DLP 3D printing of alumina catalyst architectures: Design, kinetics and modeling of structure effects on catalyst performance
[Display omitted] •Periodic alumina catalyst structures were designed and printed with DLP printing technology.•The catalyst performance was demonstrated in the ethanol dehydration to diethyl ether.•A mathematical model, including relevant geometrical features, was derived and solved numerically.•Th...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Jg. 501; S. 157691 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2024
|
| Schlagworte: | |
| ISSN: | 1385-8947 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•Periodic alumina catalyst structures were designed and printed with DLP printing technology.•The catalyst performance was demonstrated in the ethanol dehydration to diethyl ether.•A mathematical model, including relevant geometrical features, was derived and solved numerically.•The model gave a successful description of the experimental data.
The impact of the 3D structural design on the catalytic performance was investigated in this work. Four catalyst architectures (squared honeycomb, Schwartz P, face centered cubic and gyroid), made of alumina, were designed and printed with the Digital Light Processing (DLP) printing technology. The obtained shaped catalysts were loaded in a tubular reactor and their activities were evaluated in continuous ethanol dehydration to diethyl ether. The kinetic experiments revealed that both the conversion per unit of the reactor volume and the specific activity were highly affected by the selected design of the catalyst geometry. An advanced 1-D heterogeneous mathematical model employing geometrical features of the catalyst structures was proposed to describe the experimental data. The model included local variations of contact perimeters and cross-section areas to describe the periodic architectures. The assumption of plug flow pattern in the catalyst channels was revealed to be inadequate in predicting the structure effects, thus axial dispersion effects were included to obtain a successful and statistically significant description of the experimental observations. The proposed approach forms a solid basis to describe chemical processes operated with 3D printed catalyst structures. |
|---|---|
| AbstractList | [Display omitted]
•Periodic alumina catalyst structures were designed and printed with DLP printing technology.•The catalyst performance was demonstrated in the ethanol dehydration to diethyl ether.•A mathematical model, including relevant geometrical features, was derived and solved numerically.•The model gave a successful description of the experimental data.
The impact of the 3D structural design on the catalytic performance was investigated in this work. Four catalyst architectures (squared honeycomb, Schwartz P, face centered cubic and gyroid), made of alumina, were designed and printed with the Digital Light Processing (DLP) printing technology. The obtained shaped catalysts were loaded in a tubular reactor and their activities were evaluated in continuous ethanol dehydration to diethyl ether. The kinetic experiments revealed that both the conversion per unit of the reactor volume and the specific activity were highly affected by the selected design of the catalyst geometry. An advanced 1-D heterogeneous mathematical model employing geometrical features of the catalyst structures was proposed to describe the experimental data. The model included local variations of contact perimeters and cross-section areas to describe the periodic architectures. The assumption of plug flow pattern in the catalyst channels was revealed to be inadequate in predicting the structure effects, thus axial dispersion effects were included to obtain a successful and statistically significant description of the experimental observations. The proposed approach forms a solid basis to describe chemical processes operated with 3D printed catalyst structures. |
| ArticleNumber | 157691 |
| Author | Jesus Medina Ferrer, Ananias De Russo, Vincenzo Eränen, Kari Murzin, Dmitry Mastroianni, Luca Serio, Martino Di De Domenico, Anna Maria Salmi, Tapio |
| Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0003-4062-3934 surname: Mastroianni fullname: Mastroianni, Luca organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland – sequence: 2 givenname: Ananias De surname: Jesus Medina Ferrer fullname: Jesus Medina Ferrer, Ananias De organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland – sequence: 3 givenname: Anna Maria surname: De Domenico fullname: De Domenico, Anna Maria organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland – sequence: 4 givenname: Kari surname: Eränen fullname: Eränen, Kari organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland – sequence: 5 givenname: Martino Di surname: Serio fullname: Serio, Martino Di organization: Naples Industrial Chemistry Laboratory (NICL), Università di Napoli ‘Federico II’, IT- 80126 Napoli, Italy – sequence: 6 givenname: Dmitry orcidid: 0000-0003-0788-2643 surname: Murzin fullname: Murzin, Dmitry organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland – sequence: 7 givenname: Vincenzo orcidid: 0000-0002-1867-739X surname: Russo fullname: Russo, Vincenzo email: v.russo@unina.it organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland – sequence: 8 givenname: Tapio surname: Salmi fullname: Salmi, Tapio email: tapio.salmi@abo.fi organization: Laboratory of Industrial Chemistry and Reaction Engineering (TKR), Åbo Akademi University, FI- 20100 Turku, Åbo, Finland |
| BookMark | eNp9kM1KAzEUhbOoYFt9AHd5AGdMJjOZia6k9Q8KutB1iJmbmnGalCQVuvDdndqC4KKrC4f7HTjfBI2cd4DQBSU5JZRfdbmGLi9IUea0qrmgIzSmrKmyRpT1KZrE2BFChlyM0fd88YLZHK-Ddcm6JfYGq36zsk5hrZLqtzFhFfSHTaDTJkC8xnOIduku8ad1kKyOWLkWr3wL_aEgprD5fcZgzIBF7N1f2xqC8WGlnIYzdGJUH-H8cKfo7f7udfaYLZ4fnma3i0yzkqQMSsqJoeS94IZp3RrOgJS0gprzWjS6gBpYUYBiQgldaNFUglANpOCV4KJlU1Tve3XwMQYwUtukkvUuBWV7SYncmZOdHMzJnTm5NzeQ9B85mFqpsD3K3OwZGCZ9WQgyagvD3NaGwYZsvT1C_wD7cIw9 |
| CitedBy_id | crossref_primary_10_1016_j_apcata_2025_120466 crossref_primary_10_1016_j_ceramint_2025_05_230 crossref_primary_10_1080_01614940_2025_2556095 crossref_primary_10_1016_j_ces_2025_122037 crossref_primary_10_1016_j_fuel_2025_136554 |
| Cites_doi | 10.1016/j.ces.2020.116030 10.1016/j.cej.2011.05.014 10.1016/j.ces.2018.07.021 10.1080/01614949408013925 10.1016/j.ces.2022.117920 10.1016/j.ceja.2022.100438 10.1039/C7CS00631D 10.1021/acs.chemrev.1c00060 10.1111/ijac.12745 10.1016/j.fuel.2020.117848 10.1016/j.ceramint.2021.12.275 10.1016/j.cherd.2024.05.045 10.1016/S0021-9614(72)80017-X 10.1021/acssuschemeng.1c01980 10.1002/aic.11291 10.3390/ma13204534 10.1016/j.cej.2019.123988 10.1016/j.msea.2019.138768 10.1039/C8TA01597J 10.1016/j.cherd.2015.06.011 10.3390/chemengineering4020024 10.3390/fluids8120312 10.1002/smtd.202201302 10.1039/D3CY01592K 10.1016/j.cej.2021.131756 10.1021/acs.iecr.1c03098 10.1002/cctc.202101947 10.1016/j.micromeso.2017.04.010 10.1016/j.cej.2021.134341 10.1002/aic.17732 10.3390/app11178239 10.1016/j.enconman.2022.115464 10.1021/acs.iecr.1c01951 10.1021/ie50677a007 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.cej.2024.157691 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_cej_2024_157691 S1385894724091824 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ M41 R2- ZY4 ~HD |
| ID | FETCH-LOGICAL-c340t-e4160f10b26f3ccdf63e0415e766798c2e7e322ea39a9c2c985901ce0265969d3 |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001407822200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Sat Nov 29 02:54:13 EST 2025 Tue Nov 18 22:23:28 EST 2025 Sat Dec 14 16:15:34 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DLP Ethanol dehydration Kinetic modeling Structured catalysts 3D printing |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-e4160f10b26f3ccdf63e0415e766798c2e7e322ea39a9c2c985901ce0265969d3 |
| ORCID | 0000-0002-1867-739X 0000-0003-4062-3934 0000-0003-0788-2643 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.cej.2024.157691 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2024_157691 crossref_primary_10_1016_j_cej_2024_157691 elsevier_sciencedirect_doi_10_1016_j_cej_2024_157691 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – sequence: 0 name: Elsevier B.V |
| References | Shah, Morris, Plaisted, Amirkhizi, Hansen (b0050) 2021; 37 Santoliquido, Bianchi, Dimopoulos Eggenschwiler, Ortona (b0005) 2017; 14 Piedra, Gómez-Ortega, Pérez-Barrera (b0200) 2023; 8 Lawson, Li, Thakkar, Rownaghi, Rezaei (b0100) 2021; 121 Visconti, Tronconi, Groppi, Lietti, Iovane, Rossini, Zennaro (b0120) 2011; 171 Wang, Gu, Zhao, Xuan, Zeng, Tang, Sun (b0025) 2019; 195 Li, Chen, Cai, Hong, Wu, Xu, Zou, Chen (b0145) 2018; 6 Zeng, Sun, Yao, Chen (b0080) 2022; 48 Chen, Tian, Wang, Mo, Xu, Zhu (b0040) 2023; 7 Mastroianni, Vajglová, Eränen, Peurla, Di Serio, Murzin, Russo, Salmi (b0170) 2022; 260 Hock, Rein, Rose (b0110) 2022; 14 Bui, Fischer, Szesni, Tonigold, Achterhold, Pfeiffer, Hinrichsen (b0045) 2022; 50 Lucentini, García Colli, Luzi, Serrano, Soler, Divins, Martínez, Llorca (b0115) 2022; 427 Salmi, Freites Aguilera, Russo (b0130) 2024; 207 Goodarzi Hosseinabadi, Nieto, Yousefinejad, Fattel, Ionov, Miri (b0055) 2023; 30 Wu, Zhou, Li (b0185) 2007; 53 Santoliquido, Camerota, Ortona (b0070) 2021; 5 Kolitcheff, Jolimaitre, Hugon, Verstraete, Carrette, Tayakout-Fayolle (b0180) 2017; 248 Fratalocchi, Groppi, Visconti, Lietti, Tronconi (b0035) 2020; 386 Russo, Kilpiö, Di Serio, Tesser, Santacesaria, Murzin, Salmi (b0155) 2015; 102 Connett (b0175) 1972; 4 Santoliquido, Camerota, Pelanconi, Ferri, Elsener, Eggenschwiler, Ortona (b0085) 2021; 11 Russo, Mastroianni, Tesser, Salmi, Di Serio (b0150) 2020; 4 Najarnezhadmashhadi, Braz, Russo, Eränen, Matos, Salmi (b0125) 2022; 68 Bogdan, Michorczyk (b0010) 2020; 13 Santoliquido, Camerota, Rosa, Ortona (b0065) 2021; 5 Suerz, Eränen, Kumar, Wärnå, Russo, Peurla, Aho, Murzin, Salmi (b0160) 2021; 229 Dayant, Levenspiels (b0195) 1968 Cybulski, Moulin (b0190) 1994; 36 Baena-Moreno, González-Castaño, Navarro De Miguel, Miah, Ossenbrink, Odriozola, Arellano-García (b0095) 2021; 9 González-Castaño, Baena-Moreno, Carlos Navarro de Miguel, Miah, Arroyo-Torralvo, Ossenbrink, Odriozola, Benzinger, Hensel, Wenka, Arellano-García (b0105) 2022; 258 Zhu, Wu, Chao, Yu, Zhu, Liu, Xu (b0015) 2022; 433 Quintanilla, Vega, Lopez, Garcia, Madurga, Belmonte, Casas (b0140) 2021; 60 García-López, Águeda, Garrido-Escudero (b0030) 2023; 13 Hajimirzaee, Doyle (b0135) 2020; 274 Parra-Cabrera, Achille, Kuhn, Ameloot (b0020) 2018; 47 Zhang, He, Ding, Feng, Song, Fang (b0060) 2020; 774 Wang, Wang, Wang, Zhang, Zhang (b0075) 2021; 60 Mastroianni, Russo, Eränen, Di Serio, Murzin, Salmi (b0090) 2024; 14 Fuller, Schettler, Giddings (b0165) 1966; 58 Baena-Moreno (10.1016/j.cej.2024.157691_b0095) 2021; 9 Lucentini (10.1016/j.cej.2024.157691_b0115) 2022; 427 Hajimirzaee (10.1016/j.cej.2024.157691_b0135) 2020; 274 Visconti (10.1016/j.cej.2024.157691_b0120) 2011; 171 Bui (10.1016/j.cej.2024.157691_b0045) 2022; 50 Russo (10.1016/j.cej.2024.157691_b0155) 2015; 102 Connett (10.1016/j.cej.2024.157691_b0175) 1972; 4 Piedra (10.1016/j.cej.2024.157691_b0200) 2023; 8 Kolitcheff (10.1016/j.cej.2024.157691_b0180) 2017; 248 Najarnezhadmashhadi (10.1016/j.cej.2024.157691_b0125) 2022; 68 Dayant (10.1016/j.cej.2024.157691_b0195) 1968 Li (10.1016/j.cej.2024.157691_b0145) 2018; 6 Wang (10.1016/j.cej.2024.157691_b0075) 2021; 60 Mastroianni (10.1016/j.cej.2024.157691_b0170) 2022; 260 Russo (10.1016/j.cej.2024.157691_b0150) 2020; 4 Wu (10.1016/j.cej.2024.157691_b0185) 2007; 53 Zhu (10.1016/j.cej.2024.157691_b0015) 2022; 433 Hock (10.1016/j.cej.2024.157691_b0110) 2022; 14 Bogdan (10.1016/j.cej.2024.157691_b0010) 2020; 13 Salmi (10.1016/j.cej.2024.157691_b0130) 2024; 207 Shah (10.1016/j.cej.2024.157691_b0050) 2021; 37 Santoliquido (10.1016/j.cej.2024.157691_b0070) 2021; 5 Fuller (10.1016/j.cej.2024.157691_b0165) 1966; 58 Wang (10.1016/j.cej.2024.157691_b0025) 2019; 195 Quintanilla (10.1016/j.cej.2024.157691_b0140) 2021; 60 Suerz (10.1016/j.cej.2024.157691_b0160) 2021; 229 Zeng (10.1016/j.cej.2024.157691_b0080) 2022; 48 Mastroianni (10.1016/j.cej.2024.157691_b0090) 2024; 14 Chen (10.1016/j.cej.2024.157691_b0040) 2023; 7 Cybulski (10.1016/j.cej.2024.157691_b0190) 1994; 36 Zhang (10.1016/j.cej.2024.157691_b0060) 2020; 774 Goodarzi Hosseinabadi (10.1016/j.cej.2024.157691_b0055) 2023; 30 Fratalocchi (10.1016/j.cej.2024.157691_b0035) 2020; 386 González-Castaño (10.1016/j.cej.2024.157691_b0105) 2022; 258 Santoliquido (10.1016/j.cej.2024.157691_b0005) 2017; 14 García-López (10.1016/j.cej.2024.157691_b0030) 2023; 13 Parra-Cabrera (10.1016/j.cej.2024.157691_b0020) 2018; 47 Santoliquido (10.1016/j.cej.2024.157691_b0085) 2021; 11 Lawson (10.1016/j.cej.2024.157691_b0100) 2021; 121 Santoliquido (10.1016/j.cej.2024.157691_b0065) 2021; 5 |
| References_xml | – volume: 102 start-page: 171 year: 2015 end-page: 185 ident: b0155 article-title: Dynamic non-isothermal trickle bed reactor with both internal diffusion and heat conduction: sugar hydrogenation as a case study publication-title: Chem. Eng. Res. Des. – volume: 171 start-page: 1294 year: 2011 end-page: 1307 ident: b0120 article-title: Monolithic catalysts with high thermal conductivity for the Fischer-Tropsch synthesis in tubular reactors publication-title: Chem. Eng. J. – volume: 58 start-page: 18 year: 1966 end-page: 27 ident: b0165 article-title: New method for prediction of binary gas-phase diffusion coefficients publication-title: Ind. Eng. Chem. Res. – volume: 7 year: 2023 ident: b0040 article-title: Recent progress and perspectives of direct ink writing applications for mass transfer enhancement in gas-phase adsorption and catalysis publication-title: Small Methods – volume: 68 year: 2022 ident: b0125 article-title: Modeling of three-phase continuously operating open-cell foam catalyst packings: sugar hydrogenation to sugar alcohols publication-title: AIChE J. – volume: 4 start-page: 1 year: 2020 end-page: 15 ident: b0150 article-title: Intraparticle modeling of non-uniform active phase distribution catalyst publication-title: ChemEngineering – volume: 248 start-page: 91 year: 2017 end-page: 98 ident: b0180 article-title: Tortuosity of mesoporous alumina catalyst supports: influence of the pore network organization publication-title: Microporous Mesoporous Mater. – volume: 260 year: 2022 ident: b0170 article-title: Microreactor technology in experimental and modelling study of alcohol oxidation on nanogold publication-title: Chem. Eng. Sci. – volume: 53 start-page: 2618 year: 2007 end-page: 2629 ident: b0185 article-title: Mechanical strength of solid catalysts: Recent developments and future prospects publication-title: AIChE J. – volume: 4 start-page: 135 year: 1972 end-page: 138 ident: b0175 article-title: Chemical equilibria 4. Enthalpy of dehydration of ethanol to diethyl ether by measurement of equilibrium constants in ethanol + ether + water by a vapour flow technique publication-title: J. Chem. Thermodyn. – volume: 60 start-page: 13107 year: 2021 end-page: 13114 ident: b0075 article-title: Preparation of a high-precision gama-Al publication-title: Ind. Eng. Chem. Res. – volume: 258 year: 2022 ident: b0105 article-title: 3D-printed structured catalysts for CO publication-title: Energy Convers. Manag. – volume: 37 year: 2021 ident: b0050 article-title: Highly filled resins for DLP-based printing of low density, high modulus materials publication-title: Addit. Manuf. – volume: 274 year: 2020 ident: b0135 article-title: 3D printed catalytic converters with enhanced activity for low-temperature methane oxidation in dual-fuel engines publication-title: Fuel – volume: 48 start-page: 10613 year: 2022 end-page: 10619 ident: b0080 article-title: Fabrication of alumina ceramics with functional gradient structures by digital light processing 3D printing technology publication-title: Ceram. Int. – volume: 47 start-page: 209 year: 2018 end-page: 230 ident: b0020 article-title: 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors publication-title: Chem. Soc. Rev. – volume: 386 year: 2020 ident: b0035 article-title: Adoption of 3D printed highly conductive periodic open cellular structures as an effective solution to enhance the heat transfer performances of compact Fischer-Tropsch fixed-bed reactors publication-title: Chem. Eng. J. – volume: 36 start-page: 179 year: 1994 end-page: 270 ident: b0190 article-title: Monoliths in heterogeneous catalysis publication-title: Catal. Rev. – volume: 50 year: 2022 ident: b0045 article-title: Development of a manufacturing process for Binder Jet 3D printed porous Al publication-title: Addit. Manuf. – volume: 30 year: 2023 ident: b0055 article-title: Ink material selection and optical design considerations in DLP 3D printing publication-title: Appl. Mater. Today – volume: 5 year: 2021 ident: b0065 article-title: A novel device to simply 3D print bulk green ceramic components by stereolithography employing viscous slurries publication-title: Open Ceram. – volume: 195 start-page: 250 year: 2019 end-page: 261 ident: b0025 article-title: Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing publication-title: Chem. Eng. Sci. – volume: 14 start-page: 1336 year: 2024 end-page: 1348 ident: b0090 article-title: Towards unconstrained catalyst shaping: high accuracy DLP printing of porous γ-Al publication-title: Catal. Sci. Technol. – volume: 774 year: 2020 ident: b0060 article-title: Digital light processing of 3Y-TZP strengthened ZrO publication-title: Mater. Sci. Eng. A – volume: 14 year: 2022 ident: b0110 article-title: 3D-printed acidic monolithic catalysts for liquid-phase catalysis with enhanced mass transfer properties publication-title: ChemCatChem – year: 1968 ident: b0195 publication-title: Longitudinal Dispersion in Packed Beds of Porous Adsorbing Solids – volume: 13 start-page: 1 year: 2020 end-page: 23 ident: b0010 article-title: 3d printing in heterogeneous catalysis—the state of the art publication-title: Materials – volume: 427 year: 2022 ident: b0115 article-title: Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO publication-title: Chem. Eng. J. – volume: 60 start-page: 14701 year: 2021 end-page: 14712 ident: b0140 article-title: Enhanced FLUID DYNAMICS in 3D monolithic reactors to improve the chemical performance: experimental and numerical investigation publication-title: Ind. Eng. Chem. Res. – volume: 9 start-page: 8198 year: 2021 end-page: 8206 ident: b0095 article-title: Stepping toward efficient microreactors for CO publication-title: ACS Sustain. Chem. Eng. – volume: 11 year: 2021 ident: b0085 article-title: Structured alumina substrates for environmental catalysis produced by stereolithography publication-title: Appl. Sci. – volume: 433 year: 2022 ident: b0015 article-title: Recent advances in 3D printing for catalytic applications publication-title: Chem. Eng. J. – volume: 13 year: 2023 ident: b0030 article-title: Hydrodynamic behavior of a novel 3D-printed nature-inspired microreactor with a high length-to-surface ratio publication-title: Chem. Eng. J. Adv. – volume: 207 start-page: 133 year: 2024 end-page: 141 ident: b0130 article-title: Shallow beds are not plug flow reactors – Analysis of kinetic data in the presence of axial dispersion effects publication-title: Chem. Eng. Res. Des. – volume: 5 year: 2021 ident: b0070 article-title: The influence of topology on DLP 3D printing, debinding and sintering of ceramic periodic architectures designed to replace bulky components publication-title: Open Ceram. – volume: 121 start-page: 6246 year: 2021 end-page: 6291 ident: b0100 article-title: Recent advances in 3D printing of structured materials for adsorption and catalysis applications publication-title: Chem. Rev. – volume: 6 start-page: 5695 year: 2018 end-page: 5702 ident: b0145 article-title: Rational design and preparation of hierarchical monoliths through 3D printing for syngas methanation publication-title: J. Mater. Chem. A Mater. – volume: 14 start-page: 1164 year: 2017 end-page: 1173 ident: b0005 article-title: Additive manufacturing of periodic ceramic substrates for automotive catalyst supports publication-title: Int. J. Appl. Ceram. Technol. – volume: 229 year: 2021 ident: b0160 article-title: Application of microreactor technology to dehydration of bio-ethanol publication-title: Chem. Eng. Sci. – volume: 8 year: 2023 ident: b0200 article-title: Prediction of flow properties of porous triply periodic minimal surface (TPMS) structures publication-title: Fluids – volume: 30 year: 2023 ident: 10.1016/j.cej.2024.157691_b0055 article-title: Ink material selection and optical design considerations in DLP 3D printing publication-title: Appl. Mater. Today – volume: 229 year: 2021 ident: 10.1016/j.cej.2024.157691_b0160 article-title: Application of microreactor technology to dehydration of bio-ethanol publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.116030 – volume: 171 start-page: 1294 year: 2011 ident: 10.1016/j.cej.2024.157691_b0120 article-title: Monolithic catalysts with high thermal conductivity for the Fischer-Tropsch synthesis in tubular reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.05.014 – year: 1968 ident: 10.1016/j.cej.2024.157691_b0195 – volume: 195 start-page: 250 year: 2019 ident: 10.1016/j.cej.2024.157691_b0025 article-title: Experimental and numerical investigation of fractal-tree-like heat exchanger manufactured by 3D printing publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.07.021 – volume: 36 start-page: 179 year: 1994 ident: 10.1016/j.cej.2024.157691_b0190 article-title: Monoliths in heterogeneous catalysis publication-title: Catal. Rev. doi: 10.1080/01614949408013925 – volume: 260 year: 2022 ident: 10.1016/j.cej.2024.157691_b0170 article-title: Microreactor technology in experimental and modelling study of alcohol oxidation on nanogold publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117920 – volume: 13 year: 2023 ident: 10.1016/j.cej.2024.157691_b0030 article-title: Hydrodynamic behavior of a novel 3D-printed nature-inspired microreactor with a high length-to-surface ratio publication-title: Chem. Eng. J. Adv. doi: 10.1016/j.ceja.2022.100438 – volume: 47 start-page: 209 year: 2018 ident: 10.1016/j.cej.2024.157691_b0020 article-title: 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00631D – volume: 121 start-page: 6246 year: 2021 ident: 10.1016/j.cej.2024.157691_b0100 article-title: Recent advances in 3D printing of structured materials for adsorption and catalysis applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00060 – volume: 14 start-page: 1164 year: 2017 ident: 10.1016/j.cej.2024.157691_b0005 article-title: Additive manufacturing of periodic ceramic substrates for automotive catalyst supports publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/ijac.12745 – volume: 274 year: 2020 ident: 10.1016/j.cej.2024.157691_b0135 article-title: 3D printed catalytic converters with enhanced activity for low-temperature methane oxidation in dual-fuel engines publication-title: Fuel doi: 10.1016/j.fuel.2020.117848 – volume: 48 start-page: 10613 year: 2022 ident: 10.1016/j.cej.2024.157691_b0080 article-title: Fabrication of alumina ceramics with functional gradient structures by digital light processing 3D printing technology publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.12.275 – volume: 207 start-page: 133 year: 2024 ident: 10.1016/j.cej.2024.157691_b0130 article-title: Shallow beds are not plug flow reactors – Analysis of kinetic data in the presence of axial dispersion effects publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2024.05.045 – volume: 5 year: 2021 ident: 10.1016/j.cej.2024.157691_b0070 article-title: The influence of topology on DLP 3D printing, debinding and sintering of ceramic periodic architectures designed to replace bulky components publication-title: Open Ceram. – volume: 4 start-page: 135 year: 1972 ident: 10.1016/j.cej.2024.157691_b0175 article-title: Chemical equilibria 4. Enthalpy of dehydration of ethanol to diethyl ether by measurement of equilibrium constants in ethanol + ether + water by a vapour flow technique publication-title: J. Chem. Thermodyn. doi: 10.1016/S0021-9614(72)80017-X – volume: 9 start-page: 8198 year: 2021 ident: 10.1016/j.cej.2024.157691_b0095 article-title: Stepping toward efficient microreactors for CO2 methanation: 3D-printed gyroid geometry publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c01980 – volume: 53 start-page: 2618 year: 2007 ident: 10.1016/j.cej.2024.157691_b0185 article-title: Mechanical strength of solid catalysts: Recent developments and future prospects publication-title: AIChE J. doi: 10.1002/aic.11291 – volume: 5 year: 2021 ident: 10.1016/j.cej.2024.157691_b0065 article-title: A novel device to simply 3D print bulk green ceramic components by stereolithography employing viscous slurries publication-title: Open Ceram. – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.cej.2024.157691_b0010 article-title: 3d printing in heterogeneous catalysis—the state of the art publication-title: Materials doi: 10.3390/ma13204534 – volume: 386 year: 2020 ident: 10.1016/j.cej.2024.157691_b0035 article-title: Adoption of 3D printed highly conductive periodic open cellular structures as an effective solution to enhance the heat transfer performances of compact Fischer-Tropsch fixed-bed reactors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123988 – volume: 50 year: 2022 ident: 10.1016/j.cej.2024.157691_b0045 article-title: Development of a manufacturing process for Binder Jet 3D printed porous Al2O3 supports used in heterogeneous catalysis publication-title: Addit. Manuf. – volume: 774 year: 2020 ident: 10.1016/j.cej.2024.157691_b0060 article-title: Digital light processing of 3Y-TZP strengthened ZrO2 ceramics publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2019.138768 – volume: 6 start-page: 5695 year: 2018 ident: 10.1016/j.cej.2024.157691_b0145 article-title: Rational design and preparation of hierarchical monoliths through 3D printing for syngas methanation publication-title: J. Mater. Chem. A Mater. doi: 10.1039/C8TA01597J – volume: 102 start-page: 171 year: 2015 ident: 10.1016/j.cej.2024.157691_b0155 article-title: Dynamic non-isothermal trickle bed reactor with both internal diffusion and heat conduction: sugar hydrogenation as a case study publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2015.06.011 – volume: 4 start-page: 1 year: 2020 ident: 10.1016/j.cej.2024.157691_b0150 article-title: Intraparticle modeling of non-uniform active phase distribution catalyst publication-title: ChemEngineering doi: 10.3390/chemengineering4020024 – volume: 8 year: 2023 ident: 10.1016/j.cej.2024.157691_b0200 article-title: Prediction of flow properties of porous triply periodic minimal surface (TPMS) structures publication-title: Fluids doi: 10.3390/fluids8120312 – volume: 7 year: 2023 ident: 10.1016/j.cej.2024.157691_b0040 article-title: Recent progress and perspectives of direct ink writing applications for mass transfer enhancement in gas-phase adsorption and catalysis publication-title: Small Methods doi: 10.1002/smtd.202201302 – volume: 14 start-page: 1336 year: 2024 ident: 10.1016/j.cej.2024.157691_b0090 article-title: Towards unconstrained catalyst shaping: high accuracy DLP printing of porous γ-Al2O3-based catalysts publication-title: Catal. Sci. Technol. doi: 10.1039/D3CY01592K – volume: 427 year: 2022 ident: 10.1016/j.cej.2024.157691_b0115 article-title: Modelling and simulation of catalytic ammonia decomposition over Ni-Ru deposited on 3D-printed CeO2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131756 – volume: 60 start-page: 14701 year: 2021 ident: 10.1016/j.cej.2024.157691_b0140 article-title: Enhanced FLUID DYNAMICS in 3D monolithic reactors to improve the chemical performance: experimental and numerical investigation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c03098 – volume: 14 year: 2022 ident: 10.1016/j.cej.2024.157691_b0110 article-title: 3D-printed acidic monolithic catalysts for liquid-phase catalysis with enhanced mass transfer properties publication-title: ChemCatChem doi: 10.1002/cctc.202101947 – volume: 248 start-page: 91 year: 2017 ident: 10.1016/j.cej.2024.157691_b0180 article-title: Tortuosity of mesoporous alumina catalyst supports: influence of the pore network organization publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.04.010 – volume: 433 year: 2022 ident: 10.1016/j.cej.2024.157691_b0015 article-title: Recent advances in 3D printing for catalytic applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134341 – volume: 68 year: 2022 ident: 10.1016/j.cej.2024.157691_b0125 article-title: Modeling of three-phase continuously operating open-cell foam catalyst packings: sugar hydrogenation to sugar alcohols publication-title: AIChE J. doi: 10.1002/aic.17732 – volume: 11 year: 2021 ident: 10.1016/j.cej.2024.157691_b0085 article-title: Structured alumina substrates for environmental catalysis produced by stereolithography publication-title: Appl. Sci. doi: 10.3390/app11178239 – volume: 258 year: 2022 ident: 10.1016/j.cej.2024.157691_b0105 article-title: 3D-printed structured catalysts for CO2 methanation reaction: advancing of gyroid-based geometries publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115464 – volume: 60 start-page: 13107 year: 2021 ident: 10.1016/j.cej.2024.157691_b0075 article-title: Preparation of a high-precision gama-Al2O3 structured catalyst by DLP 3D direct printing for hydrogen production from methanol publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c01951 – volume: 37 year: 2021 ident: 10.1016/j.cej.2024.157691_b0050 article-title: Highly filled resins for DLP-based printing of low density, high modulus materials publication-title: Addit. Manuf. – volume: 58 start-page: 18 year: 1966 ident: 10.1016/j.cej.2024.157691_b0165 article-title: New method for prediction of binary gas-phase diffusion coefficients publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie50677a007 |
| SSID | ssj0006919 |
| Score | 2.4949992 |
| Snippet | [Display omitted]
•Periodic alumina catalyst structures were designed and printed with DLP printing technology.•The catalyst performance was demonstrated in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 157691 |
| SubjectTerms | 3D printing DLP Ethanol dehydration Kinetic modeling Structured catalysts |
| Title | DLP 3D printing of alumina catalyst architectures: Design, kinetics and modeling of structure effects on catalyst performance |
| URI | https://dx.doi.org/10.1016/j.cej.2024.157691 |
| Volume | 501 |
| WOSCitedRecordID | wos001407822200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006919 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGKQd6QKyiZZEPnBgyyuIs5lZ1WkFpq0ot0twix3GkDK1n1EwXkPiN_KU-b0mYAgIkLtEoY78kfp_stz-EXsckpZQkgScCWoKC4hdeBie1l6pkGT-lGWWa0_vp4WE2ndKjweC7y4W5PE2lzK6v6eK_shruAbNV6uxfsLslCjfgNzAdrsB2uP4R4yf7R6NoMlIGOxfSzGAHqiUbaVvNl2Y56rsPdEzcRAdyqPX-DGJnW7pZ98mxREylWeVvaGNAZEdx0SUg9OXdth6B6OoettUqVDcRpqKCjFX1-KpefjXJx9ZQQZOeoeKAwRvMa9VjSRsTLrogoz3RXDTa5wQfuSvOXYtuyWTNGvi4VlwXoDGcCQnwNwNg_AEzkdZGsTCRA0Sa3fgj_Ne3i4RkJcbkdsKO3t-jLPYyaop8ugMgNtNuHSbGrjEbczEbqyeMA1DOTG-xlRrdx4quIgvyEQWNjdxBa2Ea02yI1rY-7Ez3WuEA5lNtA7Dv4RztOuRw5UE_F5V64s_JA3Tf6i14y-DtIRoI-Qit96pZPkbfAHk4mmCHPDyvsEUedjjBPyDvHTa4e4sd6jAwHzvUKQIt6rBFHZ7LjloPdU_Qp92dk-33nu3u4fGI-EtPgCrgV4FfhEkVcV5WSSRUvQiRJsozyEORCjhtBIsoozzkNFNp0lz4YRLThJbRUzSUcymeIUw4qbgoA14WJYEjiZUFKOo0KkiZiKwoNpDvFjLntvS96sBymrsYx1kOa5-rtc_N2m-gN-2Uhan78rvBxHEnt4KrEUhzgNKvp23-27Tn6F6H9xdoCHwQL9Fdfrmsm_NXFnA330i9jA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DLP+3D+printing+of+alumina+catalyst+architectures%3A+Design%2C+kinetics+and+modeling+of+structure+effects+on+catalyst+performance&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Mastroianni%2C+Luca&rft.au=Jesus+Medina+Ferrer%2C+Ananias+De&rft.au=De+Domenico%2C+Anna+Maria&rft.au=Er%C3%A4nen%2C+Kari&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=501&rft_id=info:doi/10.1016%2Fj.cej.2024.157691&rft.externalDocID=S1385894724091824 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |