DLP-based printing of low density, high modulus materials
  publication-title: Addit. Manuf.
– volume: 274
  year: 2020
  ident: b0135
  article-title: 3D printed catalytic converters with enhanced activity for low-temperature methane oxidation in dual-fuel engines
  publication-title: Fuel
– volume: 48
  start-page: 10613
  year: 2022
  end-page: 10619
  ident: b0080
  article-title: Fabrication of alumina ceramics with functional gradient structures by digital light processing 3D printing technology
  publication-title: Ceram. Int.
– volume: 47
  start-page: 209
  year: 2018
  end-page: 230
  ident: b0020
  article-title: 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors
  publication-title: Chem. Soc. Rev.
– volume: 386
  year: 2020
  ident: b0035
  article-title: Adoption of 3D printed highly conductive periodic open cellular structures as an effective solution to enhance the heat transfer performances of compact Fischer-Tropsch fixed-bed reactors
  publication-title: Chem. Eng. J.
– volume: 36
  start-page: 179
  year: 1994
  end-page: 270
  ident: b0190
  article-title: Monoliths in heterogeneous catalysis
  publication-title: Catal. Rev.
– volume: 50
  year: 2022
  ident: b0045
  article-title: Development of a manufacturing process for Binder Jet 3D printed porous Al
  publication-title: Addit. Manuf.
– volume: 30
  year: 2023
  ident: b0055
  article-title: Ink material selection and optical design considerations in DLP 3D printing
  publication-title: Appl. Mater. Today
– volume: 5
  year: 2021
  ident: b0065
  article-title: A novel device to simply 3D print bulk green ceramic components by stereolithography employing viscous slurries
  publication-title: Open Ceram.
– volume: 195
  start-page: 250
  year: 2019
  end-page: 261
  ident: b0025
  article-title: Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing
  publication-title: Chem. Eng. Sci.
– volume: 14
  start-page: 1336
  year: 2024
  end-page: 1348
  ident: b0090
  article-title: Towards unconstrained catalyst shaping: high accuracy DLP printing of porous γ-Al
  publication-title: Catal. Sci. Technol.
– volume: 774
  year: 2020
  ident: b0060
  article-title: Digital light processing of 3Y-TZP strengthened ZrO
  publication-title: Mater. Sci. Eng. A
– volume: 14
  year: 2022
  ident: b0110
  article-title: 3D-printed acidic monolithic catalysts for liquid-phase catalysis with enhanced mass transfer properties
  publication-title: ChemCatChem
– year: 1968
  ident: b0195
  publication-title: Longitudinal Dispersion in Packed Beds of Porous Adsorbing Solids
– volume: 13
  start-page: 1
  year: 2020
  end-page: 23
  ident: b0010
  article-title: 3d printing in heterogeneous catalysis—the state of the art
  publication-title: Materials
– volume: 427
  year: 2022
  ident: b0115
  article-title: Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO
  publication-title: Chem. Eng. J.
– volume: 60
  start-page: 14701
  year: 2021
  end-page: 14712
  ident: b0140
  article-title: Enhanced FLUID DYNAMICS in 3D monolithic reactors to improve the chemical performance: experimental and numerical investigation
  publication-title: Ind. Eng. Chem. Res.
– volume: 9
  start-page: 8198
  year: 2021
  end-page: 8206
  ident: b0095
  article-title: Stepping toward efficient microreactors for CO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 11
  year: 2021
  ident: b0085
  article-title: Structured alumina substrates for environmental catalysis produced by stereolithography
  publication-title: Appl. Sci.
– volume: 433
  year: 2022
  ident: b0015
  article-title: Recent advances in 3D printing for catalytic applications
  publication-title: Chem. Eng. J.
– volume: 13
  year: 2023
  ident: b0030
  article-title: Hydrodynamic behavior of a novel 3D-printed nature-inspired microreactor with a high length-to-surface ratio
  publication-title: Chem. Eng. J. Adv.
– volume: 207
  start-page: 133
  year: 2024
  end-page: 141
  ident: b0130
  article-title: Shallow beds are not plug flow reactors – Analysis of kinetic data in the presence of axial dispersion effects
  publication-title: Chem. Eng. Res. Des.
– volume: 5
  year: 2021
  ident: b0070
  article-title: The influence of topology on DLP 3D printing, debinding and sintering of ceramic periodic architectures designed to replace bulky components
  publication-title: Open Ceram.
– volume: 121
  start-page: 6246
  year: 2021
  end-page: 6291
  ident: b0100
  article-title: Recent advances in 3D printing of structured materials for adsorption and catalysis applications
  publication-title: Chem. Rev.
– volume: 6
  start-page: 5695
  year: 2018
  end-page: 5702
  ident: b0145
  article-title: Rational design and preparation of hierarchical monoliths through 3D printing for syngas methanation
  publication-title: J. Mater. Chem. A Mater.
– volume: 14
  start-page: 1164
  year: 2017
  end-page: 1173
  ident: b0005
  article-title: Additive manufacturing of periodic ceramic substrates for automotive catalyst supports
  publication-title: Int. J. Appl. Ceram. Technol.
– volume: 229
  year: 2021
  ident: b0160
  article-title: Application of microreactor technology to dehydration of bio-ethanol
  publication-title: Chem. Eng. Sci.
– volume: 8
  year: 2023
  ident: b0200
  article-title: Prediction of flow properties of porous triply periodic minimal surface (TPMS) structures
  publication-title: Fluids
– volume: 30
  year: 2023
  ident: 10.1016/j.cej.2024.157691_b0055
  article-title: Ink material selection and optical design considerations in DLP 3D printing
  publication-title: Appl. Mater. Today
– volume: 229
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0160
  article-title: Application of microreactor technology to dehydration of bio-ethanol
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.116030
– volume: 171
  start-page: 1294
  year: 2011
  ident: 10.1016/j.cej.2024.157691_b0120
  article-title: Monolithic catalysts with high thermal conductivity for the Fischer-Tropsch synthesis in tubular reactors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.05.014
– year: 1968
  ident: 10.1016/j.cej.2024.157691_b0195
– volume: 195
  start-page: 250
  year: 2019
  ident: 10.1016/j.cej.2024.157691_b0025
  article-title: Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.07.021
– volume: 36
  start-page: 179
  year: 1994
  ident: 10.1016/j.cej.2024.157691_b0190
  article-title: Monoliths in heterogeneous catalysis
  publication-title: Catal. Rev.
  doi: 10.1080/01614949408013925
– volume: 260
  year: 2022
  ident: 10.1016/j.cej.2024.157691_b0170
  article-title: Microreactor technology in experimental and modelling study of alcohol oxidation on nanogold
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117920
– volume: 13
  year: 2023
  ident: 10.1016/j.cej.2024.157691_b0030
  article-title: Hydrodynamic behavior of a novel 3D-printed nature-inspired microreactor with a high length-to-surface ratio
  publication-title: Chem. Eng. J. Adv.
  doi: 10.1016/j.ceja.2022.100438
– volume: 47
  start-page: 209
  year: 2018
  ident: 10.1016/j.cej.2024.157691_b0020
  article-title: 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00631D
– volume: 121
  start-page: 6246
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0100
  article-title: Recent advances in 3D printing of structured materials for adsorption and catalysis applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c00060
– volume: 14
  start-page: 1164
  year: 2017
  ident: 10.1016/j.cej.2024.157691_b0005
  article-title: Additive manufacturing of periodic ceramic substrates for automotive catalyst supports
  publication-title: Int. J. Appl. Ceram. Technol.
  doi: 10.1111/ijac.12745
– volume: 274
  year: 2020
  ident: 10.1016/j.cej.2024.157691_b0135
  article-title: 3D printed catalytic converters with enhanced activity for low-temperature methane oxidation in dual-fuel engines
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117848
– volume: 48
  start-page: 10613
  year: 2022
  ident: 10.1016/j.cej.2024.157691_b0080
  article-title: Fabrication of alumina ceramics with functional gradient structures by digital light processing 3D printing technology
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2021.12.275
– volume: 207
  start-page: 133
  year: 2024
  ident: 10.1016/j.cej.2024.157691_b0130
  article-title: Shallow beds are not plug flow reactors – Analysis of kinetic data in the presence of axial dispersion effects
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2024.05.045
– volume: 5
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0070
  article-title: The influence of topology on DLP 3D printing, debinding and sintering of ceramic periodic architectures designed to replace bulky components
  publication-title: Open Ceram.
– volume: 4
  start-page: 135
  year: 1972
  ident: 10.1016/j.cej.2024.157691_b0175
  article-title: Chemical equilibria 4. Enthalpy of dehydration of ethanol to diethyl ether by measurement of equilibrium constants in ethanol + ether + water by a vapour flow technique
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/S0021-9614(72)80017-X
– volume: 9
  start-page: 8198
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0095
  article-title: Stepping toward efficient microreactors for CO2 methanation: 3D-printed gyroid geometry
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c01980
– volume: 53
  start-page: 2618
  year: 2007
  ident: 10.1016/j.cej.2024.157691_b0185
  article-title: Mechanical strength of solid catalysts: Recent developments and future prospects
  publication-title: AIChE J.
  doi: 10.1002/aic.11291
– volume: 5
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0065
  article-title: A novel device to simply 3D print bulk green ceramic components by stereolithography employing viscous slurries
  publication-title: Open Ceram.
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.cej.2024.157691_b0010
  article-title: 3d printing in heterogeneous catalysis—the state of the art
  publication-title: Materials
  doi: 10.3390/ma13204534
– volume: 386
  year: 2020
  ident: 10.1016/j.cej.2024.157691_b0035
  article-title: Adoption of 3D printed highly conductive periodic open cellular structures as an effective solution to enhance the heat transfer performances of compact Fischer-Tropsch fixed-bed reactors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123988
– volume: 50
  year: 2022
  ident: 10.1016/j.cej.2024.157691_b0045
  article-title: Development of a manufacturing process for Binder Jet 3D printed porous Al2O3 supports used in heterogeneous catalysis
  publication-title: Addit. Manuf.
– volume: 774
  year: 2020
  ident: 10.1016/j.cej.2024.157691_b0060
  article-title: Digital light processing of 3Y-TZP strengthened ZrO2 ceramics
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2019.138768
– volume: 6
  start-page: 5695
  year: 2018
  ident: 10.1016/j.cej.2024.157691_b0145
  article-title: Rational design and preparation of hierarchical monoliths through 3D printing for syngas methanation
  publication-title: J. Mater. Chem. A Mater.
  doi: 10.1039/C8TA01597J
– volume: 102
  start-page: 171
  year: 2015
  ident: 10.1016/j.cej.2024.157691_b0155
  article-title: Dynamic non-isothermal trickle bed reactor with both internal diffusion and heat conduction: sugar hydrogenation as a case study
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2015.06.011
– volume: 4
  start-page: 1
  year: 2020
  ident: 10.1016/j.cej.2024.157691_b0150
  article-title: Intraparticle modeling of non-uniform active phase distribution catalyst
  publication-title: ChemEngineering
  doi: 10.3390/chemengineering4020024
– volume: 8
  year: 2023
  ident: 10.1016/j.cej.2024.157691_b0200
  article-title: Prediction of flow properties of porous triply periodic minimal surface (TPMS) structures
  publication-title: Fluids
  doi: 10.3390/fluids8120312
– volume: 7
  year: 2023
  ident: 10.1016/j.cej.2024.157691_b0040
  article-title: Recent progress and perspectives of direct ink writing applications for mass transfer enhancement in gas-phase adsorption and catalysis
  publication-title: Small Methods
  doi: 10.1002/smtd.202201302
– volume: 14
  start-page: 1336
  year: 2024
  ident: 10.1016/j.cej.2024.157691_b0090
  article-title: Towards unconstrained catalyst shaping: high accuracy DLP printing of porous γ-Al2O3-based catalysts
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D3CY01592K
– volume: 427
  year: 2022
  ident: 10.1016/j.cej.2024.157691_b0115
  article-title: Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131756
– volume: 60
  start-page: 14701
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0140
  article-title: Enhanced FLUID DYNAMICS in 3D monolithic reactors to improve the chemical performance: experimental and numerical investigation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c03098
– volume: 14
  year: 2022
  ident: 10.1016/j.cej.2024.157691_b0110
  article-title: 3D-printed acidic monolithic catalysts for liquid-phase catalysis with enhanced mass transfer properties
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202101947
– volume: 248
  start-page: 91
  year: 2017
  ident: 10.1016/j.cej.2024.157691_b0180
  article-title: Tortuosity of mesoporous alumina catalyst supports: influence of the pore network organization
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.04.010
– volume: 433
  year: 2022
  ident: 10.1016/j.cej.2024.157691_b0015
  article-title: Recent advances in 3D printing for catalytic applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134341
– volume: 68
  year: 2022
  ident: 10.1016/j.cej.2024.157691_b0125
  article-title: Modeling of three-phase continuously operating open-cell foam catalyst packings: sugar hydrogenation to sugar alcohols
  publication-title: AIChE J.
  doi: 10.1002/aic.17732
– volume: 11
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0085
  article-title: Structured alumina substrates for environmental catalysis produced by stereolithography
  publication-title: Appl. Sci.
  doi: 10.3390/app11178239
– volume: 258
  year: 2022
  ident: 10.1016/j.cej.2024.157691_b0105
  article-title: 3D-printed structured catalysts for CO2 methanation reaction: advancing of gyroid-based geometries
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2022.115464
– volume: 60
  start-page: 13107
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0075
  article-title: Preparation of a high-precision gama-Al2O3 structured catalyst by DLP 3D direct printing for hydrogen production from methanol
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c01951
– volume: 37
  year: 2021
  ident: 10.1016/j.cej.2024.157691_b0050
  article-title: Highly filled resins for DLP-based printing of low density, high modulus materials
  publication-title: Addit. Manuf.
– volume: 58
  start-page: 18
  year: 1966
  ident: 10.1016/j.cej.2024.157691_b0165
  article-title: New method for prediction of binary gas-phase diffusion coefficients
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie50677a007
SSID ssj0006919
Score 2.4949992
Snippet [Display omitted] •Periodic alumina catalyst structures were designed and printed with DLP printing technology.•The catalyst performance was demonstrated in...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 157691
SubjectTerms 3D printing
DLP
Ethanol dehydration
Kinetic modeling
Structured catalysts
Title DLP 3D printing of alumina catalyst architectures: Design, kinetics and modeling of structure effects on catalyst performance
URI https://dx.doi.org/10.1016/j.cej.2024.157691
Volume 501
WOSCitedRecordID wos001407822200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1385-8947
  databaseCode: AIEXJ
  dateStart: 19970115
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006919
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE-1vLQHTgRHjh9rL7eKtILSVpVaUG7WZj2WHMomatJSkPiN_CVmX7ZJAQESFytydsf2zKfdmdl5EPKMlZVMczYNWCySIBEpD6ZRmAZoCyVVVmYpmJYs7_ezw8N8MuFHvd43nwtzcZoplV9e8sV_FTXeQ2Hr1Nm_EHdDFG_gbxQ6XlHseP0jwY_3jwbxeKAddj6kWeAKVCsxML6az8vVoHt8YGLixiaQQ_P7A6qdTelm0yfHEbGVZvV5QxMDolqKizYBoavvNvUIoK172FSr0N1EhI4Ksl7V40_16otNPnaOCs46jooDgW8wr3WPJeNMOG-DjPZgeb40Z074kbtw5lt0K6FqscSPa9R1QIvhIyiEvx2A4w-EjbS2hoWNHEiUXY3f4n9dv0iUrMWYXE3YMet7nCMOuS3y6TeA1E67splYv8ZsKGE21E8YjtA4s73F1mp0H2u6mizqRxwttuQa2YiylOd9srH9Zmey1ygHOJ8bH4B7D3_QbkIO1x70c1Wpo_6c3Ca3nN1Cty3e7pAeqLvkZqea5T3yFZFH4zH1yKPzijrkUY8T-gPyXlKLuxfUo46i8KlHnSbQoI461NG5aql1UHefvNvdOXn1OnDdPQIZJ-EqADQFwmoUTiNWxVKWFYtB14uAjOmTQRlBBrjbgIi54DKSPNdp0hLCiKWc8TJ-QPpqrmCT0FDwENKRHAlApQx5W-aQlVUlslJwJuQWCT0jC-lK3-sOLKeFj3GcFcj7QvO-sLzfIs-bKQtb9-V3gxMvncIprlYhLRBKv5728N-mPSI3Wrw_Jn2UAzwh1-XFql6ePXWA-w6lSr5L
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DLP+3D+printing+of+alumina+catalyst+architectures%3A+Design%2C+kinetics+and+modeling+of+structure+effects+on+catalyst+performance&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Mastroianni%2C+Luca&rft.au=Jesus+Medina+Ferrer%2C+Ananias+De&rft.au=De+Domenico%2C+Anna+Maria&rft.au=Er%C3%A4nen%2C+Kari&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=501&rft_id=info:doi/10.1016%2Fj.cej.2024.157691&rft.externalDocID=S1385894724091824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon