Gaussian process latent class choice models
•Integration of machine learning and discrete choice models.•New choice model referred to as Gaussian process latent class choice model.•Derivation and implementation of an expectation-maximization algorithm.•More complex and flexible representation of unobserved heterogeneity.•The model improves pr...
Gespeichert in:
| Veröffentlicht in: | Transportation research. Part C, Emerging technologies Jg. 136; S. 103552 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.03.2022
|
| Schlagworte: | |
| ISSN: | 0968-090X, 1879-2359 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Integration of machine learning and discrete choice models.•New choice model referred to as Gaussian process latent class choice model.•Derivation and implementation of an expectation-maximization algorithm.•More complex and flexible representation of unobserved heterogeneity.•The model improves prediction accuracy without weakening economic interpretability.
We present a Gaussian Process – Latent Class Choice Model (GP-LCCM) to integrate a non-parametric class of probabilistic machine learning within discrete choice models (DCMs). Gaussian Processes (GPs) are kernel-based algorithms that incorporate expert knowledge by assuming priors over latent functions rather than priors over parameters, which makes them more flexible in addressing nonlinear problems. By integrating a Gaussian Process within a LCCM structure, we aim at improving discrete representations of unobserved heterogeneity. The proposed model would assign individuals probabilistically to behaviorally homogeneous clusters (latent classes) using GPs and simultaneously estimate class-specific choice models by relying on random utility models. Furthermore, we derive and implement an Expectation-Maximization (EM) algorithm to jointly estimate/infer the hyperparameters of the GP kernel function and the class-specific choice parameters by relying on a Laplace approximation and gradient-based numerical optimization methods, respectively. The model is tested on two different mode choice applications and compared against different LCCM benchmarks. Results show that GP-LCCM allows for a more complex and flexible representation of heterogeneity and improves both in-sample fit and out-of-sample predictive power. Moreover, behavioral and economic interpretability is maintained at the class-specific choice model level while local interpretation of the latent classes can still be achieved, although the non-parametric characteristic of GPs lessens the transparency of the model. |
|---|---|
| AbstractList | •Integration of machine learning and discrete choice models.•New choice model referred to as Gaussian process latent class choice model.•Derivation and implementation of an expectation-maximization algorithm.•More complex and flexible representation of unobserved heterogeneity.•The model improves prediction accuracy without weakening economic interpretability.
We present a Gaussian Process – Latent Class Choice Model (GP-LCCM) to integrate a non-parametric class of probabilistic machine learning within discrete choice models (DCMs). Gaussian Processes (GPs) are kernel-based algorithms that incorporate expert knowledge by assuming priors over latent functions rather than priors over parameters, which makes them more flexible in addressing nonlinear problems. By integrating a Gaussian Process within a LCCM structure, we aim at improving discrete representations of unobserved heterogeneity. The proposed model would assign individuals probabilistically to behaviorally homogeneous clusters (latent classes) using GPs and simultaneously estimate class-specific choice models by relying on random utility models. Furthermore, we derive and implement an Expectation-Maximization (EM) algorithm to jointly estimate/infer the hyperparameters of the GP kernel function and the class-specific choice parameters by relying on a Laplace approximation and gradient-based numerical optimization methods, respectively. The model is tested on two different mode choice applications and compared against different LCCM benchmarks. Results show that GP-LCCM allows for a more complex and flexible representation of heterogeneity and improves both in-sample fit and out-of-sample predictive power. Moreover, behavioral and economic interpretability is maintained at the class-specific choice model level while local interpretation of the latent classes can still be achieved, although the non-parametric characteristic of GPs lessens the transparency of the model. |
| ArticleNumber | 103552 |
| Author | Abou-Zeid, Maya Rodrigues, Filipe Sfeir, Georges |
| Author_xml | – sequence: 1 givenname: Georges surname: Sfeir fullname: Sfeir, Georges email: geosaf@dtu.dk organization: DTU Management Engineering, Transport DTU, Technical University of Denmark, Kgs. Lyngby 2800, Denmark – sequence: 2 givenname: Filipe surname: Rodrigues fullname: Rodrigues, Filipe email: rodr@dtu.dk organization: DTU Management Engineering, Transport DTU, Technical University of Denmark, Kgs. Lyngby 2800, Denmark – sequence: 3 givenname: Maya surname: Abou-Zeid fullname: Abou-Zeid, Maya email: ma202@aub.edu.lb organization: American University of Beirut, Beirut, Riad el Solh 1107 2020, Lebanon |
| BookMark | eNp9j8FKAzEURYNUsK1-gLvZy9SXZDIzwZUUrULBjYK7kHnzginTSUmi4N87pa5cuLrcxbncs2CzMYzE2DWHFQde3-5WOeJKgBBTl0qJMzbnbaNLIZWesTnoui1Bw_sFW6S0AwCuVTNnNxv7mZK3Y3GIASmlYrCZxlzgYKeCH8EjFfvQ05Au2bmzQ6Kr31yyt8eH1_VTuX3ZPK_vtyXKCnKJPXdueqAabh0htE7WQnLV1B2AFNwpasF2daelrqnSDnTV9VUntBBcSCGXrDntYgwpRXIGfbbZhzFH6wfDwRydzc5MzubobE7OE8n_kIfo9zZ-_8vcnZjJkL48RZPQ04jU-0iYTR_8P_QPVjhvtA |
| CitedBy_id | crossref_primary_10_1016_j_trb_2024_103132 crossref_primary_10_1016_j_tra_2024_104198 crossref_primary_10_1016_j_trc_2025_105289 crossref_primary_10_1080_19427867_2024_2392332 crossref_primary_10_1016_j_aap_2024_107745 crossref_primary_10_1016_j_jocm_2023_100452 crossref_primary_10_1177_03611981231196149 crossref_primary_10_1007_s11116_024_10579_1 crossref_primary_10_14246_irspsd_13_3_56 crossref_primary_10_1080_19427867_2024_2359304 crossref_primary_10_1007_s10661_024_12516_2 |
| Cites_doi | 10.1109/MTITS.2017.8005618 10.1086/664709 10.1145/279232.279236 10.1016/S0968-090X(01)00007-9 10.3846/16484142.2015.1081279 10.1287/trsc.31.1.34 10.1111/j.1467-8667.2008.00554.x 10.1016/j.trc.2005.04.002 10.1016/j.jocm.2020.100236 10.1109/TITS.2006.874716 10.1109/TPAMI.2016.2635136 10.1016/j.dsp.2017.10.011 10.3141/1854-06 10.1145/2939672.2939778 10.1007/978-3-030-37446-4_9 10.1016/j.trc.2010.10.004 10.1609/aaai.v28i1.8904 10.1177/0361198106197700102 10.1016/j.trc.2017.11.021 10.1109/34.735807 10.1049/iet-its.2009.0029 10.1016/j.tra.2013.07.008 10.1016/S0968-090X(96)00017-4 10.1016/j.trb.2020.08.006 10.1061/(ASCE)0733-947X(2003)129:3(278) 10.1257/aer.91.3.351 10.1177/0361198118796971 10.1016/j.sbspro.2013.11.152 10.1016/j.apm.2010.09.005 10.1109/TITS.2018.2817879 10.1016/j.trc.2018.08.007 10.1109/ICWS.2017.83 10.1016/j.trb.2014.02.008 10.3141/2165-08 10.1016/S0198-9715(98)00036-2 10.1016/j.trb.2019.12.001 10.1016/j.tranpol.2020.03.014 10.1016/j.jocm.2021.100320 10.1016/j.tra.2018.08.041 10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1 10.1016/j.jocm.2017.11.003 10.1016/j.tranpol.2016.02.013 10.1109/ICTBIG.2016.7892699 10.1162/089976600300014881 10.1080/00036846.2011.650325 10.1038/nature14541 10.1016/j.trc.2017.03.004 10.7708/ijtte.2016.6(3).10 10.1016/S1755-5345(13)70022-8 10.1007/s10640-010-9389-y 10.1016/j.jocm.2020.100221 10.1142/S0129065704001899 10.1109/TITS.2015.2405759 10.1016/j.trc.2020.102701 10.1080/03081060.2015.1079385 10.1016/j.trb.2017.10.013 10.1111/j.1467-8667.2008.00558.x 10.1016/j.dss.2019.02.003 10.1111/j.2517-6161.1977.tb01600.x 10.1504/WRITR.2014.065055 10.1109/72.883477 10.3390/s150922587 10.1109/TITS.2004.825084 10.1109/ACCESS.2018.2879055 10.1016/j.jocm.2016.07.004 10.1016/j.trc.2007.06.005 10.1016/S1366-5545(99)00030-7 10.7708/ijtte.2013.3(4).05 10.1145/2487575.2487598 10.1061/(ASCE)0887-3801(2000)14:1(23) 10.7708/ijtte.2014.4(3).03 10.1016/S0377-2217(00)00123-5 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors |
| Copyright_xml | – notice: 2022 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.trc.2022.103552 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2359 |
| ExternalDocumentID | 10_1016_j_trc_2022_103552 S0968090X22000018 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c340t-cd1ff552571afec08f36231576b00321f5e80ab6b9396e49f094bd4b292212323 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795914600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0968-090X |
| IngestDate | Sat Nov 29 07:07:36 EST 2025 Tue Nov 18 20:54:46 EST 2025 Fri Feb 23 02:38:36 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Latent class choice models Gaussian process Discrete choice models EM algorithm Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c340t-cd1ff552571afec08f36231576b00321f5e80ab6b9396e49f094bd4b292212323 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.trc.2022.103552 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_trc_2022_103552 crossref_primary_10_1016_j_trc_2022_103552 elsevier_sciencedirect_doi_10_1016_j_trc_2022_103552 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Transportation research. Part C, Emerging technologies |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ding, Cao, Wang (b0105) 2018; 118 Sayed, Razavi (b0395) 2000; 14 Gopinath (b0165) 1995 Wong, Farooq, Bilodeau (b0530) 2018; 29 Bingham (b0060) 2001; 131 Yuan, Y., You, W., Boyle, K.J., Yuan, Y., You, W., Boyle, K., 2015. A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model parametric and nonparametric mixing distributions for. Rodrigues, F., 2020. Scaling Bayesian inference of mixed multinomial logit models to very large datasets. arXiv preprint arXiv2004.05426v1. Gonzalez, Weinstein, Barbeau, Labrador, Winters, Georggi, Perez (b0160) 2010; 4 Bhat (b0040) 1997; 31 Deshpande, M., Bajaj, P.R., 2017. Short Term Traffic Flow Prediction Based on Neuro-Fuzzy Hybrid Sytem, in: Proceedings of 2016 International Conference on ICT in Business, Industry, and Government, ICTBIG 2016. IEEE, pp. 1–3. https://doi.org/10.1109/ICTBIG.2016.7892699. Wang, Zhao (b0510) 2019 Titsias (b0460) 2009 Vij, Krueger (b0485) 2017; 106 Mackay, D.J.C., 1997. Gaussian Processes: A Replacement for Supervised Neural Networks?, Lecture notes for a tutorial in advances in nueral information processing systems. Danaf, Becker, Song, Atasoy, Ben-Akiva (b0090) 2019; 119 Doshi-velez, F., Kim, B., 2017. Towards A Rigorous Science of Interpretable Machine Learning 1–13. Pulugurta, Arun, Errampalli (b0340) 2013; 104 Zhu, X., Li, J., Liu, Z., Yang, F., 2017. Learning Transportation Mode Choice for Context-Aware Services with Directed-Graph-Guided Fused Lasso from GPS Trajectory Data, in: Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017. pp. 692–699. https://doi.org/10.1109/ICWS.2017.83. McFadden (b0275) 2001; 91 Hensher, Ton (b0180) 2000; 36 Fosgerau, Hess (b0135) 2009; 42 Minka (b0295) 2001 Xie, Zhao, Sun, Chen (b0545) 2010; 2165 Neal (b0305) 1999 Opper, Winther (b0325) 2000; 12 Bishop (b0065) 2006 Abdulhai, Pringle, Karakoulas (b0005) 2003; 129 Sifringer, Lurkin, Alahi (b0420) 2020; 140 Paredes, M., Hemberg, E., O’Reilly, U.M., Zegras, C., 2017. Machine learning or discrete choice models for car ownership demand estimation and prediction? 5th IEEE Int. Conf. Model. Technol. Intell. Transp. Syst. MT-ITS 2017 - Proc. 780–785. https://doi.org/10.1109/MTITS.2017.8005618. Sfeir, Abou-Zeid, Kaysi (b0410) 2020; 91 Andrade, Uchida, Kagaya (b0025) 2006; 1977 Jin, Cheu, Srinivasan (b0210) 2002; 10 McFadden (b0280) 1974 Srinivasan, Jin, Cheu (b0430) 2004; 5 Hong, Dong, Zheng, Lai (b0190) 2011; 35 Vij, Walker (b0490) 2014; 64 Kopitar, L., Cilar, L., Kocbek, P., Stiglic, G., 2019. Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening, in: Marcos, M., Juarez, J.M., Lenz, R., Nalepa, G.J., Nowaczyk, S., Peleg, M., Stefanowski, J., Stiglic, G. (Eds.), Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. Springer Nature, pp. 108–119. https://doi.org/10.1007/978-3-030-37446-4. Gammelli, D., Rolsted, K.P., Pacino, D., Rodrigues, F., 2020. Generalized Multi-Output Gaussian Process Censored Regression. arXiv Prepr. arXiv2009.04822. Srinivasan, D., Member, S., Choy, M.C., Cheu, R.L., 2006. Neural Networks for Real-Time Traffic Signal Control 7, 261–272. https://doi.org/10.1109/TITS.2006.874716. Gazder, Ratrout (b0145) 2016; 49 Zhu, Byrd, Lu, Nocedal (b0555) 1997; 23 Tang, Xiong, Zhang (b0455) 2015; 38 Bierlaire, M., Axhausen, K.W., Abay, G., 2001. The acceptance of modal innovation: The case of Swissmetro, in: 1st Swiss Transport Research Conference. Ascona, Switzerland. Ratrout, Gazder, Al-Madani (b0350) 2014; 5 Krueger, R., Vij, A., Rashidi, T.H., 2018. A Dirichlet Process Mixture Model of Discrete Choice. arXiv Prepr. arXiv1801.06296. Jahangiri, Rakha (b0205) 2014 Stein (b0445) 1999 Xie, Lu, Parkany (b0540) 2003; 1854 Bierlaire, M., 2018. Swissmetro. URL: https://transp-or.epfl.ch/documents/technicalReports/CS_SwissmetroDescription.pdf. Jahangiri, Rakha (b0200) 2015; 16 Vlahogianni, Karlaftis, Golias (b0495) 2008; 23 El Zarwi, F., 2017b. lccm, a Python package for estimating latent class choice models using the Expectation Maximization (EM) algorithm to maximize the likelihood function. Bierlaire, Lurkin (b0055) 2017 Dempster, Laird, Rubin (b0095) 1977; 39 McFadden, Train (b0285) 2000; 15 Montavon, Samek, Müller (b0300) 2018; 73 Rodrigues, Ortelli, Bierlaire, Pereira (b0385) 2020 Bansal, Krueger, Bierlaire, Daziano, Rashidi (b0030) 2020; 131 Ghahramani (b0150) 2015; 521 Hillel, Bierlaire, Elshafie, Jin (b0185) 2021; 38 Ma, Sheng, Jin, Ma, Gao (b0255) 2018; 6 Wong, M., Farooq, B., 2019. ResLogit: A residual neural network logit model. arXiv Prepr. arXiv1912.10058. Vij, Carrel, Walker (b0480) 2013; 54 Seeger (b0400) 2004; 14 Ribeiro, M.T., Singh, S., Guestrin, C., 2016a. “ Why Should I Trust You ?” Explaining the Predictions of Any Classifier. arXiv:1602.04938 1135–1144. El Zarwi, F., 2017a. Modeling and Forecasting the Impact of Major Technological and Infrastructural Changes on Travel Demand. University of California, Berkeley (PhD Thesis). Karlaftis, Vlahogianni (b0215) 2011; 19 Train (b0465) 2016; 19 Lloyd, J.R., Duvenaud, D., Grosse, R., Tenenbaum, J.B., Ghahramani, Z., 2014. Automatic Construction and Natural-Language Description of Nonparametric Regression Models. arXiv:1402.4304. Ben-Akiva, Abou-Zeid (b0035) 2013; 9 Mackay (b0265) 1998 Richter, Toledano-Ayala (b0365) 2015; 15 Al-Ayyash, Abou-Zeid, Kaysi (b0020) 2016; 48 Rodrigues, Henrickson, Pereira (b0380) 2019; 20 Kedia, Saw, Katti (b0220) 2015; 30 Dabiri, Heaslip (b0085) 2018; 86 Train (b0470) 2009 Xian-Yu (b0535) 2011 Sfeir, Abou-Zeid, Rodrigues, Pereira, Kaysi (b0415) 2021; 41 Han, Y., 2019. Neural-Embedded Discrete Choice Models. Massachusetts Institute of Technology (PhD Thesis). Wang, Chen, Qu (b0515) 2008; 16 Sekhar, C.R., Minal, Madhu, E., 2016. Multimodal Choice Modeling Using Random Forest. Int. J. Traffic Transp. Eng. 6, 356–367. Ribeiro, M.T., Singh, S., Guestrin, C., 2016b. Model-Agnostic Interpretability of Machine Learning. arXiv:1606.05386. Williams, Barber (b0520) 1998; 20 El Zarwi, Vij, Walker (b0125) 2017; 79 Neal (b0310) 1996 Rodrigues, Pereira (b0390) 2018; 95 Idé, Kato (b0195) 2009 Brathwaite, T., Vij, A., Walker, J.L., 2017. Machine Learning Meets Microeconomics: The Case of Decision Trees and Discrete Choice. https://doi.org/10.1086/664709. Greene, Hensher (b0170) 2013; 45 Lee, D., Derrible, S., Pereira, F.C., 2018. Comparison of Four Types of Artificial Neural Networks and a Multinomial Logit Model for Travel Mode Choice Modeling. https://doi.org/10.1177/0361198118796971. Rodrigues, F., Borysov, S.S., Ribeiro, B., Member, S., Pereira, F.C., 2016. A Bayesian additive model for understanding public transport usage in special events 39, 2113–2126. Bujosa, Riera, Hicks (b0075) 2010; 47 Stathopoulos, Dimitriou, Tsekeris (b0440) 2008; 23 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0335) 2011; 12 Kumar, Sarkar, Madhu (b0235) 2013; 3 Wang, Wang, Zhao (b0505) 2020; 118 Rasmussen, Williams (b0345) 2006 Nocedal, Wright (b0320) 2006 Subba Rao, Sikdar, Krishna Rao, Dhingra (b0450) 1998; 22 Sifringer, B., Lurkin, V., Alahi, A., 2018. Enhancing Discrete Choice Models with Neural Networks, in: 18th Swiss Transport Research Conference. pp. 1–3. Mackay, Gibbs (b0155) 2000; 11 Abramowitz, Stegun (b0015) 1965 Mackay (b0260) 2003 Nijkamp, Reggiani, Tritapepe (b0315) 1996; 4 Cantarella, de Luca (b0080) 2005; 13 Liu, S., Yue, Y., Krishnan, R., 2013. Adaptive Collective Routing Using Gaussian Process Dynamic Congestion Models 704–712. Wang, Wang, Zhao (b0500) 2020; 37 Aboutaleb, Y.M., Danaf, M., Xie, Y., Ben-Akiva, M., 2021. Discrete Choice Analysis with Machine Learning Capabilities. arXiv preprint arXiv2101.10261v1, 1–14. http://arxiv.org/abs/2101.10261. Minal, Sekhar (b0290) 2014; 4 Train (b0475) 2008; 1 Errampalli, Okushima, Akiyama (b0130) 2007 Kedia (10.1016/j.trc.2022.103552_b0220) 2015; 30 Idé (10.1016/j.trc.2022.103552_b0195) 2009 Al-Ayyash (10.1016/j.trc.2022.103552_b0020) 2016; 48 10.1016/j.trc.2022.103552_b0550 Wang (10.1016/j.trc.2022.103552_b0500) 2020; 37 10.1016/j.trc.2022.103552_b0435 Bujosa (10.1016/j.trc.2022.103552_b0075) 2010; 47 Karlaftis (10.1016/j.trc.2022.103552_b0215) 2011; 19 McFadden (10.1016/j.trc.2022.103552_b0280) 1974 Vij (10.1016/j.trc.2022.103552_b0490) 2014; 64 10.1016/j.trc.2022.103552_b0270 Neal (10.1016/j.trc.2022.103552_b0310) 1996 Montavon (10.1016/j.trc.2022.103552_b0300) 2018; 73 Danaf (10.1016/j.trc.2022.103552_b0090) 2019; 119 Vij (10.1016/j.trc.2022.103552_b0480) 2013; 54 Ma (10.1016/j.trc.2022.103552_b0255) 2018; 6 Wang (10.1016/j.trc.2022.103552_b0510) 2019 Mackay (10.1016/j.trc.2022.103552_b0155) 2000; 11 Abramowitz (10.1016/j.trc.2022.103552_b0015) 1965 Xian-Yu (10.1016/j.trc.2022.103552_b0535) 2011 Cantarella (10.1016/j.trc.2022.103552_b0080) 2005; 13 10.1016/j.trc.2022.103552_b0425 Tang (10.1016/j.trc.2022.103552_b0455) 2015; 38 10.1016/j.trc.2022.103552_b0140 Greene (10.1016/j.trc.2022.103552_b0170) 2013; 45 Errampalli (10.1016/j.trc.2022.103552_b0130) 2007 Srinivasan (10.1016/j.trc.2022.103552_b0430) 2004; 5 Sfeir (10.1016/j.trc.2022.103552_b0415) 2021; 41 Sayed (10.1016/j.trc.2022.103552_b0395) 2000; 14 Kumar (10.1016/j.trc.2022.103552_b0235) 2013; 3 Hong (10.1016/j.trc.2022.103552_b0190) 2011; 35 Xie (10.1016/j.trc.2022.103552_b0545) 2010; 2165 Jahangiri (10.1016/j.trc.2022.103552_b0205) 2014 10.1016/j.trc.2022.103552_b0330 Gonzalez (10.1016/j.trc.2022.103552_b0160) 2010; 4 Bishop (10.1016/j.trc.2022.103552_b0065) 2006 Jin (10.1016/j.trc.2022.103552_b0210) 2002; 10 10.1016/j.trc.2022.103552_b0050 Bingham (10.1016/j.trc.2022.103552_b0060) 2001; 131 10.1016/j.trc.2022.103552_b0175 Nocedal (10.1016/j.trc.2022.103552_b0320) 2006 Williams (10.1016/j.trc.2022.103552_b0520) 1998; 20 Seeger (10.1016/j.trc.2022.103552_b0400) 2004; 14 Abdulhai (10.1016/j.trc.2022.103552_b0005) 2003; 129 10.1016/j.trc.2022.103552_b0045 Gopinath (10.1016/j.trc.2022.103552_b0165) 1995 El Zarwi (10.1016/j.trc.2022.103552_b0125) 2017; 79 10.1016/j.trc.2022.103552_b0560 McFadden (10.1016/j.trc.2022.103552_b0285) 2000; 15 Dempster (10.1016/j.trc.2022.103552_b0095) 1977; 39 Ghahramani (10.1016/j.trc.2022.103552_b0150) 2015; 521 10.1016/j.trc.2022.103552_b0110 10.1016/j.trc.2022.103552_b0355 Hillel (10.1016/j.trc.2022.103552_b0185) 2021; 38 10.1016/j.trc.2022.103552_b0115 Hensher (10.1016/j.trc.2022.103552_b0180) 2000; 36 Train (10.1016/j.trc.2022.103552_b0465) 2016; 19 10.1016/j.trc.2022.103552_b0070 Minka (10.1016/j.trc.2022.103552_b0295) 2001 Bansal (10.1016/j.trc.2022.103552_b0030) 2020; 131 Train (10.1016/j.trc.2022.103552_b0475) 2008; 1 Gazder (10.1016/j.trc.2022.103552_b0145) 2016; 49 10.1016/j.trc.2022.103552_b0230 Rasmussen (10.1016/j.trc.2022.103552_b0345) 2006 Ding (10.1016/j.trc.2022.103552_b0105) 2018; 118 Ratrout (10.1016/j.trc.2022.103552_b0350) 2014; 5 Rodrigues (10.1016/j.trc.2022.103552_b0385) 2020 10.1016/j.trc.2022.103552_b0100 Train (10.1016/j.trc.2022.103552_b0470) 2009 Nijkamp (10.1016/j.trc.2022.103552_b0315) 1996; 4 Fosgerau (10.1016/j.trc.2022.103552_b0135) 2009; 42 10.1016/j.trc.2022.103552_b0225 Wang (10.1016/j.trc.2022.103552_b0515) 2008; 16 Mackay (10.1016/j.trc.2022.103552_b0260) 2003 Bierlaire (10.1016/j.trc.2022.103552_b0055) 2017 Xie (10.1016/j.trc.2022.103552_b0540) 2003; 1854 Minal (10.1016/j.trc.2022.103552_b0290) 2014; 4 Rodrigues (10.1016/j.trc.2022.103552_b0380) 2019; 20 Stathopoulos (10.1016/j.trc.2022.103552_b0440) 2008; 23 Titsias (10.1016/j.trc.2022.103552_b0460) 2009 Subba Rao (10.1016/j.trc.2022.103552_b0450) 1998; 22 Wang (10.1016/j.trc.2022.103552_b0505) 2020; 118 Bhat (10.1016/j.trc.2022.103552_b0040) 1997; 31 McFadden (10.1016/j.trc.2022.103552_b0275) 2001; 91 Zhu (10.1016/j.trc.2022.103552_b0555) 1997; 23 Dabiri (10.1016/j.trc.2022.103552_b0085) 2018; 86 Opper (10.1016/j.trc.2022.103552_b0325) 2000; 12 10.1016/j.trc.2022.103552_b0375 Vlahogianni (10.1016/j.trc.2022.103552_b0495) 2008; 23 10.1016/j.trc.2022.103552_b0370 Rodrigues (10.1016/j.trc.2022.103552_b0390) 2018; 95 Wong (10.1016/j.trc.2022.103552_b0530) 2018; 29 10.1016/j.trc.2022.103552_b0250 10.1016/j.trc.2022.103552_b0010 Vij (10.1016/j.trc.2022.103552_b0485) 2017; 106 Neal (10.1016/j.trc.2022.103552_b0305) 1999 Pulugurta (10.1016/j.trc.2022.103552_b0340) 2013; 104 Ben-Akiva (10.1016/j.trc.2022.103552_b0035) 2013; 9 Richter (10.1016/j.trc.2022.103552_b0365) 2015; 15 10.1016/j.trc.2022.103552_b0525 10.1016/j.trc.2022.103552_b0405 Jahangiri (10.1016/j.trc.2022.103552_b0200) 2015; 16 Sfeir (10.1016/j.trc.2022.103552_b0410) 2020; 91 Andrade (10.1016/j.trc.2022.103552_b0025) 2006; 1977 10.1016/j.trc.2022.103552_b0245 Mackay (10.1016/j.trc.2022.103552_b0265) 1998 Stein (10.1016/j.trc.2022.103552_b0445) 1999 Pedregosa (10.1016/j.trc.2022.103552_b0335) 2011; 12 Sifringer (10.1016/j.trc.2022.103552_b0420) 2020; 140 10.1016/j.trc.2022.103552_b0360 10.1016/j.trc.2022.103552_b0240 10.1016/j.trc.2022.103552_b0120 |
| References_xml | – volume: 6 start-page: 75629 year: 2018 end-page: 75638 ident: b0255 article-title: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching publication-title: IEEE Access – volume: 104 start-page: 583 year: 2013 end-page: 592 ident: b0340 article-title: Use of artificial intelligence for mode choice analysis and comparison with traditional multinomial logit model publication-title: Procedia - Soc. Behav. Sci – volume: 35 start-page: 1282 year: 2011 end-page: 1291 ident: b0190 article-title: Forecasting urban traffic flow by SVR with continuous ACO publication-title: Appl. Math. Model. – reference: Ribeiro, M.T., Singh, S., Guestrin, C., 2016b. Model-Agnostic Interpretability of Machine Learning. arXiv:1606.05386. – volume: 20 start-page: 594 year: 2019 end-page: 603 ident: b0380 article-title: Multi-output Gaussian processes for crowdsourced traffic data imputation publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 129 start-page: 278 year: 2003 end-page: 285 ident: b0005 article-title: Reinforcement learning for publication-title: J. Transp. Eng. – volume: 119 start-page: 35 year: 2019 end-page: 45 ident: b0090 article-title: Online discrete choice models: Applications in personalized recommendations publication-title: Decis. Support Syst. – year: 1996 ident: b0310 article-title: Bayesian Learning for Neural Networks – volume: 54 start-page: 164 year: 2013 end-page: 178 ident: b0480 article-title: Incorporating the influence of latent modal preferences on travel mode choice behavior publication-title: Transp. Res. Part A Policy Pract. – year: 1995 ident: b0165 article-title: Modeling Heterogeneity in Discrete Choice Processes – reference: Sekhar, C.R., Minal, Madhu, E., 2016. Multimodal Choice Modeling Using Random Forest. Int. J. Traffic Transp. Eng. 6, 356–367. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b0095 article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm publication-title: J. R. Stat. Soc. Ser. B – volume: 42 start-page: 1 year: 2009 end-page: 25 ident: b0135 article-title: Competing methods for representing random taste heterogeneity in discrete choice models publication-title: Eur. Transp. – volume: 4 start-page: 37 year: 2010 ident: b0160 article-title: Automating mode detection for travel behaviour analysis by using global positioning systems-enabled mobile phones and neural networks publication-title: IET Intell. Transp. Syst. – volume: 4 start-page: 323 year: 1996 end-page: 338 ident: b0315 article-title: Modelling inter-urban transport flows in Italy: a comparison between neural network analysis and logit analysis.pdf publication-title: Transp. Res. Part C Emerg. Technol. – reference: Liu, S., Yue, Y., Krishnan, R., 2013. Adaptive Collective Routing Using Gaussian Process Dynamic Congestion Models 704–712. – reference: Sifringer, B., Lurkin, V., Alahi, A., 2018. Enhancing Discrete Choice Models with Neural Networks, in: 18th Swiss Transport Research Conference. pp. 1–3. – volume: 23 start-page: 521 year: 2008 end-page: 535 ident: b0440 article-title: Fuzzy modeling approach for combined forecasting of urban traffic flow publication-title: Comput. Civ. Infrastruct. Eng. – volume: 73 start-page: 1 year: 2018 end-page: 15 ident: b0300 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit. Signal Process. – reference: Han, Y., 2019. Neural-Embedded Discrete Choice Models. Massachusetts Institute of Technology (PhD Thesis). – volume: 15 start-page: 447 year: 2000 end-page: 470 ident: b0285 article-title: Mixed MNL models for discrete response publication-title: J. Appl. Econom. – volume: 91 start-page: 59 year: 2020 end-page: 75 ident: b0410 article-title: Multivariate count data models for adoption of new transport modes in an organization-based context publication-title: Transp. Policy – volume: 19 start-page: 40 year: 2016 end-page: 53 ident: b0465 article-title: Mixed logit with a flexible mixing distribution publication-title: J. Choice Model. – volume: 1854 start-page: 50 year: 2003 end-page: 61 ident: b0540 article-title: Work travel mode choice modeling with data mining: decision trees and neural networks publication-title: Transp. Res. Rec. J. Transp. Res. Board – year: 2001 ident: b0295 article-title: A family of algorithms for approximate Bayesian inference publication-title: Massachusetts Institute of Technology (PhD Thesis) – reference: Ribeiro, M.T., Singh, S., Guestrin, C., 2016a. “ Why Should I Trust You ?” Explaining the Predictions of Any Classifier. arXiv:1602.04938 1135–1144. – reference: Deshpande, M., Bajaj, P.R., 2017. Short Term Traffic Flow Prediction Based on Neuro-Fuzzy Hybrid Sytem, in: Proceedings of 2016 International Conference on ICT in Business, Industry, and Government, ICTBIG 2016. IEEE, pp. 1–3. https://doi.org/10.1109/ICTBIG.2016.7892699. – volume: 11 start-page: 1458 year: 2000 end-page: 1464 ident: b0155 article-title: Variational Gaussian process classifiers publication-title: IEEE Trans. Neural Networks – volume: 5 start-page: 1 year: 2004 end-page: 11 ident: b0430 article-title: Evaluation of adaptive neural network models for freeway incident detection publication-title: IEEE Trans. Intell. Transp. Syst. – reference: Mackay, D.J.C., 1997. Gaussian Processes: A Replacement for Supervised Neural Networks?, Lecture notes for a tutorial in advances in nueral information processing systems. – volume: 10 start-page: 121 year: 2002 end-page: 147 ident: b0210 article-title: Development and adaptation of constructive probabilistic neural network in freeway incident detection publication-title: Transp. Res. Part C Emerg. Technol. – volume: 38 start-page: 833 year: 2015 end-page: 850 ident: b0455 article-title: Decision tree method for modeling travel mode switching in a dynamic behavioral process publication-title: Transp. Plan. Technol. – volume: 20 start-page: 1342 year: 1998 end-page: 1351 ident: b0520 article-title: Bayesian classification with Gaussian processes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 2165 start-page: 69 year: 2010 end-page: 78 ident: b0545 article-title: Gaussian processes for short-term traffic volume forecasting publication-title: Transp. Res. Rec. – volume: 3 start-page: 408 year: 2013 end-page: 425 ident: b0235 article-title: Development of fuzzy logic based mode choice model considering various public transport policy options publication-title: Int. J. Traffic Transp. Eng. – volume: 140 start-page: 236 year: 2020 end-page: 261 ident: b0420 article-title: Enhancing discrete choice models with representation learning publication-title: Transp. Res. Part B Methodol. – volume: 16 start-page: 54 year: 2008 end-page: 70 ident: b0515 article-title: Incident detection algorithm based on partial least squares regression publication-title: Transp. Res. Part C Emerg. Technol. – reference: Aboutaleb, Y.M., Danaf, M., Xie, Y., Ben-Akiva, M., 2021. Discrete Choice Analysis with Machine Learning Capabilities. arXiv preprint arXiv2101.10261v1, 1–14. http://arxiv.org/abs/2101.10261. – volume: 48 start-page: 169 year: 2016 end-page: 182 ident: b0020 article-title: Modeling the demand for a shared-ride taxi service: An application to an organization-based context publication-title: Transp. Policy – volume: 12 start-page: 2655 year: 2000 end-page: 2684 ident: b0325 article-title: Gaussian processes for classification: mean-field algorithms publication-title: Neural Comput. – year: 2020 ident: b0385 article-title: Bayesian automatic relevance determination for utility function specification in discrete choice models publication-title: IEEE Trans. Intell. Transp. Syst. – reference: El Zarwi, F., 2017a. Modeling and Forecasting the Impact of Major Technological and Infrastructural Changes on Travel Demand. University of California, Berkeley (PhD Thesis). – reference: Bierlaire, M., Axhausen, K.W., Abay, G., 2001. The acceptance of modal innovation: The case of Swissmetro, in: 1st Swiss Transport Research Conference. Ascona, Switzerland. – volume: 131 start-page: 232 year: 2001 end-page: 241 ident: b0060 article-title: Reinforcement learning in neurofuzzy traffic signal control publication-title: Eur. J. Oper. Res. – volume: 23 start-page: 536 year: 2008 end-page: 548 ident: b0495 article-title: temporal evolution of short-term urban traffic flow: a nonlinear dynamics approach publication-title: Comput. Civ. Infrastruct. Eng. – reference: Lee, D., Derrible, S., Pereira, F.C., 2018. Comparison of Four Types of Artificial Neural Networks and a Multinomial Logit Model for Travel Mode Choice Modeling. https://doi.org/10.1177/0361198118796971. – reference: Srinivasan, D., Member, S., Choy, M.C., Cheu, R.L., 2006. Neural Networks for Real-Time Traffic Signal Control 7, 261–272. https://doi.org/10.1109/TITS.2006.874716. – year: 1965 ident: b0015 article-title: Handbook of Mathematical Functions – reference: Rodrigues, F., 2020. Scaling Bayesian inference of mixed multinomial logit models to very large datasets. arXiv preprint arXiv2004.05426v1. – year: 2007 ident: b0130 article-title: Combined fuzzy logic based mode choice and microscopic simulation model for transport policy evaluation publication-title: 11th World Conference on Transport Research – volume: 9 start-page: 846 year: 2013 end-page: 859 ident: b0035 article-title: Methodological issues in modelling time-of-travel preferences publication-title: Transp. A Transp. Sci. – year: 2006 ident: b0065 article-title: Pattern Recognition and Machine Learning – start-page: 48 year: 2017 end-page: 67 ident: b0055 article-title: Introduction to Disaggregate Demand Models publication-title: INFORMS TutORials Oper. Res. – volume: 16 start-page: 2406 year: 2015 end-page: 2417 ident: b0200 article-title: Transportation mode recognition using mobile phone sensor data publication-title: IEE Trans. Intell. Transp. Syst. – year: 1998 ident: b0265 article-title: Introduction to Gaussian Processes publication-title: Neural Networks and Machine Learning – volume: 1977 start-page: 8 year: 2006 end-page: 16 ident: b0025 article-title: Development of transport mode choice model by using adaptive neuro-fuzzy inference system publication-title: Transp. Res. Rec. – volume: 29 start-page: 152 year: 2018 end-page: 168 ident: b0530 article-title: Discriminative conditional restricted Boltzmann machine for discrete choice and latent variable modelling publication-title: J. Choice Model. – volume: 64 start-page: 90 year: 2014 end-page: 105 ident: b0490 article-title: Preference endogeneity in discrete choice models publication-title: Transp. Res. Part B: Methodol. – reference: Wong, M., Farooq, B., 2019. ResLogit: A residual neural network logit model. arXiv Prepr. arXiv1912.10058. – volume: 30 start-page: 286 year: 2015 end-page: 293 ident: b0220 article-title: Fuzzy logic approach in mode choice modelling for education trips: A case study of Indian metropolitan city publication-title: Transport – volume: 5 start-page: 39 year: 2014 end-page: 58 ident: b0350 article-title: A review of mode choice modelling techniques for intra-city and border transport publication-title: World Rev. Intermodal Transp. Res. – reference: Rodrigues, F., Borysov, S.S., Ribeiro, B., Member, S., Pereira, F.C., 2016. A Bayesian additive model for understanding public transport usage in special events 39, 2113–2126. – year: 2006 ident: b0320 article-title: Numerical Optimization – start-page: 1185 year: 2009 end-page: 1196 ident: b0195 article-title: Travel-Time Prediction using Gaussian Process Regression: A Trajectory-Based Approach publication-title: Proceedings of the 2009 SIAM International Conference on Data Mining – volume: 13 start-page: 121 year: 2005 end-page: 155 ident: b0080 article-title: Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models publication-title: Transp. Res. Part C Emerg. Technol. – year: 2019 ident: b0510 article-title: An empirical study of using deep neural network to analyze travel mode choice with interpretable economic information publication-title: Transportation Research Board 98th Annual Meeting – volume: 14 start-page: 23 year: 2000 end-page: 30 ident: b0395 article-title: Comparison of neural and conventional approaches to mode choice analysis publication-title: J. Comput. Civ. Eng. – reference: Kopitar, L., Cilar, L., Kocbek, P., Stiglic, G., 2019. Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening, in: Marcos, M., Juarez, J.M., Lenz, R., Nalepa, G.J., Nowaczyk, S., Peleg, M., Stefanowski, J., Stiglic, G. (Eds.), Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. Springer Nature, pp. 108–119. https://doi.org/10.1007/978-3-030-37446-4. – reference: Lloyd, J.R., Duvenaud, D., Grosse, R., Tenenbaum, J.B., Ghahramani, Z., 2014. Automatic Construction and Natural-Language Description of Nonparametric Regression Models. arXiv:1402.4304. – volume: 4 start-page: 269 year: 2014 end-page: 285 ident: b0290 article-title: Mode choice analysis: the data, the models and future ahead publication-title: Int. J. Traffic Transp. Eng. – volume: 15 start-page: 22587 year: 2015 end-page: 22615 ident: b0365 article-title: Revisiting gaussian process regression modeling for localization in wireless sensor networks publication-title: Sensors – year: 1999 ident: b0445 article-title: Interpolation of Saptial Data – volume: 131 start-page: 124 year: 2020 end-page: 142 ident: b0030 article-title: Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations publication-title: Transp. Res. Part B: Methodol. – volume: 1 start-page: 40 year: 2008 end-page: 69 ident: b0475 article-title: EM Algorithms for nonparametric estimation of mixing distributions publication-title: J. Choice Model. – volume: 41 start-page: 100320 year: 2021 ident: b0415 article-title: Semi-nonparametric latent class choice model with a flexible class membership component: a mixture model approach publication-title: J. Choice Modelling – volume: 106 start-page: 76 year: 2017 end-page: 101 ident: b0485 article-title: Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions publication-title: Transp. Res. Part B Methodol. – reference: Zhu, X., Li, J., Liu, Z., Yang, F., 2017. Learning Transportation Mode Choice for Context-Aware Services with Directed-Graph-Guided Fused Lasso from GPS Trajectory Data, in: Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017. pp. 692–699. https://doi.org/10.1109/ICWS.2017.83. – year: 2006 ident: b0345 article-title: Gaussian Processes for Machine Learning – volume: 45 start-page: 1897 year: 2013 end-page: 1902 ident: b0170 article-title: Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model publication-title: Appl. Econ. – start-page: 360 year: 2011 end-page: 371 ident: b0535 article-title: Travel mode choice analysis using support vector machines publication-title: ICCTP Am. Soc. Civ. Eng. – volume: 49 start-page: 885 year: 2016 end-page: 1866 ident: b0145 article-title: A new logit-artificial neural network ensemble for mode choice modeling: a case study for border transport publication-title: J. Adv. Transp. – volume: 22 start-page: 485 year: 1998 end-page: 496 ident: b0450 article-title: Another insight into artificial neural networks through behavioural analysis of access mode choice publication-title: Comput. Environ. Urban Syst. – volume: 521 start-page: 452 year: 2015 end-page: 459 ident: b0150 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature – volume: 31 start-page: 34 year: 1997 end-page: 48 ident: b0040 article-title: Endogenous segmentation mode choice model with an application to intercity travel publication-title: Transp. Sci. – volume: 79 start-page: 207 year: 2017 end-page: 223 ident: b0125 article-title: A discrete choice framework for modeling and forecasting the adoption and diffusion of new transportation services publication-title: Transp. Res. Part C Emerg. Technol. – reference: Doshi-velez, F., Kim, B., 2017. Towards A Rigorous Science of Interpretable Machine Learning 1–13. – volume: 23 start-page: 550 year: 1997 end-page: 560 ident: b0555 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. – reference: Bierlaire, M., 2018. Swissmetro. URL: https://transp-or.epfl.ch/documents/technicalReports/CS_SwissmetroDescription.pdf. – volume: 118 start-page: 104 year: 2018 end-page: 118 ident: b0105 article-title: Synergistic effects of the built environment and commuting programs on commute mode choice publication-title: Transp. Res. Part A Policy Pract. – volume: 86 start-page: 360 year: 2018 end-page: 371 ident: b0085 article-title: Inferring transportation modes from GPS trajectories using a convolutional neural network publication-title: Transp. Res. Part C Emerg. Technol. – volume: 36 start-page: 155 year: 2000 end-page: 172 ident: b0180 article-title: A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice publication-title: Transp. Res. Part E Logist. Transp. Rev. – reference: Krueger, R., Vij, A., Rashidi, T.H., 2018. A Dirichlet Process Mixture Model of Discrete Choice. arXiv Prepr. arXiv1801.06296. – year: 2009 ident: b0470 article-title: Discrete choice methods with simulation publication-title: Cambridge University Press, Cambridge. – volume: 95 start-page: 636 year: 2018 end-page: 651 ident: b0390 article-title: Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data publication-title: Transp. Res. Part C Emerg. Technol. – start-page: 475 year: 1999 end-page: 501 ident: b0305 article-title: Regression and Classification Using Gaussian Process Priors publication-title: Bayesian Statistics 6 – reference: El Zarwi, F., 2017b. lccm, a Python package for estimating latent class choice models using the Expectation Maximization (EM) algorithm to maximize the likelihood function. – volume: 37 start-page: 100236 year: 2020 ident: b0500 article-title: Multitask learning deep neural networks to combine revealed and stated preference data publication-title: J. Choice Model. – start-page: 105 year: 1974 end-page: 142 ident: b0280 article-title: Conditional Logit Analysis of Qualitative Choice Behavior publication-title: Frontiers in Econometrics – reference: Brathwaite, T., Vij, A., Walker, J.L., 2017. Machine Learning Meets Microeconomics: The Case of Decision Trees and Discrete Choice. https://doi.org/10.1086/664709. – volume: 19 start-page: 387 year: 2011 end-page: 399 ident: b0215 article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights publication-title: Transp. Res. Part C Emerg. Technol. – reference: Gammelli, D., Rolsted, K.P., Pacino, D., Rodrigues, F., 2020. Generalized Multi-Output Gaussian Process Censored Regression. arXiv Prepr. arXiv2009.04822. – start-page: 567 year: 2009 end-page: 574 ident: b0460 article-title: Variational learning of inducing variables in sparse Gaussian processes publication-title: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS) – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0335 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – year: 2014 ident: b0205 article-title: Developing a Support Vector Machine (SVM) Classifier for Transportation Mode Identification by Using Mobile Phone Sensor Data publication-title: Transportation Research Board 93rd Annual Meeting – reference: Paredes, M., Hemberg, E., O’Reilly, U.M., Zegras, C., 2017. Machine learning or discrete choice models for car ownership demand estimation and prediction? 5th IEEE Int. Conf. Model. Technol. Intell. Transp. Syst. MT-ITS 2017 - Proc. 780–785. https://doi.org/10.1109/MTITS.2017.8005618. – volume: 38 start-page: 100221 year: 2021 ident: b0185 article-title: A systematic review of machine learning classification methodologies for modelling passenger mode choice publication-title: J. Choice Model. – reference: Yuan, Y., You, W., Boyle, K.J., Yuan, Y., You, W., Boyle, K., 2015. A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model parametric and nonparametric mixing distributions for. – year: 2003 ident: b0260 article-title: Information Theory, Inference, and Learning Algorithms – volume: 91 start-page: 351 year: 2001 end-page: 378 ident: b0275 article-title: Economic Choices publication-title: Am. Econ. Rev. – volume: 14 start-page: 69 year: 2004 end-page: 106 ident: b0400 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. – volume: 47 start-page: 477 year: 2010 end-page: 493 ident: b0075 article-title: Combining discrete and continuous representations of preference heterogeneity: a latent class approach publication-title: Environ. Resour. Econ. – volume: 118 start-page: 1 year: 2020 end-page: 22 ident: b0505 article-title: Deep neural networks for choice analysis: Extracting complete economic information for interpretation publication-title: Transp. Res. Part C Emerg. Technol. – ident: 10.1016/j.trc.2022.103552_b0330 doi: 10.1109/MTITS.2017.8005618 – ident: 10.1016/j.trc.2022.103552_b0070 doi: 10.1086/664709 – volume: 23 start-page: 550 issue: 4 year: 1997 ident: 10.1016/j.trc.2022.103552_b0555 article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization publication-title: ACM Trans. Math. Softw. doi: 10.1145/279232.279236 – ident: 10.1016/j.trc.2022.103552_b0270 – volume: 10 start-page: 121 year: 2002 ident: 10.1016/j.trc.2022.103552_b0210 article-title: Development and adaptation of constructive probabilistic neural network in freeway incident detection publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/S0968-090X(01)00007-9 – volume: 30 start-page: 286 issue: 3 year: 2015 ident: 10.1016/j.trc.2022.103552_b0220 article-title: Fuzzy logic approach in mode choice modelling for education trips: A case study of Indian metropolitan city publication-title: Transport doi: 10.3846/16484142.2015.1081279 – year: 2019 ident: 10.1016/j.trc.2022.103552_b0510 article-title: An empirical study of using deep neural network to analyze travel mode choice with interpretable economic information – volume: 31 start-page: 34 year: 1997 ident: 10.1016/j.trc.2022.103552_b0040 article-title: Endogenous segmentation mode choice model with an application to intercity travel publication-title: Transp. Sci. doi: 10.1287/trsc.31.1.34 – volume: 49 start-page: 885 year: 2016 ident: 10.1016/j.trc.2022.103552_b0145 article-title: A new logit-artificial neural network ensemble for mode choice modeling: a case study for border transport publication-title: J. Adv. Transp. – volume: 23 start-page: 536 year: 2008 ident: 10.1016/j.trc.2022.103552_b0495 article-title: temporal evolution of short-term urban traffic flow: a nonlinear dynamics approach publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2008.00554.x – year: 2007 ident: 10.1016/j.trc.2022.103552_b0130 article-title: Combined fuzzy logic based mode choice and microscopic simulation model for transport policy evaluation – year: 1998 ident: 10.1016/j.trc.2022.103552_b0265 article-title: Introduction to Gaussian Processes – volume: 13 start-page: 121 issue: 2 year: 2005 ident: 10.1016/j.trc.2022.103552_b0080 article-title: Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2005.04.002 – year: 2003 ident: 10.1016/j.trc.2022.103552_b0260 – volume: 37 start-page: 100236 year: 2020 ident: 10.1016/j.trc.2022.103552_b0500 article-title: Multitask learning deep neural networks to combine revealed and stated preference data publication-title: J. Choice Model. doi: 10.1016/j.jocm.2020.100236 – ident: 10.1016/j.trc.2022.103552_b0435 doi: 10.1109/TITS.2006.874716 – ident: 10.1016/j.trc.2022.103552_b0375 doi: 10.1109/TPAMI.2016.2635136 – volume: 73 start-page: 1 year: 2018 ident: 10.1016/j.trc.2022.103552_b0300 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2017.10.011 – volume: 1854 start-page: 50 issue: 1 year: 2003 ident: 10.1016/j.trc.2022.103552_b0540 article-title: Work travel mode choice modeling with data mining: decision trees and neural networks publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/1854-06 – ident: 10.1016/j.trc.2022.103552_b0355 doi: 10.1145/2939672.2939778 – start-page: 567 year: 2009 ident: 10.1016/j.trc.2022.103552_b0460 article-title: Variational learning of inducing variables in sparse Gaussian processes – ident: 10.1016/j.trc.2022.103552_b0120 – ident: 10.1016/j.trc.2022.103552_b0550 – ident: 10.1016/j.trc.2022.103552_b0225 doi: 10.1007/978-3-030-37446-4_9 – volume: 19 start-page: 387 issue: 3 year: 2011 ident: 10.1016/j.trc.2022.103552_b0215 article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2010.10.004 – ident: 10.1016/j.trc.2022.103552_b0250 doi: 10.1609/aaai.v28i1.8904 – ident: 10.1016/j.trc.2022.103552_b0370 – volume: 1977 start-page: 8 year: 2006 ident: 10.1016/j.trc.2022.103552_b0025 article-title: Development of transport mode choice model by using adaptive neuro-fuzzy inference system publication-title: Transp. Res. Rec. doi: 10.1177/0361198106197700102 – volume: 86 start-page: 360 year: 2018 ident: 10.1016/j.trc.2022.103552_b0085 article-title: Inferring transportation modes from GPS trajectories using a convolutional neural network publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2017.11.021 – year: 2006 ident: 10.1016/j.trc.2022.103552_b0345 – volume: 20 start-page: 1342 issue: 12 year: 1998 ident: 10.1016/j.trc.2022.103552_b0520 article-title: Bayesian classification with Gaussian processes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.735807 – volume: 4 start-page: 37 issue: 1 year: 2010 ident: 10.1016/j.trc.2022.103552_b0160 article-title: Automating mode detection for travel behaviour analysis by using global positioning systems-enabled mobile phones and neural networks publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2009.0029 – year: 2009 ident: 10.1016/j.trc.2022.103552_b0470 article-title: Discrete choice methods with simulation publication-title: Cambridge University Press, Cambridge. – volume: 54 start-page: 164 year: 2013 ident: 10.1016/j.trc.2022.103552_b0480 article-title: Incorporating the influence of latent modal preferences on travel mode choice behavior publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2013.07.008 – volume: 4 start-page: 323 issue: 6 year: 1996 ident: 10.1016/j.trc.2022.103552_b0315 article-title: Modelling inter-urban transport flows in Italy: a comparison between neural network analysis and logit analysis.pdf publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/S0968-090X(96)00017-4 – ident: 10.1016/j.trc.2022.103552_b0230 – volume: 140 start-page: 236 year: 2020 ident: 10.1016/j.trc.2022.103552_b0420 article-title: Enhancing discrete choice models with representation learning publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2020.08.006 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.trc.2022.103552_b0335 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 129 start-page: 278 issue: 3 year: 2003 ident: 10.1016/j.trc.2022.103552_b0005 article-title: Reinforcement learning for true adaptive traffic signal control publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)0733-947X(2003)129:3(278) – volume: 91 start-page: 351 issue: 3 year: 2001 ident: 10.1016/j.trc.2022.103552_b0275 article-title: Economic Choices publication-title: Am. Econ. Rev. doi: 10.1257/aer.91.3.351 – start-page: 475 year: 1999 ident: 10.1016/j.trc.2022.103552_b0305 article-title: Regression and Classification Using Gaussian Process Priors – year: 2020 ident: 10.1016/j.trc.2022.103552_b0385 article-title: Bayesian automatic relevance determination for utility function specification in discrete choice models publication-title: IEEE Trans. Intell. Transp. Syst. – start-page: 105 year: 1974 ident: 10.1016/j.trc.2022.103552_b0280 article-title: Conditional Logit Analysis of Qualitative Choice Behavior – ident: 10.1016/j.trc.2022.103552_b0240 doi: 10.1177/0361198118796971 – ident: 10.1016/j.trc.2022.103552_b0045 – volume: 104 start-page: 583 year: 2013 ident: 10.1016/j.trc.2022.103552_b0340 article-title: Use of artificial intelligence for mode choice analysis and comparison with traditional multinomial logit model publication-title: Procedia - Soc. Behav. Sci doi: 10.1016/j.sbspro.2013.11.152 – volume: 35 start-page: 1282 issue: 3 year: 2011 ident: 10.1016/j.trc.2022.103552_b0190 article-title: Forecasting urban traffic flow by SVR with continuous ACO publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.09.005 – ident: 10.1016/j.trc.2022.103552_b0175 – volume: 20 start-page: 594 issue: 2 year: 2019 ident: 10.1016/j.trc.2022.103552_b0380 article-title: Multi-output Gaussian processes for crowdsourced traffic data imputation publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2018.2817879 – volume: 95 start-page: 636 year: 2018 ident: 10.1016/j.trc.2022.103552_b0390 article-title: Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.08.007 – ident: 10.1016/j.trc.2022.103552_b0560 doi: 10.1109/ICWS.2017.83 – volume: 64 start-page: 90 year: 2014 ident: 10.1016/j.trc.2022.103552_b0490 article-title: Preference endogeneity in discrete choice models publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2014.02.008 – start-page: 1185 year: 2009 ident: 10.1016/j.trc.2022.103552_b0195 article-title: Travel-Time Prediction using Gaussian Process Regression: A Trajectory-Based Approach – year: 2014 ident: 10.1016/j.trc.2022.103552_b0205 article-title: Developing a Support Vector Machine (SVM) Classifier for Transportation Mode Identification by Using Mobile Phone Sensor Data – volume: 2165 start-page: 69 issue: 1 year: 2010 ident: 10.1016/j.trc.2022.103552_b0545 article-title: Gaussian processes for short-term traffic volume forecasting publication-title: Transp. Res. Rec. doi: 10.3141/2165-08 – volume: 22 start-page: 485 issue: 5 year: 1998 ident: 10.1016/j.trc.2022.103552_b0450 article-title: Another insight into artificial neural networks through behavioural analysis of access mode choice publication-title: Comput. Environ. Urban Syst. doi: 10.1016/S0198-9715(98)00036-2 – year: 1995 ident: 10.1016/j.trc.2022.103552_b0165 – year: 1999 ident: 10.1016/j.trc.2022.103552_b0445 – volume: 131 start-page: 124 year: 2020 ident: 10.1016/j.trc.2022.103552_b0030 article-title: Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2019.12.001 – ident: 10.1016/j.trc.2022.103552_b0360 – volume: 91 start-page: 59 year: 2020 ident: 10.1016/j.trc.2022.103552_b0410 article-title: Multivariate count data models for adoption of new transport modes in an organization-based context publication-title: Transp. Policy doi: 10.1016/j.tranpol.2020.03.014 – volume: 41 start-page: 100320 year: 2021 ident: 10.1016/j.trc.2022.103552_b0415 article-title: Semi-nonparametric latent class choice model with a flexible class membership component: a mixture model approach publication-title: J. Choice Modelling doi: 10.1016/j.jocm.2021.100320 – ident: 10.1016/j.trc.2022.103552_b0010 – start-page: 360 year: 2011 ident: 10.1016/j.trc.2022.103552_b0535 article-title: Travel mode choice analysis using support vector machines publication-title: ICCTP Am. Soc. Civ. Eng. – volume: 118 start-page: 104 year: 2018 ident: 10.1016/j.trc.2022.103552_b0105 article-title: Synergistic effects of the built environment and commuting programs on commute mode choice publication-title: Transp. Res. Part A Policy Pract. doi: 10.1016/j.tra.2018.08.041 – year: 2006 ident: 10.1016/j.trc.2022.103552_b0065 – volume: 15 start-page: 447 issue: 5 year: 2000 ident: 10.1016/j.trc.2022.103552_b0285 article-title: Mixed MNL models for discrete response publication-title: J. Appl. Econom. doi: 10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1 – volume: 29 start-page: 152 year: 2018 ident: 10.1016/j.trc.2022.103552_b0530 article-title: Discriminative conditional restricted Boltzmann machine for discrete choice and latent variable modelling publication-title: J. Choice Model. doi: 10.1016/j.jocm.2017.11.003 – volume: 48 start-page: 169 year: 2016 ident: 10.1016/j.trc.2022.103552_b0020 article-title: Modeling the demand for a shared-ride taxi service: An application to an organization-based context publication-title: Transp. Policy doi: 10.1016/j.tranpol.2016.02.013 – ident: 10.1016/j.trc.2022.103552_b0425 – ident: 10.1016/j.trc.2022.103552_b0100 doi: 10.1109/ICTBIG.2016.7892699 – volume: 12 start-page: 2655 issue: 11 year: 2000 ident: 10.1016/j.trc.2022.103552_b0325 article-title: Gaussian processes for classification: mean-field algorithms publication-title: Neural Comput. doi: 10.1162/089976600300014881 – ident: 10.1016/j.trc.2022.103552_b0110 – volume: 45 start-page: 1897 issue: 14 year: 2013 ident: 10.1016/j.trc.2022.103552_b0170 article-title: Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model publication-title: Appl. Econ. doi: 10.1080/00036846.2011.650325 – start-page: 48 year: 2017 ident: 10.1016/j.trc.2022.103552_b0055 article-title: Introduction to Disaggregate Demand Models publication-title: INFORMS TutORials Oper. Res. – volume: 521 start-page: 452 issue: 7553 year: 2015 ident: 10.1016/j.trc.2022.103552_b0150 article-title: Probabilistic machine learning and artificial intelligence publication-title: Nature doi: 10.1038/nature14541 – volume: 79 start-page: 207 year: 2017 ident: 10.1016/j.trc.2022.103552_b0125 article-title: A discrete choice framework for modeling and forecasting the adoption and diffusion of new transportation services publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2017.03.004 – year: 1996 ident: 10.1016/j.trc.2022.103552_b0310 – ident: 10.1016/j.trc.2022.103552_b0405 doi: 10.7708/ijtte.2016.6(3).10 – volume: 1 start-page: 40 issue: 1 year: 2008 ident: 10.1016/j.trc.2022.103552_b0475 article-title: EM Algorithms for nonparametric estimation of mixing distributions publication-title: J. Choice Model. doi: 10.1016/S1755-5345(13)70022-8 – volume: 47 start-page: 477 issue: 4 year: 2010 ident: 10.1016/j.trc.2022.103552_b0075 article-title: Combining discrete and continuous representations of preference heterogeneity: a latent class approach publication-title: Environ. Resour. Econ. doi: 10.1007/s10640-010-9389-y – volume: 38 start-page: 100221 year: 2021 ident: 10.1016/j.trc.2022.103552_b0185 article-title: A systematic review of machine learning classification methodologies for modelling passenger mode choice publication-title: J. Choice Model. doi: 10.1016/j.jocm.2020.100221 – volume: 14 start-page: 69 issue: 02 year: 2004 ident: 10.1016/j.trc.2022.103552_b0400 article-title: Gaussian processes for machine learning publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065704001899 – ident: 10.1016/j.trc.2022.103552_b0050 – volume: 16 start-page: 2406 year: 2015 ident: 10.1016/j.trc.2022.103552_b0200 article-title: Transportation mode recognition using mobile phone sensor data publication-title: IEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2015.2405759 – ident: 10.1016/j.trc.2022.103552_b0115 – ident: 10.1016/j.trc.2022.103552_b0140 – volume: 118 start-page: 1 year: 2020 ident: 10.1016/j.trc.2022.103552_b0505 article-title: Deep neural networks for choice analysis: Extracting complete economic information for interpretation publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2020.102701 – year: 2006 ident: 10.1016/j.trc.2022.103552_b0320 – year: 2001 ident: 10.1016/j.trc.2022.103552_b0295 article-title: A family of algorithms for approximate Bayesian inference – volume: 38 start-page: 833 issue: 8 year: 2015 ident: 10.1016/j.trc.2022.103552_b0455 article-title: Decision tree method for modeling travel mode switching in a dynamic behavioral process publication-title: Transp. Plan. Technol. doi: 10.1080/03081060.2015.1079385 – volume: 9 start-page: 846 issue: 9 year: 2013 ident: 10.1016/j.trc.2022.103552_b0035 article-title: Methodological issues in modelling time-of-travel preferences publication-title: Transp. A Transp. Sci. – volume: 106 start-page: 76 year: 2017 ident: 10.1016/j.trc.2022.103552_b0485 article-title: Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions publication-title: Transp. Res. Part B Methodol. doi: 10.1016/j.trb.2017.10.013 – volume: 23 start-page: 521 year: 2008 ident: 10.1016/j.trc.2022.103552_b0440 article-title: Fuzzy modeling approach for combined forecasting of urban traffic flow publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/j.1467-8667.2008.00558.x – volume: 119 start-page: 35 year: 2019 ident: 10.1016/j.trc.2022.103552_b0090 article-title: Online discrete choice models: Applications in personalized recommendations publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2019.02.003 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.trc.2022.103552_b0095 article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 5 start-page: 39 issue: 1 year: 2014 ident: 10.1016/j.trc.2022.103552_b0350 article-title: A review of mode choice modelling techniques for intra-city and border transport publication-title: World Rev. Intermodal Transp. Res. doi: 10.1504/WRITR.2014.065055 – volume: 11 start-page: 1458 issue: 6 year: 2000 ident: 10.1016/j.trc.2022.103552_b0155 article-title: Variational Gaussian process classifiers publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.883477 – volume: 15 start-page: 22587 year: 2015 ident: 10.1016/j.trc.2022.103552_b0365 article-title: Revisiting gaussian process regression modeling for localization in wireless sensor networks publication-title: Sensors doi: 10.3390/s150922587 – volume: 42 start-page: 1 year: 2009 ident: 10.1016/j.trc.2022.103552_b0135 article-title: Competing methods for representing random taste heterogeneity in discrete choice models publication-title: Eur. Transp. – volume: 5 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.trc.2022.103552_b0430 article-title: Evaluation of adaptive neural network models for freeway incident detection publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2004.825084 – volume: 6 start-page: 75629 year: 2018 ident: 10.1016/j.trc.2022.103552_b0255 article-title: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879055 – volume: 19 start-page: 40 year: 2016 ident: 10.1016/j.trc.2022.103552_b0465 article-title: Mixed logit with a flexible mixing distribution publication-title: J. Choice Model. doi: 10.1016/j.jocm.2016.07.004 – volume: 16 start-page: 54 issue: 1 year: 2008 ident: 10.1016/j.trc.2022.103552_b0515 article-title: Incident detection algorithm based on partial least squares regression publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2007.06.005 – volume: 36 start-page: 155 issue: 3 year: 2000 ident: 10.1016/j.trc.2022.103552_b0180 article-title: A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/S1366-5545(99)00030-7 – volume: 3 start-page: 408 issue: 4 year: 2013 ident: 10.1016/j.trc.2022.103552_b0235 article-title: Development of fuzzy logic based mode choice model considering various public transport policy options publication-title: Int. J. Traffic Transp. Eng. doi: 10.7708/ijtte.2013.3(4).05 – ident: 10.1016/j.trc.2022.103552_b0245 doi: 10.1145/2487575.2487598 – volume: 14 start-page: 23 year: 2000 ident: 10.1016/j.trc.2022.103552_b0395 article-title: Comparison of neural and conventional approaches to mode choice analysis publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2000)14:1(23) – ident: 10.1016/j.trc.2022.103552_b0525 – volume: 4 start-page: 269 issue: 3 year: 2014 ident: 10.1016/j.trc.2022.103552_b0290 article-title: Mode choice analysis: the data, the models and future ahead publication-title: Int. J. Traffic Transp. Eng. doi: 10.7708/ijtte.2014.4(3).03 – year: 1965 ident: 10.1016/j.trc.2022.103552_b0015 – volume: 131 start-page: 232 issue: 2 year: 2001 ident: 10.1016/j.trc.2022.103552_b0060 article-title: Reinforcement learning in neurofuzzy traffic signal control publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(00)00123-5 |
| SSID | ssj0001957 |
| Score | 2.4273503 |
| Snippet | •Integration of machine learning and discrete choice models.•New choice model referred to as Gaussian process latent class choice model.•Derivation and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 103552 |
| SubjectTerms | Discrete choice models EM algorithm Gaussian process Latent class choice models Machine learning |
| Title | Gaussian process latent class choice models |
| URI | https://dx.doi.org/10.1016/j.trc.2022.103552 |
| Volume | 136 |
| WOSCitedRecordID | wos000795914600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001957 issn: 0968-090X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagRYIeEBQQfYBy4ESUKrHz8rGqWh6HCqlFWnGJYseGrarsKsmi8u8Ze-wkKg8BEpdoFa3X0cy345nJzDeEvBIsY43I6og33Iwwo3UkZJ1HEg77OJciUam2wyaK8_NyseAf3Lij3o4TKNq2vLnh6_-qargHyjats3-h7vFH4QZ8BqXDFdQO1z9S_Jt609vOyDX2AITX4E62QyiNnxyCtQPTgANw-rlnOrKcIyIcCdCXI_AxuyE8sTbTtGra9iqfj59VIF5oteymLPtUQr9quuXnDVqjM5O9mUAmVpvok1riXOP6Wz1PQUD0OtZgYV7M98ZMhUg2wZibwop4gScNmtey4BFljgPc219kQPnBlmNa4epo6AzVJKWGHyBDuttbFNkXZi-zFaX2bUV5l2zTIuNg5baP350u3o9nc8KR-9U_m3_PbSv-bm30c09l5n1cPiIPXdgQHKO6H5M7qt0l931Xeb9LdmbEkk9I6EEQOBAECILAgiBAEAQIgqfk49np5cnbyI3FgD9QGg-RbBKtM8Nim9RaybjU4ISwBAJHY6JpojNVxrXIBWc8VynXEMGLJhWUU-OnUPaMbLWrVj03DftNmgpZQNAMcWjBhM64YgkrwJJnosn3SOxFUEnHGW9Gl1xXvjjwqgKpVUZqFUptj7wel6yRMOV3X069XCvn8aEnVwEIfr1s_9-WHZAHE3oPydbQbdQLck9-HZZ999JB5Tuwj3c_ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+process+latent+class+choice+models&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Sfeir%2C+Georges&rft.au=Rodrigues%2C+Filipe&rft.au=Abou-Zeid%2C+Maya&rft.date=2022-03-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=136&rft_id=info:doi/10.1016%2Fj.trc.2022.103552&rft.externalDocID=S0968090X22000018 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |