A comparison of the shared-memory parallel programming models OpenMP, OpenACC and Kokkos in the context of implicit solvers for high-order FEM
We consider the application of three performance-portable programming models in the context of a high-order spectral element, implicit time-stepping solver for the Navier–Stokes equations. We aim to evaluate whether the use of these models allows code developers to deliver high-performance solvers f...
Saved in:
| Published in: | Computer physics communications Vol. 255; p. 107245 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.10.2020
|
| Subjects: | |
| ISSN: | 0010-4655, 1879-2944 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We consider the application of three performance-portable programming models in the context of a high-order spectral element, implicit time-stepping solver for the Navier–Stokes equations. We aim to evaluate whether the use of these models allows code developers to deliver high-performance solvers for computational fluid dynamics simulations that are capable of effectively utilising both many-core CPU and GPU architectures. Using the core elliptic solver for the Navier–Stokes equations as a benchmarking guide, we evaluate the performance of these models on a range of unstructured meshes and give guidelines for the translation of existing codebases and their data structures to these models. |
|---|---|
| ISSN: | 0010-4655 1879-2944 |
| DOI: | 10.1016/j.cpc.2020.107245 |