Learning-augmented maximum flow
We propose a framework for speeding up maximum flow computation by using predictions. A prediction is a flow, i.e., an assignment of non-negative flow values to edges, which satisfies the flow conservation property, but does not necessarily respect the edge capacities of the actual instance (since t...
Gespeichert in:
| Veröffentlicht in: | Information processing letters Jg. 186; S. 106487 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.08.2024
|
| Schlagworte: | |
| ISSN: | 0020-0190, 1872-6119 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a framework for speeding up maximum flow computation by using predictions. A prediction is a flow, i.e., an assignment of non-negative flow values to edges, which satisfies the flow conservation property, but does not necessarily respect the edge capacities of the actual instance (since these were unknown at the time of learning). We present an algorithm that, given an m-edge flow network and a predicted flow, computes a maximum flow in O(mη) time, where η is the ℓ1 error of the prediction, i.e., the sum over the edges of the absolute difference between the predicted and optimal flow values. Moreover, we prove that, given an oracle access to a distribution over flow networks, it is possible to efficiently PAC-learn a prediction minimizing the expected ℓ1 error over that distribution. Our results fit into the recent line of research on learning-augmented algorithms, which aims to improve over worst-case bounds of classical algorithms by using predictions, e.g., machine-learned from previous similar instances. So far, the main focus in this area was on improving competitive ratios for online problems. Following Dinitz et al. (2021) [6], our results are among the firsts to improve the running time of an offline problem.
•We speed up maximum flow computation in graphs by using predictions.•Prediction is a flow satisfying flow conservation but not necessarily capacities.•We show that such predictions are efficiently learnable.•We compute flow in O(mη) time in m-edge graphs for predictions with L1 error up to η. |
|---|---|
| AbstractList | We propose a framework for speeding up maximum flow computation by using predictions. A prediction is a flow, i.e., an assignment of non-negative flow values to edges, which satisfies the flow conservation property, but does not necessarily respect the edge capacities of the actual instance (since these were unknown at the time of learning). We present an algorithm that, given an m-edge flow network and a predicted flow, computes a maximum flow in O(mη) time, where η is the ℓ1 error of the prediction, i.e., the sum over the edges of the absolute difference between the predicted and optimal flow values. Moreover, we prove that, given an oracle access to a distribution over flow networks, it is possible to efficiently PAC-learn a prediction minimizing the expected ℓ1 error over that distribution. Our results fit into the recent line of research on learning-augmented algorithms, which aims to improve over worst-case bounds of classical algorithms by using predictions, e.g., machine-learned from previous similar instances. So far, the main focus in this area was on improving competitive ratios for online problems. Following Dinitz et al. (2021) [6], our results are among the firsts to improve the running time of an offline problem.
•We speed up maximum flow computation in graphs by using predictions.•Prediction is a flow satisfying flow conservation but not necessarily capacities.•We show that such predictions are efficiently learnable.•We compute flow in O(mη) time in m-edge graphs for predictions with L1 error up to η. |
| ArticleNumber | 106487 |
| Author | Polak, Adam Zub, Maksym |
| Author_xml | – sequence: 1 givenname: Adam surname: Polak fullname: Polak, Adam email: adam.polak@unibocconi.it organization: Bocconi University, Via Roentgen 1, 20136, Milano, Italy – sequence: 2 givenname: Maksym surname: Zub fullname: Zub, Maksym email: max.zub@student.uj.edu.pl organization: Jagiellonian University, ul. Lojasiewicza 6, 30-348, Krakow, Poland |
| BookMark | eNp9j8tOwzAQRS1UJNrCB7CiP5AwkzhxLFaogoJUiU33lmNPKkeJUzkpj7_HVVmx6GruaOZc6SzYzA-eGLtHSBGwfGxTd-jSDDIe95JX4orNsRJZUiLKGZsDZJAASrhhi3FsAeJTLubsYUs6eOf3iT7ue_IT2VWvv11_7FdNN3zdsutGdyPd_c0l272-7NZvyfZj875-3iYm5zAlhNaiLhowkpMpaxlDmde5yCpeWSmEbEjWGTfSWm4LizwvKF401lzyIl8yPNeaMIxjoEYdgut1-FEI6iSoWhUF1UlQnQUjI_4xxk16coOfgnbdRfLpTFI0-nQU1GgceUPWBTKTsoO7QP8CLdRr2Q |
| CitedBy_id | crossref_primary_10_3390_s25082555 |
| Cites_doi | 10.4153/CJM-1956-045-5 10.1109/TPAMI.2004.60 10.1145/3447579 10.1016/0022-0000(80)90035-5 10.1007/s11554-013-0344-3 10.1145/321694.321699 10.1080/01621459.1963.10500830 10.1287/opre.1080.0524 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ipl.2024.106487 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-6119 |
| ExternalDocumentID | 10_1016_j_ipl_2024_106487 S0020019024000176 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SME SPC SPCBC SSV SSZ T5K TN5 UQL WH7 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c340t-e1dd1a5f0c94ec6b90c963b372848d9779fe9b24c9dd4d5d1435e48da1b49453 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001253808800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0190 |
| IngestDate | Sat Nov 29 03:44:24 EST 2025 Tue Nov 18 22:19:47 EST 2025 Sat May 11 15:33:44 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Combinatorial optimization Analysis of algorithms Algorithms with predictions Maximum flow |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-e1dd1a5f0c94ec6b90c963b372848d9779fe9b24c9dd4d5d1435e48da1b49453 |
| OpenAccessLink | https://ruj.uj.edu.pl/xmlui/handle/item/327649 |
| ParticipantIDs | crossref_primary_10_1016_j_ipl_2024_106487 crossref_citationtrail_10_1016_j_ipl_2024_106487 elsevier_sciencedirect_doi_10_1016_j_ipl_2024_106487 |
| PublicationCentury | 2000 |
| PublicationDate | August 2024 2024-08-00 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Information processing letters |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Silwal, Vakilian, Zhang (br0030) 2022; vol. 162 Spielman, Teng (br0260) 2004 Kohli, Torr (br0190) 2005 Hoeffding (br0160) 1963; 58 Edmonds, Karp (br0090) 1972; 19 Lykouris, Vassilvitskii (br0210) 2021; 68 Purohit, Svitkina, Kumar (br0240) 2018 Hsu, Indyk, Katabi, Vakilian (br0170) 2019 Ford, Fulkerson (br0120) 1956; 8 Dinitz (br0070) 1970; 11 Juan, Boykov (br0180) 2006 Boykov, Kolmogorov (br0020) 2004; 26 Galil, Naamad (br0130) 1980; 21 Hochbaum (br0150) 2008; 56 Chen, Kyng, Liu, Peng, Probst Gutenberg, Sachdeva (br0040) 2022 Dinitz, Im, Lavastida, Moseley, Vassilvitskii (br0060) 2021; vol. 34 Ergun, Feng, Silwal, Woodruff, Zhou (br0100) 2022 Kraska, Beutel, Chi, Dean, Polyzotis (br0200) 2018 Fishbain, Hochbaum, Müller (br0110) 2016; 11 Goldberg, Tarjan (br0140) 1986 Sakaue, Oki (br0250) 2022 Eden, Indyk, Narayanan, Rubinfeld, Silwal, Wagner (br0080) 2021 Mitzenmacher, Vassilvitskii (br0230) 2020 Davies, Moseley, Vassilvitskii, Wang (br0050) 2023; vol. 202 Ahuja, Magnanti, Orlin (br0010) 1993 Mahdian, Nazerzadeh, Saberi (br0220) 2007 Ergun (10.1016/j.ipl.2024.106487_br0100) 2022 Sakaue (10.1016/j.ipl.2024.106487_br0250) 2022 Dinitz (10.1016/j.ipl.2024.106487_br0060) 2021; vol. 34 Boykov (10.1016/j.ipl.2024.106487_br0020) 2004; 26 Eden (10.1016/j.ipl.2024.106487_br0080) 2021 Hoeffding (10.1016/j.ipl.2024.106487_br0160) 1963; 58 Galil (10.1016/j.ipl.2024.106487_br0130) 1980; 21 Mitzenmacher (10.1016/j.ipl.2024.106487_br0230) 2020 Dinitz (10.1016/j.ipl.2024.106487_br0070) 1970; 11 Purohit (10.1016/j.ipl.2024.106487_br0240) 2018 Fishbain (10.1016/j.ipl.2024.106487_br0110) 2016; 11 Chen (10.1016/j.ipl.2024.106487_br0030) 2022; vol. 162 Edmonds (10.1016/j.ipl.2024.106487_br0090) 1972; 19 Kohli (10.1016/j.ipl.2024.106487_br0190) 2005 Hsu (10.1016/j.ipl.2024.106487_br0170) 2019 Juan (10.1016/j.ipl.2024.106487_br0180) 2006 Mahdian (10.1016/j.ipl.2024.106487_br0220) 2007 Davies (10.1016/j.ipl.2024.106487_br0050) 2023; vol. 202 Kraska (10.1016/j.ipl.2024.106487_br0200) 2018 Spielman (10.1016/j.ipl.2024.106487_br0260) 2004 Lykouris (10.1016/j.ipl.2024.106487_br0210) 2021; 68 Ford (10.1016/j.ipl.2024.106487_br0120) 1956; 8 Chen (10.1016/j.ipl.2024.106487_br0040) 2022 Ahuja (10.1016/j.ipl.2024.106487_br0010) 1993 Goldberg (10.1016/j.ipl.2024.106487_br0140) 1986 Hochbaum (10.1016/j.ipl.2024.106487_br0150) 2008; 56 |
| References_xml | – start-page: 612 year: 2022 end-page: 623 ident: br0040 article-title: Maximum flow and minimum-cost flow in almost-linear time publication-title: 63rd IEEE Annual Symposium on Foundations of Computer Science – volume: 58 start-page: 13 year: 1963 end-page: 30 ident: br0160 article-title: Probability inequalities for sums of bounded random variables publication-title: J. Am. Stat. Assoc. – year: 1993 ident: br0010 article-title: Network Flows – Theory, Algorithms and Applications – volume: vol. 34 start-page: 10393 year: 2021 end-page: 10406 ident: br0060 article-title: Faster Matchings via Learned Duals publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 1277 year: 1970 end-page: 1280 ident: br0070 article-title: Algorithm for solution of a problem of maximum flow in networks with power estimation publication-title: Sov. Math. Dokl. – year: 2022 ident: br0100 article-title: Learning-augmented k-means clustering publication-title: The Tenth International Conference on Learning Representations – volume: vol. 162 start-page: 3583 year: 2022 end-page: 3602 ident: br0030 article-title: Faster fundamental graph algorithms via learned predictions publication-title: International Conference on Machine Learning – start-page: 9684 year: 2018 end-page: 9693 ident: br0240 article-title: Improving online algorithms via ML predictions publication-title: Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 – year: 2019 ident: br0170 article-title: Learning-based frequency estimation algorithms publication-title: 7th International Conference on Learning Representations – start-page: 489 year: 2018 end-page: 504 ident: br0200 article-title: The case for learned index structures publication-title: Proceedings of the 2018 International Conference on Management of Data – volume: 26 start-page: 1124 year: 2004 end-page: 1137 ident: br0020 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 56 start-page: 992 year: 2008 end-page: 1009 ident: br0150 article-title: The pseudoflow algorithm: a new algorithm for the maximum-flow problem publication-title: Oper. Res. – volume: 11 start-page: 589 year: 2016 end-page: 609 ident: br0110 article-title: A competitive study of the pseudoflow algorithm for the minimum s-t cut problem in vision applications publication-title: J. Real-Time Image Process. – volume: 19 start-page: 248 year: 1972 end-page: 264 ident: br0090 article-title: Theoretical improvements in algorithmic efficiency for network flow problems publication-title: J. ACM – start-page: 136 year: 1986 end-page: 146 ident: br0140 article-title: A new approach to the maximum flow problem publication-title: Proceedings of the 18th Annual ACM Symposium on Theory of Computing – start-page: 922 year: 2005 end-page: 929 ident: br0190 article-title: Efficiently solving dynamic Markov random fields using graph cuts publication-title: 10th IEEE International Conference on Computer Vision (ICCV 2005) – volume: 68 year: 2021 ident: br0210 article-title: Competitive caching with machine learned advice publication-title: J. ACM – volume: vol. 202 start-page: 7231 year: 2023 end-page: 7248 ident: br0050 article-title: Predictive flows for faster Ford-Fulkerson publication-title: International Conference on Machine Learning – volume: 8 start-page: 399 year: 1956 end-page: 404 ident: br0120 article-title: Maximal flow through a network publication-title: Can. J. Math. – start-page: 81 year: 2004 end-page: 90 ident: br0260 article-title: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems publication-title: Proceedings of the 36th Annual ACM Symposium on Theory of Computing – year: 2021 ident: br0080 article-title: Learning-based support estimation in sublinear time publication-title: 9th International Conference on Learning Representations – volume: 21 start-page: 203 year: 1980 end-page: 217 ident: br0130 article-title: An publication-title: J. Comput. Syst. Sci. – year: 2022 ident: br0250 article-title: Discrete-convex-analysis-based framework for warm-starting algorithms with predictions publication-title: NeurIPS – start-page: 646 year: 2020 end-page: 662 ident: br0230 article-title: Algorithms with predictions publication-title: Beyond the Worst-Case Analysis of Algorithms – start-page: 1023 year: 2006 end-page: 1029 ident: br0180 article-title: Active graph cuts publication-title: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006) – start-page: 288 year: 2007 end-page: 294 ident: br0220 article-title: Allocating online advertisement space with unreliable estimates publication-title: Proceedings 8th ACM Conference on Electronic Commerce (EC-2007) – year: 2022 ident: 10.1016/j.ipl.2024.106487_br0250 article-title: Discrete-convex-analysis-based framework for warm-starting algorithms with predictions – volume: 8 start-page: 399 year: 1956 ident: 10.1016/j.ipl.2024.106487_br0120 article-title: Maximal flow through a network publication-title: Can. J. Math. doi: 10.4153/CJM-1956-045-5 – start-page: 288 year: 2007 ident: 10.1016/j.ipl.2024.106487_br0220 article-title: Allocating online advertisement space with unreliable estimates – year: 1993 ident: 10.1016/j.ipl.2024.106487_br0010 – start-page: 9684 year: 2018 ident: 10.1016/j.ipl.2024.106487_br0240 article-title: Improving online algorithms via ML predictions – volume: 26 start-page: 1124 issue: 9 year: 2004 ident: 10.1016/j.ipl.2024.106487_br0020 article-title: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.60 – year: 2022 ident: 10.1016/j.ipl.2024.106487_br0100 article-title: Learning-augmented k-means clustering – volume: 68 issue: 4 year: 2021 ident: 10.1016/j.ipl.2024.106487_br0210 article-title: Competitive caching with machine learned advice publication-title: J. ACM doi: 10.1145/3447579 – start-page: 922 year: 2005 ident: 10.1016/j.ipl.2024.106487_br0190 article-title: Efficiently solving dynamic Markov random fields using graph cuts – volume: 21 start-page: 203 issue: 2 year: 1980 ident: 10.1016/j.ipl.2024.106487_br0130 article-title: An O(EVlog2V) algorithm for the maximal flow problem publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(80)90035-5 – start-page: 612 year: 2022 ident: 10.1016/j.ipl.2024.106487_br0040 article-title: Maximum flow and minimum-cost flow in almost-linear time – start-page: 81 year: 2004 ident: 10.1016/j.ipl.2024.106487_br0260 article-title: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems – volume: 11 start-page: 589 issue: 3 year: 2016 ident: 10.1016/j.ipl.2024.106487_br0110 article-title: A competitive study of the pseudoflow algorithm for the minimum s-t cut problem in vision applications publication-title: J. Real-Time Image Process. doi: 10.1007/s11554-013-0344-3 – year: 2021 ident: 10.1016/j.ipl.2024.106487_br0080 article-title: Learning-based support estimation in sublinear time – start-page: 136 year: 1986 ident: 10.1016/j.ipl.2024.106487_br0140 article-title: A new approach to the maximum flow problem – volume: vol. 202 start-page: 7231 year: 2023 ident: 10.1016/j.ipl.2024.106487_br0050 article-title: Predictive flows for faster Ford-Fulkerson – volume: vol. 34 start-page: 10393 year: 2021 ident: 10.1016/j.ipl.2024.106487_br0060 article-title: Faster Matchings via Learned Duals – start-page: 1023 year: 2006 ident: 10.1016/j.ipl.2024.106487_br0180 article-title: Active graph cuts – volume: vol. 162 start-page: 3583 year: 2022 ident: 10.1016/j.ipl.2024.106487_br0030 article-title: Faster fundamental graph algorithms via learned predictions – volume: 11 start-page: 1277 year: 1970 ident: 10.1016/j.ipl.2024.106487_br0070 article-title: Algorithm for solution of a problem of maximum flow in networks with power estimation publication-title: Sov. Math. Dokl. – year: 2019 ident: 10.1016/j.ipl.2024.106487_br0170 article-title: Learning-based frequency estimation algorithms – start-page: 489 year: 2018 ident: 10.1016/j.ipl.2024.106487_br0200 article-title: The case for learned index structures – volume: 19 start-page: 248 issue: 2 year: 1972 ident: 10.1016/j.ipl.2024.106487_br0090 article-title: Theoretical improvements in algorithmic efficiency for network flow problems publication-title: J. ACM doi: 10.1145/321694.321699 – volume: 58 start-page: 13 issue: 301 year: 1963 ident: 10.1016/j.ipl.2024.106487_br0160 article-title: Probability inequalities for sums of bounded random variables publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1963.10500830 – volume: 56 start-page: 992 issue: 4 year: 2008 ident: 10.1016/j.ipl.2024.106487_br0150 article-title: The pseudoflow algorithm: a new algorithm for the maximum-flow problem publication-title: Oper. Res. doi: 10.1287/opre.1080.0524 – start-page: 646 year: 2020 ident: 10.1016/j.ipl.2024.106487_br0230 article-title: Algorithms with predictions |
| SSID | ssj0006437 |
| Score | 2.4305844 |
| Snippet | We propose a framework for speeding up maximum flow computation by using predictions. A prediction is a flow, i.e., an assignment of non-negative flow values... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106487 |
| SubjectTerms | Algorithms with predictions Analysis of algorithms Combinatorial optimization Maximum flow |
| Title | Learning-augmented maximum flow |
| URI | https://dx.doi.org/10.1016/j.ipl.2024.106487 |
| Volume | 186 |
| WOSCitedRecordID | wos001253808800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6119 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006437 issn: 0020-0190 databaseCode: AIEXJ dateStart: 19950113 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LT4MwGG90evDi2_iWgycXFh4d0ONiZtQY42Exu5HSlmU62OKGzv_er7QwnM7owQshhZbC7-Prr-33QOhceNznDsOmjD1m4lhEJvWIZ9peLBzLi70o38F_vPPv74Nulzzo3HrjPJ2An6bBdEpG_wo1lAHY0nX2D3CXjUIBnAPocATY4fgr4HXE1J5Js14ecZPXEzrtJ1lSjwfDtyob1b5IuQiMlMeAXDkY5C4-Jdl-gNlvrjNbnCblQnMWKVef5_F7Ul06cHBpuDYz5ZdWaSpf50wdVhUazBixGhG_6Fo17X9q9EdyC8fBjdm9n-Naz403pRVgYWD2FEIToWwiVE0soxXHb5KghlZaN-3ubTm0yl1GZbOj-l1sU-cGe3P9-J5oVMhDZxOta9ZvtBRaW2hJpNtoo8ioYWgFu4POvoJnaPAMCd4u6ly1O5fXpk5hYTIXWxNT2JzbtBlbjGDBpOAz0HiR6wMrCDhwbxILEjmYEc4xb3LJXgVcoXaECW66e6iWDlOxjwxgpi6hjpw_BvBLYeq4TMQ2xcJmtsXEAbKK1w2ZDu8us4wMwoWf-QBdlFVGKrbJTzfj4huGmpwp0hWCPCyudviXZxyhtZmYHqPa5CUTJ2iVvU7645dTLQwfK91Wgw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning-augmented+maximum+flow&rft.jtitle=Information+processing+letters&rft.au=Polak%2C+Adam&rft.au=Zub%2C+Maksym&rft.date=2024-08-01&rft.issn=0020-0190&rft.volume=186&rft.spage=106487&rft_id=info:doi/10.1016%2Fj.ipl.2024.106487&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipl_2024_106487 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon |