Gaussian process latent class choice models

•Integration of machine learning and discrete choice models.•New choice model referred to as Gaussian process latent class choice model.•Derivation and implementation of an expectation-maximization algorithm.•More complex and flexible representation of unobserved heterogeneity.•The model improves pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Transportation research. Part C, Emerging technologies Ročník 136; s. 103552
Hlavní autoři: Sfeir, Georges, Rodrigues, Filipe, Abou-Zeid, Maya
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2022
Témata:
ISSN:0968-090X, 1879-2359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Integration of machine learning and discrete choice models.•New choice model referred to as Gaussian process latent class choice model.•Derivation and implementation of an expectation-maximization algorithm.•More complex and flexible representation of unobserved heterogeneity.•The model improves prediction accuracy without weakening economic interpretability. We present a Gaussian Process – Latent Class Choice Model (GP-LCCM) to integrate a non-parametric class of probabilistic machine learning within discrete choice models (DCMs). Gaussian Processes (GPs) are kernel-based algorithms that incorporate expert knowledge by assuming priors over latent functions rather than priors over parameters, which makes them more flexible in addressing nonlinear problems. By integrating a Gaussian Process within a LCCM structure, we aim at improving discrete representations of unobserved heterogeneity. The proposed model would assign individuals probabilistically to behaviorally homogeneous clusters (latent classes) using GPs and simultaneously estimate class-specific choice models by relying on random utility models. Furthermore, we derive and implement an Expectation-Maximization (EM) algorithm to jointly estimate/infer the hyperparameters of the GP kernel function and the class-specific choice parameters by relying on a Laplace approximation and gradient-based numerical optimization methods, respectively. The model is tested on two different mode choice applications and compared against different LCCM benchmarks. Results show that GP-LCCM allows for a more complex and flexible representation of heterogeneity and improves both in-sample fit and out-of-sample predictive power. Moreover, behavioral and economic interpretability is maintained at the class-specific choice model level while local interpretation of the latent classes can still be achieved, although the non-parametric characteristic of GPs lessens the transparency of the model.
AbstractList •Integration of machine learning and discrete choice models.•New choice model referred to as Gaussian process latent class choice model.•Derivation and implementation of an expectation-maximization algorithm.•More complex and flexible representation of unobserved heterogeneity.•The model improves prediction accuracy without weakening economic interpretability. We present a Gaussian Process – Latent Class Choice Model (GP-LCCM) to integrate a non-parametric class of probabilistic machine learning within discrete choice models (DCMs). Gaussian Processes (GPs) are kernel-based algorithms that incorporate expert knowledge by assuming priors over latent functions rather than priors over parameters, which makes them more flexible in addressing nonlinear problems. By integrating a Gaussian Process within a LCCM structure, we aim at improving discrete representations of unobserved heterogeneity. The proposed model would assign individuals probabilistically to behaviorally homogeneous clusters (latent classes) using GPs and simultaneously estimate class-specific choice models by relying on random utility models. Furthermore, we derive and implement an Expectation-Maximization (EM) algorithm to jointly estimate/infer the hyperparameters of the GP kernel function and the class-specific choice parameters by relying on a Laplace approximation and gradient-based numerical optimization methods, respectively. The model is tested on two different mode choice applications and compared against different LCCM benchmarks. Results show that GP-LCCM allows for a more complex and flexible representation of heterogeneity and improves both in-sample fit and out-of-sample predictive power. Moreover, behavioral and economic interpretability is maintained at the class-specific choice model level while local interpretation of the latent classes can still be achieved, although the non-parametric characteristic of GPs lessens the transparency of the model.
ArticleNumber 103552
Author Abou-Zeid, Maya
Rodrigues, Filipe
Sfeir, Georges
Author_xml – sequence: 1
  givenname: Georges
  surname: Sfeir
  fullname: Sfeir, Georges
  email: geosaf@dtu.dk
  organization: DTU Management Engineering, Transport DTU, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
– sequence: 2
  givenname: Filipe
  surname: Rodrigues
  fullname: Rodrigues, Filipe
  email: rodr@dtu.dk
  organization: DTU Management Engineering, Transport DTU, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
– sequence: 3
  givenname: Maya
  surname: Abou-Zeid
  fullname: Abou-Zeid, Maya
  email: ma202@aub.edu.lb
  organization: American University of Beirut, Beirut, Riad el Solh 1107 2020, Lebanon
BookMark eNp9j8FKAzEURYNUsK1-gLvZy9SXZDIzwZUUrULBjYK7kHnzginTSUmi4N87pa5cuLrcxbncs2CzMYzE2DWHFQde3-5WOeJKgBBTl0qJMzbnbaNLIZWesTnoui1Bw_sFW6S0AwCuVTNnNxv7mZK3Y3GIASmlYrCZxlzgYKeCH8EjFfvQ05Au2bmzQ6Kr31yyt8eH1_VTuX3ZPK_vtyXKCnKJPXdueqAabh0htE7WQnLV1B2AFNwpasF2daelrqnSDnTV9VUntBBcSCGXrDntYgwpRXIGfbbZhzFH6wfDwRydzc5MzubobE7OE8n_kIfo9zZ-_8vcnZjJkL48RZPQ04jU-0iYTR_8P_QPVjhvtA
CitedBy_id crossref_primary_10_1016_j_trb_2024_103132
crossref_primary_10_1016_j_tra_2024_104198
crossref_primary_10_1016_j_trc_2025_105289
crossref_primary_10_1080_19427867_2024_2392332
crossref_primary_10_1016_j_aap_2024_107745
crossref_primary_10_1016_j_jocm_2023_100452
crossref_primary_10_1177_03611981231196149
crossref_primary_10_1007_s11116_024_10579_1
crossref_primary_10_14246_irspsd_13_3_56
crossref_primary_10_1080_19427867_2024_2359304
crossref_primary_10_1007_s10661_024_12516_2
Cites_doi 10.1109/MTITS.2017.8005618
10.1086/664709
10.1145/279232.279236
10.1016/S0968-090X(01)00007-9
10.3846/16484142.2015.1081279
10.1287/trsc.31.1.34
10.1111/j.1467-8667.2008.00554.x
10.1016/j.trc.2005.04.002
10.1016/j.jocm.2020.100236
10.1109/TITS.2006.874716
10.1109/TPAMI.2016.2635136
10.1016/j.dsp.2017.10.011
10.3141/1854-06
10.1145/2939672.2939778
10.1007/978-3-030-37446-4_9
10.1016/j.trc.2010.10.004
10.1609/aaai.v28i1.8904
10.1177/0361198106197700102
10.1016/j.trc.2017.11.021
10.1109/34.735807
10.1049/iet-its.2009.0029
10.1016/j.tra.2013.07.008
10.1016/S0968-090X(96)00017-4
10.1016/j.trb.2020.08.006
10.1061/(ASCE)0733-947X(2003)129:3(278)
10.1257/aer.91.3.351
10.1177/0361198118796971
10.1016/j.sbspro.2013.11.152
10.1016/j.apm.2010.09.005
10.1109/TITS.2018.2817879
10.1016/j.trc.2018.08.007
10.1109/ICWS.2017.83
10.1016/j.trb.2014.02.008
10.3141/2165-08
10.1016/S0198-9715(98)00036-2
10.1016/j.trb.2019.12.001
10.1016/j.tranpol.2020.03.014
10.1016/j.jocm.2021.100320
10.1016/j.tra.2018.08.041
10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
10.1016/j.jocm.2017.11.003
10.1016/j.tranpol.2016.02.013
10.1109/ICTBIG.2016.7892699
10.1162/089976600300014881
10.1080/00036846.2011.650325
10.1038/nature14541
10.1016/j.trc.2017.03.004
10.7708/ijtte.2016.6(3).10
10.1016/S1755-5345(13)70022-8
10.1007/s10640-010-9389-y
10.1016/j.jocm.2020.100221
10.1142/S0129065704001899
10.1109/TITS.2015.2405759
10.1016/j.trc.2020.102701
10.1080/03081060.2015.1079385
10.1016/j.trb.2017.10.013
10.1111/j.1467-8667.2008.00558.x
10.1016/j.dss.2019.02.003
10.1111/j.2517-6161.1977.tb01600.x
10.1504/WRITR.2014.065055
10.1109/72.883477
10.3390/s150922587
10.1109/TITS.2004.825084
10.1109/ACCESS.2018.2879055
10.1016/j.jocm.2016.07.004
10.1016/j.trc.2007.06.005
10.1016/S1366-5545(99)00030-7
10.7708/ijtte.2013.3(4).05
10.1145/2487575.2487598
10.1061/(ASCE)0887-3801(2000)14:1(23)
10.7708/ijtte.2014.4(3).03
10.1016/S0377-2217(00)00123-5
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.trc.2022.103552
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
ExternalDocumentID 10_1016_j_trc_2022_103552
S0968090X22000018
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c340t-cd1ff552571afec08f36231576b00321f5e80ab6b9396e49f094bd4b292212323
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795914600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-090X
IngestDate Sat Nov 29 07:07:36 EST 2025
Tue Nov 18 20:54:46 EST 2025
Fri Feb 23 02:38:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Latent class choice models
Gaussian process
Discrete choice models
EM algorithm
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-cd1ff552571afec08f36231576b00321f5e80ab6b9396e49f094bd4b292212323
OpenAccessLink https://dx.doi.org/10.1016/j.trc.2022.103552
ParticipantIDs crossref_citationtrail_10_1016_j_trc_2022_103552
crossref_primary_10_1016_j_trc_2022_103552
elsevier_sciencedirect_doi_10_1016_j_trc_2022_103552
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ding, Cao, Wang (b0105) 2018; 118
Sayed, Razavi (b0395) 2000; 14
Gopinath (b0165) 1995
Wong, Farooq, Bilodeau (b0530) 2018; 29
Bingham (b0060) 2001; 131
Yuan, Y., You, W., Boyle, K.J., Yuan, Y., You, W., Boyle, K., 2015. A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model parametric and nonparametric mixing distributions for.
Rodrigues, F., 2020. Scaling Bayesian inference of mixed multinomial logit models to very large datasets. arXiv preprint arXiv2004.05426v1.
Gonzalez, Weinstein, Barbeau, Labrador, Winters, Georggi, Perez (b0160) 2010; 4
Bhat (b0040) 1997; 31
Deshpande, M., Bajaj, P.R., 2017. Short Term Traffic Flow Prediction Based on Neuro-Fuzzy Hybrid Sytem, in: Proceedings of 2016 International Conference on ICT in Business, Industry, and Government, ICTBIG 2016. IEEE, pp. 1–3. https://doi.org/10.1109/ICTBIG.2016.7892699.
Wang, Zhao (b0510) 2019
Titsias (b0460) 2009
Vij, Krueger (b0485) 2017; 106
Mackay, D.J.C., 1997. Gaussian Processes: A Replacement for Supervised Neural Networks?, Lecture notes for a tutorial in advances in nueral information processing systems.
Danaf, Becker, Song, Atasoy, Ben-Akiva (b0090) 2019; 119
Doshi-velez, F., Kim, B., 2017. Towards A Rigorous Science of Interpretable Machine Learning 1–13.
Pulugurta, Arun, Errampalli (b0340) 2013; 104
Zhu, X., Li, J., Liu, Z., Yang, F., 2017. Learning Transportation Mode Choice for Context-Aware Services with Directed-Graph-Guided Fused Lasso from GPS Trajectory Data, in: Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017. pp. 692–699. https://doi.org/10.1109/ICWS.2017.83.
McFadden (b0275) 2001; 91
Hensher, Ton (b0180) 2000; 36
Fosgerau, Hess (b0135) 2009; 42
Minka (b0295) 2001
Xie, Zhao, Sun, Chen (b0545) 2010; 2165
Neal (b0305) 1999
Opper, Winther (b0325) 2000; 12
Bishop (b0065) 2006
Abdulhai, Pringle, Karakoulas (b0005) 2003; 129
Sifringer, Lurkin, Alahi (b0420) 2020; 140
Paredes, M., Hemberg, E., O’Reilly, U.M., Zegras, C., 2017. Machine learning or discrete choice models for car ownership demand estimation and prediction? 5th IEEE Int. Conf. Model. Technol. Intell. Transp. Syst. MT-ITS 2017 - Proc. 780–785. https://doi.org/10.1109/MTITS.2017.8005618.
Sfeir, Abou-Zeid, Kaysi (b0410) 2020; 91
Andrade, Uchida, Kagaya (b0025) 2006; 1977
Jin, Cheu, Srinivasan (b0210) 2002; 10
McFadden (b0280) 1974
Srinivasan, Jin, Cheu (b0430) 2004; 5
Hong, Dong, Zheng, Lai (b0190) 2011; 35
Vij, Walker (b0490) 2014; 64
Kopitar, L., Cilar, L., Kocbek, P., Stiglic, G., 2019. Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening, in: Marcos, M., Juarez, J.M., Lenz, R., Nalepa, G.J., Nowaczyk, S., Peleg, M., Stefanowski, J., Stiglic, G. (Eds.), Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. Springer Nature, pp. 108–119. https://doi.org/10.1007/978-3-030-37446-4.
Gammelli, D., Rolsted, K.P., Pacino, D., Rodrigues, F., 2020. Generalized Multi-Output Gaussian Process Censored Regression. arXiv Prepr. arXiv2009.04822.
Srinivasan, D., Member, S., Choy, M.C., Cheu, R.L., 2006. Neural Networks for Real-Time Traffic Signal Control 7, 261–272. https://doi.org/10.1109/TITS.2006.874716.
Gazder, Ratrout (b0145) 2016; 49
Zhu, Byrd, Lu, Nocedal (b0555) 1997; 23
Tang, Xiong, Zhang (b0455) 2015; 38
Bierlaire, M., Axhausen, K.W., Abay, G., 2001. The acceptance of modal innovation: The case of Swissmetro, in: 1st Swiss Transport Research Conference. Ascona, Switzerland.
Ratrout, Gazder, Al-Madani (b0350) 2014; 5
Krueger, R., Vij, A., Rashidi, T.H., 2018. A Dirichlet Process Mixture Model of Discrete Choice. arXiv Prepr. arXiv1801.06296.
Jahangiri, Rakha (b0205) 2014
Stein (b0445) 1999
Xie, Lu, Parkany (b0540) 2003; 1854
Bierlaire, M., 2018. Swissmetro. URL: https://transp-or.epfl.ch/documents/technicalReports/CS_SwissmetroDescription.pdf.
Jahangiri, Rakha (b0200) 2015; 16
Vlahogianni, Karlaftis, Golias (b0495) 2008; 23
El Zarwi, F., 2017b. lccm, a Python package for estimating latent class choice models using the Expectation Maximization (EM) algorithm to maximize the likelihood function.
Bierlaire, Lurkin (b0055) 2017
Dempster, Laird, Rubin (b0095) 1977; 39
McFadden, Train (b0285) 2000; 15
Montavon, Samek, Müller (b0300) 2018; 73
Rodrigues, Ortelli, Bierlaire, Pereira (b0385) 2020
Bansal, Krueger, Bierlaire, Daziano, Rashidi (b0030) 2020; 131
Ghahramani (b0150) 2015; 521
Hillel, Bierlaire, Elshafie, Jin (b0185) 2021; 38
Ma, Sheng, Jin, Ma, Gao (b0255) 2018; 6
Wong, M., Farooq, B., 2019. ResLogit: A residual neural network logit model. arXiv Prepr. arXiv1912.10058.
Vij, Carrel, Walker (b0480) 2013; 54
Seeger (b0400) 2004; 14
Ribeiro, M.T., Singh, S., Guestrin, C., 2016a. “ Why Should I Trust You ?” Explaining the Predictions of Any Classifier. arXiv:1602.04938 1135–1144.
El Zarwi, F., 2017a. Modeling and Forecasting the Impact of Major Technological and Infrastructural Changes on Travel Demand. University of California, Berkeley (PhD Thesis).
Karlaftis, Vlahogianni (b0215) 2011; 19
Train (b0465) 2016; 19
Lloyd, J.R., Duvenaud, D., Grosse, R., Tenenbaum, J.B., Ghahramani, Z., 2014. Automatic Construction and Natural-Language Description of Nonparametric Regression Models. arXiv:1402.4304.
Ben-Akiva, Abou-Zeid (b0035) 2013; 9
Mackay (b0265) 1998
Richter, Toledano-Ayala (b0365) 2015; 15
Al-Ayyash, Abou-Zeid, Kaysi (b0020) 2016; 48
Rodrigues, Henrickson, Pereira (b0380) 2019; 20
Kedia, Saw, Katti (b0220) 2015; 30
Dabiri, Heaslip (b0085) 2018; 86
Train (b0470) 2009
Xian-Yu (b0535) 2011
Sfeir, Abou-Zeid, Rodrigues, Pereira, Kaysi (b0415) 2021; 41
Han, Y., 2019. Neural-Embedded Discrete Choice Models. Massachusetts Institute of Technology (PhD Thesis).
Wang, Chen, Qu (b0515) 2008; 16
Sekhar, C.R., Minal, Madhu, E., 2016. Multimodal Choice Modeling Using Random Forest. Int. J. Traffic Transp. Eng. 6, 356–367.
Ribeiro, M.T., Singh, S., Guestrin, C., 2016b. Model-Agnostic Interpretability of Machine Learning. arXiv:1606.05386.
Williams, Barber (b0520) 1998; 20
El Zarwi, Vij, Walker (b0125) 2017; 79
Neal (b0310) 1996
Rodrigues, Pereira (b0390) 2018; 95
Idé, Kato (b0195) 2009
Brathwaite, T., Vij, A., Walker, J.L., 2017. Machine Learning Meets Microeconomics: The Case of Decision Trees and Discrete Choice. https://doi.org/10.1086/664709.
Greene, Hensher (b0170) 2013; 45
Lee, D., Derrible, S., Pereira, F.C., 2018. Comparison of Four Types of Artificial Neural Networks and a Multinomial Logit Model for Travel Mode Choice Modeling. https://doi.org/10.1177/0361198118796971.
Rodrigues, F., Borysov, S.S., Ribeiro, B., Member, S., Pereira, F.C., 2016. A Bayesian additive model for understanding public transport usage in special events 39, 2113–2126.
Bujosa, Riera, Hicks (b0075) 2010; 47
Stathopoulos, Dimitriou, Tsekeris (b0440) 2008; 23
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0335) 2011; 12
Kumar, Sarkar, Madhu (b0235) 2013; 3
Wang, Wang, Zhao (b0505) 2020; 118
Rasmussen, Williams (b0345) 2006
Nocedal, Wright (b0320) 2006
Subba Rao, Sikdar, Krishna Rao, Dhingra (b0450) 1998; 22
Sifringer, B., Lurkin, V., Alahi, A., 2018. Enhancing Discrete Choice Models with Neural Networks, in: 18th Swiss Transport Research Conference. pp. 1–3.
Mackay, Gibbs (b0155) 2000; 11
Abramowitz, Stegun (b0015) 1965
Mackay (b0260) 2003
Nijkamp, Reggiani, Tritapepe (b0315) 1996; 4
Cantarella, de Luca (b0080) 2005; 13
Liu, S., Yue, Y., Krishnan, R., 2013. Adaptive Collective Routing Using Gaussian Process Dynamic Congestion Models 704–712.
Wang, Wang, Zhao (b0500) 2020; 37
Aboutaleb, Y.M., Danaf, M., Xie, Y., Ben-Akiva, M., 2021. Discrete Choice Analysis with Machine Learning Capabilities. arXiv preprint arXiv2101.10261v1, 1–14. http://arxiv.org/abs/2101.10261.
Minal, Sekhar (b0290) 2014; 4
Train (b0475) 2008; 1
Errampalli, Okushima, Akiyama (b0130) 2007
Kedia (10.1016/j.trc.2022.103552_b0220) 2015; 30
Idé (10.1016/j.trc.2022.103552_b0195) 2009
Al-Ayyash (10.1016/j.trc.2022.103552_b0020) 2016; 48
10.1016/j.trc.2022.103552_b0550
Wang (10.1016/j.trc.2022.103552_b0500) 2020; 37
10.1016/j.trc.2022.103552_b0435
Bujosa (10.1016/j.trc.2022.103552_b0075) 2010; 47
Karlaftis (10.1016/j.trc.2022.103552_b0215) 2011; 19
McFadden (10.1016/j.trc.2022.103552_b0280) 1974
Vij (10.1016/j.trc.2022.103552_b0490) 2014; 64
10.1016/j.trc.2022.103552_b0270
Neal (10.1016/j.trc.2022.103552_b0310) 1996
Montavon (10.1016/j.trc.2022.103552_b0300) 2018; 73
Danaf (10.1016/j.trc.2022.103552_b0090) 2019; 119
Vij (10.1016/j.trc.2022.103552_b0480) 2013; 54
Ma (10.1016/j.trc.2022.103552_b0255) 2018; 6
Wang (10.1016/j.trc.2022.103552_b0510) 2019
Mackay (10.1016/j.trc.2022.103552_b0155) 2000; 11
Abramowitz (10.1016/j.trc.2022.103552_b0015) 1965
Xian-Yu (10.1016/j.trc.2022.103552_b0535) 2011
Cantarella (10.1016/j.trc.2022.103552_b0080) 2005; 13
10.1016/j.trc.2022.103552_b0425
Tang (10.1016/j.trc.2022.103552_b0455) 2015; 38
10.1016/j.trc.2022.103552_b0140
Greene (10.1016/j.trc.2022.103552_b0170) 2013; 45
Errampalli (10.1016/j.trc.2022.103552_b0130) 2007
Srinivasan (10.1016/j.trc.2022.103552_b0430) 2004; 5
Sfeir (10.1016/j.trc.2022.103552_b0415) 2021; 41
Sayed (10.1016/j.trc.2022.103552_b0395) 2000; 14
Kumar (10.1016/j.trc.2022.103552_b0235) 2013; 3
Hong (10.1016/j.trc.2022.103552_b0190) 2011; 35
Xie (10.1016/j.trc.2022.103552_b0545) 2010; 2165
Jahangiri (10.1016/j.trc.2022.103552_b0205) 2014
10.1016/j.trc.2022.103552_b0330
Gonzalez (10.1016/j.trc.2022.103552_b0160) 2010; 4
Bishop (10.1016/j.trc.2022.103552_b0065) 2006
Jin (10.1016/j.trc.2022.103552_b0210) 2002; 10
10.1016/j.trc.2022.103552_b0050
Bingham (10.1016/j.trc.2022.103552_b0060) 2001; 131
10.1016/j.trc.2022.103552_b0175
Nocedal (10.1016/j.trc.2022.103552_b0320) 2006
Williams (10.1016/j.trc.2022.103552_b0520) 1998; 20
Seeger (10.1016/j.trc.2022.103552_b0400) 2004; 14
Abdulhai (10.1016/j.trc.2022.103552_b0005) 2003; 129
10.1016/j.trc.2022.103552_b0045
Gopinath (10.1016/j.trc.2022.103552_b0165) 1995
El Zarwi (10.1016/j.trc.2022.103552_b0125) 2017; 79
10.1016/j.trc.2022.103552_b0560
McFadden (10.1016/j.trc.2022.103552_b0285) 2000; 15
Dempster (10.1016/j.trc.2022.103552_b0095) 1977; 39
Ghahramani (10.1016/j.trc.2022.103552_b0150) 2015; 521
10.1016/j.trc.2022.103552_b0110
10.1016/j.trc.2022.103552_b0355
Hillel (10.1016/j.trc.2022.103552_b0185) 2021; 38
10.1016/j.trc.2022.103552_b0115
Hensher (10.1016/j.trc.2022.103552_b0180) 2000; 36
Train (10.1016/j.trc.2022.103552_b0465) 2016; 19
10.1016/j.trc.2022.103552_b0070
Minka (10.1016/j.trc.2022.103552_b0295) 2001
Bansal (10.1016/j.trc.2022.103552_b0030) 2020; 131
Train (10.1016/j.trc.2022.103552_b0475) 2008; 1
Gazder (10.1016/j.trc.2022.103552_b0145) 2016; 49
10.1016/j.trc.2022.103552_b0230
Rasmussen (10.1016/j.trc.2022.103552_b0345) 2006
Ding (10.1016/j.trc.2022.103552_b0105) 2018; 118
Ratrout (10.1016/j.trc.2022.103552_b0350) 2014; 5
Rodrigues (10.1016/j.trc.2022.103552_b0385) 2020
10.1016/j.trc.2022.103552_b0100
Train (10.1016/j.trc.2022.103552_b0470) 2009
Nijkamp (10.1016/j.trc.2022.103552_b0315) 1996; 4
Fosgerau (10.1016/j.trc.2022.103552_b0135) 2009; 42
10.1016/j.trc.2022.103552_b0225
Wang (10.1016/j.trc.2022.103552_b0515) 2008; 16
Mackay (10.1016/j.trc.2022.103552_b0260) 2003
Bierlaire (10.1016/j.trc.2022.103552_b0055) 2017
Xie (10.1016/j.trc.2022.103552_b0540) 2003; 1854
Minal (10.1016/j.trc.2022.103552_b0290) 2014; 4
Rodrigues (10.1016/j.trc.2022.103552_b0380) 2019; 20
Stathopoulos (10.1016/j.trc.2022.103552_b0440) 2008; 23
Titsias (10.1016/j.trc.2022.103552_b0460) 2009
Subba Rao (10.1016/j.trc.2022.103552_b0450) 1998; 22
Wang (10.1016/j.trc.2022.103552_b0505) 2020; 118
Bhat (10.1016/j.trc.2022.103552_b0040) 1997; 31
McFadden (10.1016/j.trc.2022.103552_b0275) 2001; 91
Zhu (10.1016/j.trc.2022.103552_b0555) 1997; 23
Dabiri (10.1016/j.trc.2022.103552_b0085) 2018; 86
Opper (10.1016/j.trc.2022.103552_b0325) 2000; 12
10.1016/j.trc.2022.103552_b0375
Vlahogianni (10.1016/j.trc.2022.103552_b0495) 2008; 23
10.1016/j.trc.2022.103552_b0370
Rodrigues (10.1016/j.trc.2022.103552_b0390) 2018; 95
Wong (10.1016/j.trc.2022.103552_b0530) 2018; 29
10.1016/j.trc.2022.103552_b0250
10.1016/j.trc.2022.103552_b0010
Vij (10.1016/j.trc.2022.103552_b0485) 2017; 106
Neal (10.1016/j.trc.2022.103552_b0305) 1999
Pulugurta (10.1016/j.trc.2022.103552_b0340) 2013; 104
Ben-Akiva (10.1016/j.trc.2022.103552_b0035) 2013; 9
Richter (10.1016/j.trc.2022.103552_b0365) 2015; 15
10.1016/j.trc.2022.103552_b0525
10.1016/j.trc.2022.103552_b0405
Jahangiri (10.1016/j.trc.2022.103552_b0200) 2015; 16
Sfeir (10.1016/j.trc.2022.103552_b0410) 2020; 91
Andrade (10.1016/j.trc.2022.103552_b0025) 2006; 1977
10.1016/j.trc.2022.103552_b0245
Mackay (10.1016/j.trc.2022.103552_b0265) 1998
Stein (10.1016/j.trc.2022.103552_b0445) 1999
Pedregosa (10.1016/j.trc.2022.103552_b0335) 2011; 12
Sifringer (10.1016/j.trc.2022.103552_b0420) 2020; 140
10.1016/j.trc.2022.103552_b0360
10.1016/j.trc.2022.103552_b0240
10.1016/j.trc.2022.103552_b0120
References_xml – volume: 6
  start-page: 75629
  year: 2018
  end-page: 75638
  ident: b0255
  article-title: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching
  publication-title: IEEE Access
– volume: 104
  start-page: 583
  year: 2013
  end-page: 592
  ident: b0340
  article-title: Use of artificial intelligence for mode choice analysis and comparison with traditional multinomial logit model
  publication-title: Procedia - Soc. Behav. Sci
– volume: 35
  start-page: 1282
  year: 2011
  end-page: 1291
  ident: b0190
  article-title: Forecasting urban traffic flow by SVR with continuous ACO
  publication-title: Appl. Math. Model.
– reference: Ribeiro, M.T., Singh, S., Guestrin, C., 2016b. Model-Agnostic Interpretability of Machine Learning. arXiv:1606.05386.
– volume: 20
  start-page: 594
  year: 2019
  end-page: 603
  ident: b0380
  article-title: Multi-output Gaussian processes for crowdsourced traffic data imputation
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 129
  start-page: 278
  year: 2003
  end-page: 285
  ident: b0005
  article-title: Reinforcement learning for
  publication-title: J. Transp. Eng.
– volume: 119
  start-page: 35
  year: 2019
  end-page: 45
  ident: b0090
  article-title: Online discrete choice models: Applications in personalized recommendations
  publication-title: Decis. Support Syst.
– year: 1996
  ident: b0310
  article-title: Bayesian Learning for Neural Networks
– volume: 54
  start-page: 164
  year: 2013
  end-page: 178
  ident: b0480
  article-title: Incorporating the influence of latent modal preferences on travel mode choice behavior
  publication-title: Transp. Res. Part A Policy Pract.
– year: 1995
  ident: b0165
  article-title: Modeling Heterogeneity in Discrete Choice Processes
– reference: Sekhar, C.R., Minal, Madhu, E., 2016. Multimodal Choice Modeling Using Random Forest. Int. J. Traffic Transp. Eng. 6, 356–367.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b0095
  article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 42
  start-page: 1
  year: 2009
  end-page: 25
  ident: b0135
  article-title: Competing methods for representing random taste heterogeneity in discrete choice models
  publication-title: Eur. Transp.
– volume: 4
  start-page: 37
  year: 2010
  ident: b0160
  article-title: Automating mode detection for travel behaviour analysis by using global positioning systems-enabled mobile phones and neural networks
  publication-title: IET Intell. Transp. Syst.
– volume: 4
  start-page: 323
  year: 1996
  end-page: 338
  ident: b0315
  article-title: Modelling inter-urban transport flows in Italy: a comparison between neural network analysis and logit analysis.pdf
  publication-title: Transp. Res. Part C Emerg. Technol.
– reference: Liu, S., Yue, Y., Krishnan, R., 2013. Adaptive Collective Routing Using Gaussian Process Dynamic Congestion Models 704–712.
– reference: Sifringer, B., Lurkin, V., Alahi, A., 2018. Enhancing Discrete Choice Models with Neural Networks, in: 18th Swiss Transport Research Conference. pp. 1–3.
– volume: 23
  start-page: 521
  year: 2008
  end-page: 535
  ident: b0440
  article-title: Fuzzy modeling approach for combined forecasting of urban traffic flow
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 73
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0300
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process.
– reference: Han, Y., 2019. Neural-Embedded Discrete Choice Models. Massachusetts Institute of Technology (PhD Thesis).
– volume: 15
  start-page: 447
  year: 2000
  end-page: 470
  ident: b0285
  article-title: Mixed MNL models for discrete response
  publication-title: J. Appl. Econom.
– volume: 91
  start-page: 59
  year: 2020
  end-page: 75
  ident: b0410
  article-title: Multivariate count data models for adoption of new transport modes in an organization-based context
  publication-title: Transp. Policy
– volume: 19
  start-page: 40
  year: 2016
  end-page: 53
  ident: b0465
  article-title: Mixed logit with a flexible mixing distribution
  publication-title: J. Choice Model.
– volume: 1854
  start-page: 50
  year: 2003
  end-page: 61
  ident: b0540
  article-title: Work travel mode choice modeling with data mining: decision trees and neural networks
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– year: 2001
  ident: b0295
  article-title: A family of algorithms for approximate Bayesian inference
  publication-title: Massachusetts Institute of Technology (PhD Thesis)
– reference: Ribeiro, M.T., Singh, S., Guestrin, C., 2016a. “ Why Should I Trust You ?” Explaining the Predictions of Any Classifier. arXiv:1602.04938 1135–1144.
– reference: Deshpande, M., Bajaj, P.R., 2017. Short Term Traffic Flow Prediction Based on Neuro-Fuzzy Hybrid Sytem, in: Proceedings of 2016 International Conference on ICT in Business, Industry, and Government, ICTBIG 2016. IEEE, pp. 1–3. https://doi.org/10.1109/ICTBIG.2016.7892699.
– volume: 11
  start-page: 1458
  year: 2000
  end-page: 1464
  ident: b0155
  article-title: Variational Gaussian process classifiers
  publication-title: IEEE Trans. Neural Networks
– volume: 5
  start-page: 1
  year: 2004
  end-page: 11
  ident: b0430
  article-title: Evaluation of adaptive neural network models for freeway incident detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: Mackay, D.J.C., 1997. Gaussian Processes: A Replacement for Supervised Neural Networks?, Lecture notes for a tutorial in advances in nueral information processing systems.
– volume: 10
  start-page: 121
  year: 2002
  end-page: 147
  ident: b0210
  article-title: Development and adaptation of constructive probabilistic neural network in freeway incident detection
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 38
  start-page: 833
  year: 2015
  end-page: 850
  ident: b0455
  article-title: Decision tree method for modeling travel mode switching in a dynamic behavioral process
  publication-title: Transp. Plan. Technol.
– volume: 20
  start-page: 1342
  year: 1998
  end-page: 1351
  ident: b0520
  article-title: Bayesian classification with Gaussian processes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 2165
  start-page: 69
  year: 2010
  end-page: 78
  ident: b0545
  article-title: Gaussian processes for short-term traffic volume forecasting
  publication-title: Transp. Res. Rec.
– volume: 3
  start-page: 408
  year: 2013
  end-page: 425
  ident: b0235
  article-title: Development of fuzzy logic based mode choice model considering various public transport policy options
  publication-title: Int. J. Traffic Transp. Eng.
– volume: 140
  start-page: 236
  year: 2020
  end-page: 261
  ident: b0420
  article-title: Enhancing discrete choice models with representation learning
  publication-title: Transp. Res. Part B Methodol.
– volume: 16
  start-page: 54
  year: 2008
  end-page: 70
  ident: b0515
  article-title: Incident detection algorithm based on partial least squares regression
  publication-title: Transp. Res. Part C Emerg. Technol.
– reference: Aboutaleb, Y.M., Danaf, M., Xie, Y., Ben-Akiva, M., 2021. Discrete Choice Analysis with Machine Learning Capabilities. arXiv preprint arXiv2101.10261v1, 1–14. http://arxiv.org/abs/2101.10261.
– volume: 48
  start-page: 169
  year: 2016
  end-page: 182
  ident: b0020
  article-title: Modeling the demand for a shared-ride taxi service: An application to an organization-based context
  publication-title: Transp. Policy
– volume: 12
  start-page: 2655
  year: 2000
  end-page: 2684
  ident: b0325
  article-title: Gaussian processes for classification: mean-field algorithms
  publication-title: Neural Comput.
– year: 2020
  ident: b0385
  article-title: Bayesian automatic relevance determination for utility function specification in discrete choice models
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: El Zarwi, F., 2017a. Modeling and Forecasting the Impact of Major Technological and Infrastructural Changes on Travel Demand. University of California, Berkeley (PhD Thesis).
– reference: Bierlaire, M., Axhausen, K.W., Abay, G., 2001. The acceptance of modal innovation: The case of Swissmetro, in: 1st Swiss Transport Research Conference. Ascona, Switzerland.
– volume: 131
  start-page: 232
  year: 2001
  end-page: 241
  ident: b0060
  article-title: Reinforcement learning in neurofuzzy traffic signal control
  publication-title: Eur. J. Oper. Res.
– volume: 23
  start-page: 536
  year: 2008
  end-page: 548
  ident: b0495
  article-title: temporal evolution of short-term urban traffic flow: a nonlinear dynamics approach
  publication-title: Comput. Civ. Infrastruct. Eng.
– reference: Lee, D., Derrible, S., Pereira, F.C., 2018. Comparison of Four Types of Artificial Neural Networks and a Multinomial Logit Model for Travel Mode Choice Modeling. https://doi.org/10.1177/0361198118796971.
– reference: Srinivasan, D., Member, S., Choy, M.C., Cheu, R.L., 2006. Neural Networks for Real-Time Traffic Signal Control 7, 261–272. https://doi.org/10.1109/TITS.2006.874716.
– year: 1965
  ident: b0015
  article-title: Handbook of Mathematical Functions
– reference: Rodrigues, F., 2020. Scaling Bayesian inference of mixed multinomial logit models to very large datasets. arXiv preprint arXiv2004.05426v1.
– year: 2007
  ident: b0130
  article-title: Combined fuzzy logic based mode choice and microscopic simulation model for transport policy evaluation
  publication-title: 11th World Conference on Transport Research
– volume: 9
  start-page: 846
  year: 2013
  end-page: 859
  ident: b0035
  article-title: Methodological issues in modelling time-of-travel preferences
  publication-title: Transp. A Transp. Sci.
– year: 2006
  ident: b0065
  article-title: Pattern Recognition and Machine Learning
– start-page: 48
  year: 2017
  end-page: 67
  ident: b0055
  article-title: Introduction to Disaggregate Demand Models
  publication-title: INFORMS TutORials Oper. Res.
– volume: 16
  start-page: 2406
  year: 2015
  end-page: 2417
  ident: b0200
  article-title: Transportation mode recognition using mobile phone sensor data
  publication-title: IEE Trans. Intell. Transp. Syst.
– year: 1998
  ident: b0265
  article-title: Introduction to Gaussian Processes
  publication-title: Neural Networks and Machine Learning
– volume: 1977
  start-page: 8
  year: 2006
  end-page: 16
  ident: b0025
  article-title: Development of transport mode choice model by using adaptive neuro-fuzzy inference system
  publication-title: Transp. Res. Rec.
– volume: 29
  start-page: 152
  year: 2018
  end-page: 168
  ident: b0530
  article-title: Discriminative conditional restricted Boltzmann machine for discrete choice and latent variable modelling
  publication-title: J. Choice Model.
– volume: 64
  start-page: 90
  year: 2014
  end-page: 105
  ident: b0490
  article-title: Preference endogeneity in discrete choice models
  publication-title: Transp. Res. Part B: Methodol.
– reference: Wong, M., Farooq, B., 2019. ResLogit: A residual neural network logit model. arXiv Prepr. arXiv1912.10058.
– volume: 30
  start-page: 286
  year: 2015
  end-page: 293
  ident: b0220
  article-title: Fuzzy logic approach in mode choice modelling for education trips: A case study of Indian metropolitan city
  publication-title: Transport
– volume: 5
  start-page: 39
  year: 2014
  end-page: 58
  ident: b0350
  article-title: A review of mode choice modelling techniques for intra-city and border transport
  publication-title: World Rev. Intermodal Transp. Res.
– reference: Rodrigues, F., Borysov, S.S., Ribeiro, B., Member, S., Pereira, F.C., 2016. A Bayesian additive model for understanding public transport usage in special events 39, 2113–2126.
– year: 2006
  ident: b0320
  article-title: Numerical Optimization
– start-page: 1185
  year: 2009
  end-page: 1196
  ident: b0195
  article-title: Travel-Time Prediction using Gaussian Process Regression: A Trajectory-Based Approach
  publication-title: Proceedings of the 2009 SIAM International Conference on Data Mining
– volume: 13
  start-page: 121
  year: 2005
  end-page: 155
  ident: b0080
  article-title: Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models
  publication-title: Transp. Res. Part C Emerg. Technol.
– year: 2019
  ident: b0510
  article-title: An empirical study of using deep neural network to analyze travel mode choice with interpretable economic information
  publication-title: Transportation Research Board 98th Annual Meeting
– volume: 14
  start-page: 23
  year: 2000
  end-page: 30
  ident: b0395
  article-title: Comparison of neural and conventional approaches to mode choice analysis
  publication-title: J. Comput. Civ. Eng.
– reference: Kopitar, L., Cilar, L., Kocbek, P., Stiglic, G., 2019. Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening, in: Marcos, M., Juarez, J.M., Lenz, R., Nalepa, G.J., Nowaczyk, S., Peleg, M., Stefanowski, J., Stiglic, G. (Eds.), Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. Springer Nature, pp. 108–119. https://doi.org/10.1007/978-3-030-37446-4.
– reference: Lloyd, J.R., Duvenaud, D., Grosse, R., Tenenbaum, J.B., Ghahramani, Z., 2014. Automatic Construction and Natural-Language Description of Nonparametric Regression Models. arXiv:1402.4304.
– volume: 4
  start-page: 269
  year: 2014
  end-page: 285
  ident: b0290
  article-title: Mode choice analysis: the data, the models and future ahead
  publication-title: Int. J. Traffic Transp. Eng.
– volume: 15
  start-page: 22587
  year: 2015
  end-page: 22615
  ident: b0365
  article-title: Revisiting gaussian process regression modeling for localization in wireless sensor networks
  publication-title: Sensors
– year: 1999
  ident: b0445
  article-title: Interpolation of Saptial Data
– volume: 131
  start-page: 124
  year: 2020
  end-page: 142
  ident: b0030
  article-title: Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations
  publication-title: Transp. Res. Part B: Methodol.
– volume: 1
  start-page: 40
  year: 2008
  end-page: 69
  ident: b0475
  article-title: EM Algorithms for nonparametric estimation of mixing distributions
  publication-title: J. Choice Model.
– volume: 41
  start-page: 100320
  year: 2021
  ident: b0415
  article-title: Semi-nonparametric latent class choice model with a flexible class membership component: a mixture model approach
  publication-title: J. Choice Modelling
– volume: 106
  start-page: 76
  year: 2017
  end-page: 101
  ident: b0485
  article-title: Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions
  publication-title: Transp. Res. Part B Methodol.
– reference: Zhu, X., Li, J., Liu, Z., Yang, F., 2017. Learning Transportation Mode Choice for Context-Aware Services with Directed-Graph-Guided Fused Lasso from GPS Trajectory Data, in: Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017. pp. 692–699. https://doi.org/10.1109/ICWS.2017.83.
– year: 2006
  ident: b0345
  article-title: Gaussian Processes for Machine Learning
– volume: 45
  start-page: 1897
  year: 2013
  end-page: 1902
  ident: b0170
  article-title: Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model
  publication-title: Appl. Econ.
– start-page: 360
  year: 2011
  end-page: 371
  ident: b0535
  article-title: Travel mode choice analysis using support vector machines
  publication-title: ICCTP Am. Soc. Civ. Eng.
– volume: 49
  start-page: 885
  year: 2016
  end-page: 1866
  ident: b0145
  article-title: A new logit-artificial neural network ensemble for mode choice modeling: a case study for border transport
  publication-title: J. Adv. Transp.
– volume: 22
  start-page: 485
  year: 1998
  end-page: 496
  ident: b0450
  article-title: Another insight into artificial neural networks through behavioural analysis of access mode choice
  publication-title: Comput. Environ. Urban Syst.
– volume: 521
  start-page: 452
  year: 2015
  end-page: 459
  ident: b0150
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
– volume: 31
  start-page: 34
  year: 1997
  end-page: 48
  ident: b0040
  article-title: Endogenous segmentation mode choice model with an application to intercity travel
  publication-title: Transp. Sci.
– volume: 79
  start-page: 207
  year: 2017
  end-page: 223
  ident: b0125
  article-title: A discrete choice framework for modeling and forecasting the adoption and diffusion of new transportation services
  publication-title: Transp. Res. Part C Emerg. Technol.
– reference: Doshi-velez, F., Kim, B., 2017. Towards A Rigorous Science of Interpretable Machine Learning 1–13.
– volume: 23
  start-page: 550
  year: 1997
  end-page: 560
  ident: b0555
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw.
– reference: Bierlaire, M., 2018. Swissmetro. URL: https://transp-or.epfl.ch/documents/technicalReports/CS_SwissmetroDescription.pdf.
– volume: 118
  start-page: 104
  year: 2018
  end-page: 118
  ident: b0105
  article-title: Synergistic effects of the built environment and commuting programs on commute mode choice
  publication-title: Transp. Res. Part A Policy Pract.
– volume: 86
  start-page: 360
  year: 2018
  end-page: 371
  ident: b0085
  article-title: Inferring transportation modes from GPS trajectories using a convolutional neural network
  publication-title: Transp. Res. Part C Emerg. Technol.
– volume: 36
  start-page: 155
  year: 2000
  end-page: 172
  ident: b0180
  article-title: A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
– reference: Krueger, R., Vij, A., Rashidi, T.H., 2018. A Dirichlet Process Mixture Model of Discrete Choice. arXiv Prepr. arXiv1801.06296.
– year: 2009
  ident: b0470
  article-title: Discrete choice methods with simulation
  publication-title: Cambridge University Press, Cambridge.
– volume: 95
  start-page: 636
  year: 2018
  end-page: 651
  ident: b0390
  article-title: Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data
  publication-title: Transp. Res. Part C Emerg. Technol.
– start-page: 475
  year: 1999
  end-page: 501
  ident: b0305
  article-title: Regression and Classification Using Gaussian Process Priors
  publication-title: Bayesian Statistics 6
– reference: El Zarwi, F., 2017b. lccm, a Python package for estimating latent class choice models using the Expectation Maximization (EM) algorithm to maximize the likelihood function.
– volume: 37
  start-page: 100236
  year: 2020
  ident: b0500
  article-title: Multitask learning deep neural networks to combine revealed and stated preference data
  publication-title: J. Choice Model.
– start-page: 105
  year: 1974
  end-page: 142
  ident: b0280
  article-title: Conditional Logit Analysis of Qualitative Choice Behavior
  publication-title: Frontiers in Econometrics
– reference: Brathwaite, T., Vij, A., Walker, J.L., 2017. Machine Learning Meets Microeconomics: The Case of Decision Trees and Discrete Choice. https://doi.org/10.1086/664709.
– volume: 19
  start-page: 387
  year: 2011
  end-page: 399
  ident: b0215
  article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights
  publication-title: Transp. Res. Part C Emerg. Technol.
– reference: Gammelli, D., Rolsted, K.P., Pacino, D., Rodrigues, F., 2020. Generalized Multi-Output Gaussian Process Censored Regression. arXiv Prepr. arXiv2009.04822.
– start-page: 567
  year: 2009
  end-page: 574
  ident: b0460
  article-title: Variational learning of inducing variables in sparse Gaussian processes
  publication-title: Proceedings of the 12th International Conference on Artificial Intelligence and Statistics (AISTATS)
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0335
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– year: 2014
  ident: b0205
  article-title: Developing a Support Vector Machine (SVM) Classifier for Transportation Mode Identification by Using Mobile Phone Sensor Data
  publication-title: Transportation Research Board 93rd Annual Meeting
– reference: Paredes, M., Hemberg, E., O’Reilly, U.M., Zegras, C., 2017. Machine learning or discrete choice models for car ownership demand estimation and prediction? 5th IEEE Int. Conf. Model. Technol. Intell. Transp. Syst. MT-ITS 2017 - Proc. 780–785. https://doi.org/10.1109/MTITS.2017.8005618.
– volume: 38
  start-page: 100221
  year: 2021
  ident: b0185
  article-title: A systematic review of machine learning classification methodologies for modelling passenger mode choice
  publication-title: J. Choice Model.
– reference: Yuan, Y., You, W., Boyle, K.J., Yuan, Y., You, W., Boyle, K., 2015. A guide to heterogeneity features captured by parametric and nonparametric mixing distributions for the mixed logit model parametric and nonparametric mixing distributions for.
– year: 2003
  ident: b0260
  article-title: Information Theory, Inference, and Learning Algorithms
– volume: 91
  start-page: 351
  year: 2001
  end-page: 378
  ident: b0275
  article-title: Economic Choices
  publication-title: Am. Econ. Rev.
– volume: 14
  start-page: 69
  year: 2004
  end-page: 106
  ident: b0400
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
– volume: 47
  start-page: 477
  year: 2010
  end-page: 493
  ident: b0075
  article-title: Combining discrete and continuous representations of preference heterogeneity: a latent class approach
  publication-title: Environ. Resour. Econ.
– volume: 118
  start-page: 1
  year: 2020
  end-page: 22
  ident: b0505
  article-title: Deep neural networks for choice analysis: Extracting complete economic information for interpretation
  publication-title: Transp. Res. Part C Emerg. Technol.
– ident: 10.1016/j.trc.2022.103552_b0330
  doi: 10.1109/MTITS.2017.8005618
– ident: 10.1016/j.trc.2022.103552_b0070
  doi: 10.1086/664709
– volume: 23
  start-page: 550
  issue: 4
  year: 1997
  ident: 10.1016/j.trc.2022.103552_b0555
  article-title: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/279232.279236
– ident: 10.1016/j.trc.2022.103552_b0270
– volume: 10
  start-page: 121
  year: 2002
  ident: 10.1016/j.trc.2022.103552_b0210
  article-title: Development and adaptation of constructive probabilistic neural network in freeway incident detection
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/S0968-090X(01)00007-9
– volume: 30
  start-page: 286
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2022.103552_b0220
  article-title: Fuzzy logic approach in mode choice modelling for education trips: A case study of Indian metropolitan city
  publication-title: Transport
  doi: 10.3846/16484142.2015.1081279
– year: 2019
  ident: 10.1016/j.trc.2022.103552_b0510
  article-title: An empirical study of using deep neural network to analyze travel mode choice with interpretable economic information
– volume: 31
  start-page: 34
  year: 1997
  ident: 10.1016/j.trc.2022.103552_b0040
  article-title: Endogenous segmentation mode choice model with an application to intercity travel
  publication-title: Transp. Sci.
  doi: 10.1287/trsc.31.1.34
– volume: 49
  start-page: 885
  year: 2016
  ident: 10.1016/j.trc.2022.103552_b0145
  article-title: A new logit-artificial neural network ensemble for mode choice modeling: a case study for border transport
  publication-title: J. Adv. Transp.
– volume: 23
  start-page: 536
  year: 2008
  ident: 10.1016/j.trc.2022.103552_b0495
  article-title: temporal evolution of short-term urban traffic flow: a nonlinear dynamics approach
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2008.00554.x
– year: 2007
  ident: 10.1016/j.trc.2022.103552_b0130
  article-title: Combined fuzzy logic based mode choice and microscopic simulation model for transport policy evaluation
– year: 1998
  ident: 10.1016/j.trc.2022.103552_b0265
  article-title: Introduction to Gaussian Processes
– volume: 13
  start-page: 121
  issue: 2
  year: 2005
  ident: 10.1016/j.trc.2022.103552_b0080
  article-title: Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2005.04.002
– year: 2003
  ident: 10.1016/j.trc.2022.103552_b0260
– volume: 37
  start-page: 100236
  year: 2020
  ident: 10.1016/j.trc.2022.103552_b0500
  article-title: Multitask learning deep neural networks to combine revealed and stated preference data
  publication-title: J. Choice Model.
  doi: 10.1016/j.jocm.2020.100236
– ident: 10.1016/j.trc.2022.103552_b0435
  doi: 10.1109/TITS.2006.874716
– ident: 10.1016/j.trc.2022.103552_b0375
  doi: 10.1109/TPAMI.2016.2635136
– volume: 73
  start-page: 1
  year: 2018
  ident: 10.1016/j.trc.2022.103552_b0300
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2017.10.011
– volume: 1854
  start-page: 50
  issue: 1
  year: 2003
  ident: 10.1016/j.trc.2022.103552_b0540
  article-title: Work travel mode choice modeling with data mining: decision trees and neural networks
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/1854-06
– ident: 10.1016/j.trc.2022.103552_b0355
  doi: 10.1145/2939672.2939778
– start-page: 567
  year: 2009
  ident: 10.1016/j.trc.2022.103552_b0460
  article-title: Variational learning of inducing variables in sparse Gaussian processes
– ident: 10.1016/j.trc.2022.103552_b0120
– ident: 10.1016/j.trc.2022.103552_b0550
– ident: 10.1016/j.trc.2022.103552_b0225
  doi: 10.1007/978-3-030-37446-4_9
– volume: 19
  start-page: 387
  issue: 3
  year: 2011
  ident: 10.1016/j.trc.2022.103552_b0215
  article-title: Statistical methods versus neural networks in transportation research: differences, similarities and some insights
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2010.10.004
– ident: 10.1016/j.trc.2022.103552_b0250
  doi: 10.1609/aaai.v28i1.8904
– ident: 10.1016/j.trc.2022.103552_b0370
– volume: 1977
  start-page: 8
  year: 2006
  ident: 10.1016/j.trc.2022.103552_b0025
  article-title: Development of transport mode choice model by using adaptive neuro-fuzzy inference system
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198106197700102
– volume: 86
  start-page: 360
  year: 2018
  ident: 10.1016/j.trc.2022.103552_b0085
  article-title: Inferring transportation modes from GPS trajectories using a convolutional neural network
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2017.11.021
– year: 2006
  ident: 10.1016/j.trc.2022.103552_b0345
– volume: 20
  start-page: 1342
  issue: 12
  year: 1998
  ident: 10.1016/j.trc.2022.103552_b0520
  article-title: Bayesian classification with Gaussian processes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.735807
– volume: 4
  start-page: 37
  issue: 1
  year: 2010
  ident: 10.1016/j.trc.2022.103552_b0160
  article-title: Automating mode detection for travel behaviour analysis by using global positioning systems-enabled mobile phones and neural networks
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2009.0029
– year: 2009
  ident: 10.1016/j.trc.2022.103552_b0470
  article-title: Discrete choice methods with simulation
  publication-title: Cambridge University Press, Cambridge.
– volume: 54
  start-page: 164
  year: 2013
  ident: 10.1016/j.trc.2022.103552_b0480
  article-title: Incorporating the influence of latent modal preferences on travel mode choice behavior
  publication-title: Transp. Res. Part A Policy Pract.
  doi: 10.1016/j.tra.2013.07.008
– volume: 4
  start-page: 323
  issue: 6
  year: 1996
  ident: 10.1016/j.trc.2022.103552_b0315
  article-title: Modelling inter-urban transport flows in Italy: a comparison between neural network analysis and logit analysis.pdf
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/S0968-090X(96)00017-4
– ident: 10.1016/j.trc.2022.103552_b0230
– volume: 140
  start-page: 236
  year: 2020
  ident: 10.1016/j.trc.2022.103552_b0420
  article-title: Enhancing discrete choice models with representation learning
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2020.08.006
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.trc.2022.103552_b0335
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 129
  start-page: 278
  issue: 3
  year: 2003
  ident: 10.1016/j.trc.2022.103552_b0005
  article-title: Reinforcement learning for true adaptive traffic signal control
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)0733-947X(2003)129:3(278)
– volume: 91
  start-page: 351
  issue: 3
  year: 2001
  ident: 10.1016/j.trc.2022.103552_b0275
  article-title: Economic Choices
  publication-title: Am. Econ. Rev.
  doi: 10.1257/aer.91.3.351
– start-page: 475
  year: 1999
  ident: 10.1016/j.trc.2022.103552_b0305
  article-title: Regression and Classification Using Gaussian Process Priors
– year: 2020
  ident: 10.1016/j.trc.2022.103552_b0385
  article-title: Bayesian automatic relevance determination for utility function specification in discrete choice models
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 105
  year: 1974
  ident: 10.1016/j.trc.2022.103552_b0280
  article-title: Conditional Logit Analysis of Qualitative Choice Behavior
– ident: 10.1016/j.trc.2022.103552_b0240
  doi: 10.1177/0361198118796971
– ident: 10.1016/j.trc.2022.103552_b0045
– volume: 104
  start-page: 583
  year: 2013
  ident: 10.1016/j.trc.2022.103552_b0340
  article-title: Use of artificial intelligence for mode choice analysis and comparison with traditional multinomial logit model
  publication-title: Procedia - Soc. Behav. Sci
  doi: 10.1016/j.sbspro.2013.11.152
– volume: 35
  start-page: 1282
  issue: 3
  year: 2011
  ident: 10.1016/j.trc.2022.103552_b0190
  article-title: Forecasting urban traffic flow by SVR with continuous ACO
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.09.005
– ident: 10.1016/j.trc.2022.103552_b0175
– volume: 20
  start-page: 594
  issue: 2
  year: 2019
  ident: 10.1016/j.trc.2022.103552_b0380
  article-title: Multi-output Gaussian processes for crowdsourced traffic data imputation
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2018.2817879
– volume: 95
  start-page: 636
  year: 2018
  ident: 10.1016/j.trc.2022.103552_b0390
  article-title: Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.08.007
– ident: 10.1016/j.trc.2022.103552_b0560
  doi: 10.1109/ICWS.2017.83
– volume: 64
  start-page: 90
  year: 2014
  ident: 10.1016/j.trc.2022.103552_b0490
  article-title: Preference endogeneity in discrete choice models
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2014.02.008
– start-page: 1185
  year: 2009
  ident: 10.1016/j.trc.2022.103552_b0195
  article-title: Travel-Time Prediction using Gaussian Process Regression: A Trajectory-Based Approach
– year: 2014
  ident: 10.1016/j.trc.2022.103552_b0205
  article-title: Developing a Support Vector Machine (SVM) Classifier for Transportation Mode Identification by Using Mobile Phone Sensor Data
– volume: 2165
  start-page: 69
  issue: 1
  year: 2010
  ident: 10.1016/j.trc.2022.103552_b0545
  article-title: Gaussian processes for short-term traffic volume forecasting
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2165-08
– volume: 22
  start-page: 485
  issue: 5
  year: 1998
  ident: 10.1016/j.trc.2022.103552_b0450
  article-title: Another insight into artificial neural networks through behavioural analysis of access mode choice
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/S0198-9715(98)00036-2
– year: 1995
  ident: 10.1016/j.trc.2022.103552_b0165
– year: 1999
  ident: 10.1016/j.trc.2022.103552_b0445
– volume: 131
  start-page: 124
  year: 2020
  ident: 10.1016/j.trc.2022.103552_b0030
  article-title: Bayesian estimation of mixed multinomial logit models: Advances and simulation-based evaluations
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2019.12.001
– ident: 10.1016/j.trc.2022.103552_b0360
– volume: 91
  start-page: 59
  year: 2020
  ident: 10.1016/j.trc.2022.103552_b0410
  article-title: Multivariate count data models for adoption of new transport modes in an organization-based context
  publication-title: Transp. Policy
  doi: 10.1016/j.tranpol.2020.03.014
– volume: 41
  start-page: 100320
  year: 2021
  ident: 10.1016/j.trc.2022.103552_b0415
  article-title: Semi-nonparametric latent class choice model with a flexible class membership component: a mixture model approach
  publication-title: J. Choice Modelling
  doi: 10.1016/j.jocm.2021.100320
– ident: 10.1016/j.trc.2022.103552_b0010
– start-page: 360
  year: 2011
  ident: 10.1016/j.trc.2022.103552_b0535
  article-title: Travel mode choice analysis using support vector machines
  publication-title: ICCTP Am. Soc. Civ. Eng.
– volume: 118
  start-page: 104
  year: 2018
  ident: 10.1016/j.trc.2022.103552_b0105
  article-title: Synergistic effects of the built environment and commuting programs on commute mode choice
  publication-title: Transp. Res. Part A Policy Pract.
  doi: 10.1016/j.tra.2018.08.041
– year: 2006
  ident: 10.1016/j.trc.2022.103552_b0065
– volume: 15
  start-page: 447
  issue: 5
  year: 2000
  ident: 10.1016/j.trc.2022.103552_b0285
  article-title: Mixed MNL models for discrete response
  publication-title: J. Appl. Econom.
  doi: 10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
– volume: 29
  start-page: 152
  year: 2018
  ident: 10.1016/j.trc.2022.103552_b0530
  article-title: Discriminative conditional restricted Boltzmann machine for discrete choice and latent variable modelling
  publication-title: J. Choice Model.
  doi: 10.1016/j.jocm.2017.11.003
– volume: 48
  start-page: 169
  year: 2016
  ident: 10.1016/j.trc.2022.103552_b0020
  article-title: Modeling the demand for a shared-ride taxi service: An application to an organization-based context
  publication-title: Transp. Policy
  doi: 10.1016/j.tranpol.2016.02.013
– ident: 10.1016/j.trc.2022.103552_b0425
– ident: 10.1016/j.trc.2022.103552_b0100
  doi: 10.1109/ICTBIG.2016.7892699
– volume: 12
  start-page: 2655
  issue: 11
  year: 2000
  ident: 10.1016/j.trc.2022.103552_b0325
  article-title: Gaussian processes for classification: mean-field algorithms
  publication-title: Neural Comput.
  doi: 10.1162/089976600300014881
– ident: 10.1016/j.trc.2022.103552_b0110
– volume: 45
  start-page: 1897
  issue: 14
  year: 2013
  ident: 10.1016/j.trc.2022.103552_b0170
  article-title: Revealing additional dimensions of preference heterogeneity in a latent class mixed multinomial logit model
  publication-title: Appl. Econ.
  doi: 10.1080/00036846.2011.650325
– start-page: 48
  year: 2017
  ident: 10.1016/j.trc.2022.103552_b0055
  article-title: Introduction to Disaggregate Demand Models
  publication-title: INFORMS TutORials Oper. Res.
– volume: 521
  start-page: 452
  issue: 7553
  year: 2015
  ident: 10.1016/j.trc.2022.103552_b0150
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
  doi: 10.1038/nature14541
– volume: 79
  start-page: 207
  year: 2017
  ident: 10.1016/j.trc.2022.103552_b0125
  article-title: A discrete choice framework for modeling and forecasting the adoption and diffusion of new transportation services
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2017.03.004
– year: 1996
  ident: 10.1016/j.trc.2022.103552_b0310
– ident: 10.1016/j.trc.2022.103552_b0405
  doi: 10.7708/ijtte.2016.6(3).10
– volume: 1
  start-page: 40
  issue: 1
  year: 2008
  ident: 10.1016/j.trc.2022.103552_b0475
  article-title: EM Algorithms for nonparametric estimation of mixing distributions
  publication-title: J. Choice Model.
  doi: 10.1016/S1755-5345(13)70022-8
– volume: 47
  start-page: 477
  issue: 4
  year: 2010
  ident: 10.1016/j.trc.2022.103552_b0075
  article-title: Combining discrete and continuous representations of preference heterogeneity: a latent class approach
  publication-title: Environ. Resour. Econ.
  doi: 10.1007/s10640-010-9389-y
– volume: 38
  start-page: 100221
  year: 2021
  ident: 10.1016/j.trc.2022.103552_b0185
  article-title: A systematic review of machine learning classification methodologies for modelling passenger mode choice
  publication-title: J. Choice Model.
  doi: 10.1016/j.jocm.2020.100221
– volume: 14
  start-page: 69
  issue: 02
  year: 2004
  ident: 10.1016/j.trc.2022.103552_b0400
  article-title: Gaussian processes for machine learning
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065704001899
– ident: 10.1016/j.trc.2022.103552_b0050
– volume: 16
  start-page: 2406
  year: 2015
  ident: 10.1016/j.trc.2022.103552_b0200
  article-title: Transportation mode recognition using mobile phone sensor data
  publication-title: IEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2015.2405759
– ident: 10.1016/j.trc.2022.103552_b0115
– ident: 10.1016/j.trc.2022.103552_b0140
– volume: 118
  start-page: 1
  year: 2020
  ident: 10.1016/j.trc.2022.103552_b0505
  article-title: Deep neural networks for choice analysis: Extracting complete economic information for interpretation
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2020.102701
– year: 2006
  ident: 10.1016/j.trc.2022.103552_b0320
– year: 2001
  ident: 10.1016/j.trc.2022.103552_b0295
  article-title: A family of algorithms for approximate Bayesian inference
– volume: 38
  start-page: 833
  issue: 8
  year: 2015
  ident: 10.1016/j.trc.2022.103552_b0455
  article-title: Decision tree method for modeling travel mode switching in a dynamic behavioral process
  publication-title: Transp. Plan. Technol.
  doi: 10.1080/03081060.2015.1079385
– volume: 9
  start-page: 846
  issue: 9
  year: 2013
  ident: 10.1016/j.trc.2022.103552_b0035
  article-title: Methodological issues in modelling time-of-travel preferences
  publication-title: Transp. A Transp. Sci.
– volume: 106
  start-page: 76
  year: 2017
  ident: 10.1016/j.trc.2022.103552_b0485
  article-title: Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions
  publication-title: Transp. Res. Part B Methodol.
  doi: 10.1016/j.trb.2017.10.013
– volume: 23
  start-page: 521
  year: 2008
  ident: 10.1016/j.trc.2022.103552_b0440
  article-title: Fuzzy modeling approach for combined forecasting of urban traffic flow
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2008.00558.x
– volume: 119
  start-page: 35
  year: 2019
  ident: 10.1016/j.trc.2022.103552_b0090
  article-title: Online discrete choice models: Applications in personalized recommendations
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2019.02.003
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.trc.2022.103552_b0095
  article-title: Maximum Likelihood from Incomplete Data via the EM Algorithm
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 5
  start-page: 39
  issue: 1
  year: 2014
  ident: 10.1016/j.trc.2022.103552_b0350
  article-title: A review of mode choice modelling techniques for intra-city and border transport
  publication-title: World Rev. Intermodal Transp. Res.
  doi: 10.1504/WRITR.2014.065055
– volume: 11
  start-page: 1458
  issue: 6
  year: 2000
  ident: 10.1016/j.trc.2022.103552_b0155
  article-title: Variational Gaussian process classifiers
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.883477
– volume: 15
  start-page: 22587
  year: 2015
  ident: 10.1016/j.trc.2022.103552_b0365
  article-title: Revisiting gaussian process regression modeling for localization in wireless sensor networks
  publication-title: Sensors
  doi: 10.3390/s150922587
– volume: 42
  start-page: 1
  year: 2009
  ident: 10.1016/j.trc.2022.103552_b0135
  article-title: Competing methods for representing random taste heterogeneity in discrete choice models
  publication-title: Eur. Transp.
– volume: 5
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.trc.2022.103552_b0430
  article-title: Evaluation of adaptive neural network models for freeway incident detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2004.825084
– volume: 6
  start-page: 75629
  year: 2018
  ident: 10.1016/j.trc.2022.103552_b0255
  article-title: Short-term traffic flow forecasting by selecting appropriate predictions based on pattern matching
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879055
– volume: 19
  start-page: 40
  year: 2016
  ident: 10.1016/j.trc.2022.103552_b0465
  article-title: Mixed logit with a flexible mixing distribution
  publication-title: J. Choice Model.
  doi: 10.1016/j.jocm.2016.07.004
– volume: 16
  start-page: 54
  issue: 1
  year: 2008
  ident: 10.1016/j.trc.2022.103552_b0515
  article-title: Incident detection algorithm based on partial least squares regression
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2007.06.005
– volume: 36
  start-page: 155
  issue: 3
  year: 2000
  ident: 10.1016/j.trc.2022.103552_b0180
  article-title: A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice
  publication-title: Transp. Res. Part E Logist. Transp. Rev.
  doi: 10.1016/S1366-5545(99)00030-7
– volume: 3
  start-page: 408
  issue: 4
  year: 2013
  ident: 10.1016/j.trc.2022.103552_b0235
  article-title: Development of fuzzy logic based mode choice model considering various public transport policy options
  publication-title: Int. J. Traffic Transp. Eng.
  doi: 10.7708/ijtte.2013.3(4).05
– ident: 10.1016/j.trc.2022.103552_b0245
  doi: 10.1145/2487575.2487598
– volume: 14
  start-page: 23
  year: 2000
  ident: 10.1016/j.trc.2022.103552_b0395
  article-title: Comparison of neural and conventional approaches to mode choice analysis
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2000)14:1(23)
– ident: 10.1016/j.trc.2022.103552_b0525
– volume: 4
  start-page: 269
  issue: 3
  year: 2014
  ident: 10.1016/j.trc.2022.103552_b0290
  article-title: Mode choice analysis: the data, the models and future ahead
  publication-title: Int. J. Traffic Transp. Eng.
  doi: 10.7708/ijtte.2014.4(3).03
– year: 1965
  ident: 10.1016/j.trc.2022.103552_b0015
– volume: 131
  start-page: 232
  issue: 2
  year: 2001
  ident: 10.1016/j.trc.2022.103552_b0060
  article-title: Reinforcement learning in neurofuzzy traffic signal control
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(00)00123-5
SSID ssj0001957
Score 2.4273503
Snippet •Integration of machine learning and discrete choice models.•New choice model referred to as Gaussian process latent class choice model.•Derivation and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103552
SubjectTerms Discrete choice models
EM algorithm
Gaussian process
Latent class choice models
Machine learning
Title Gaussian process latent class choice models
URI https://dx.doi.org/10.1016/j.trc.2022.103552
Volume 136
WOSCitedRecordID wos000795914600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS-QwFA7uKKx7WNRd0f0hPXiydEjSNp0cB9FdPYigwuClJJ1kd0Q6Q9sR_e99aZq2ii7rwUsppU1D3sfrl9f3vofQPiaKU8xkwGhkRLVDEQiZkIAxHRv9di6jad1sIjk7G00m_LypPSnrdgJJno_u7_niXU0N18DYpnT2DeZuB4ULcA5GhyOYHY7_ZfhfYlnWlZELWwPg3wKdzCs_MzzZB28HrsE2wCn7zLRVObeIaESA_g6BYxaVf1j7TFOqWZdXuXh8LwPxQqtZ0UXZuxT6-bSY_Vlab3RsojcdyOR8GVyrme1rLB5EPwQBu9c2B8vFEpnJocCTJ2417DtGgoHY0Bd9tg0f3AyrwkhKUjrs7n2qj_3su9VmE7pEtZsUhkjNEKkd4gNapUnMwdmtjk-OJqftJ5pwKwHr5u1-d9eJf8_m8TJh6ZGQyw30udk9eGNr9U20ovIt9NEVl5db6FNPX_IL8h0WvAYLnsWCV2PBs1jwLBa-oqvjo8vD30HTHSPIwghXQTYlWsdGzJYIrTI80sBFQgL7R-OpKdGxGmEhmeQhZyriGjbychpJyqmhKzTcRoN8nqsd5GUyIgnRTMUYzjATidZUR0IqLIC70F2E3RKkWSMdbzqY3KavLv0uOmgfWVjdlH_dHLl1TRviZwldChh5_bFvb3nHd7TeQfcHGlTFUv1Ea9ldNSuLvQYgj70KdTU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+process+latent+class+choice+models&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Sfeir%2C+Georges&rft.au=Rodrigues%2C+Filipe&rft.au=Abou-Zeid%2C+Maya&rft.date=2022-03-01&rft.issn=0968-090X&rft.volume=136&rft.spage=103552&rft_id=info:doi/10.1016%2Fj.trc.2022.103552&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2022_103552
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon