A rigorous version of R.P. Brent's model for the binary Euclidean algorithm

The binary Euclidean algorithm is a modification of the classical Euclidean algorithm for computation of greatest common divisors which avoids ordinary integer division in favour of division by powers of two only. The expectation of the number of steps taken by the binary Euclidean algorithm when ap...

Full description

Saved in:
Bibliographic Details
Published in:Advances in mathematics (New York. 1965) Vol. 290; pp. 73 - 143
Main Author: Morris, Ian D.
Format: Journal Article
Language:English
Published: Elsevier Inc 26.02.2016
Subjects:
ISSN:0001-8708, 1090-2082
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The binary Euclidean algorithm is a modification of the classical Euclidean algorithm for computation of greatest common divisors which avoids ordinary integer division in favour of division by powers of two only. The expectation of the number of steps taken by the binary Euclidean algorithm when applied to pairs of integers of bounded size was first investigated by R.P. Brent in 1976 via a heuristic model of the algorithm as a random dynamical system. Based on numerical investigations of the expectation of the associated Ruelle transfer operator, Brent obtained a conjectural asymptotic expression for the mean number of steps performed by the algorithm when processing pairs of odd integers whose size is bounded by a large integer. In 1998 B. Vallée modified Brent's model via an induction scheme to rigorously prove an asymptotic formula for the average number of steps performed by the algorithm; however, the relationship of this result with Brent's heuristics remains conjectural. In this article we establish previously conjectural properties of Brent's transfer operator, showing directly that it possesses a spectral gap and preserves a unique continuous density. This density is shown to extend holomorphically to the complex right half-plane and to have a logarithmic singularity at zero. By combining these results with methods from classical analytic number theory we prove the correctness of three conjectured formulae for the expected number of steps, resolving several open questions promoted by D.E. Knuth in The Art of Computer Programming.
AbstractList The binary Euclidean algorithm is a modification of the classical Euclidean algorithm for computation of greatest common divisors which avoids ordinary integer division in favour of division by powers of two only. The expectation of the number of steps taken by the binary Euclidean algorithm when applied to pairs of integers of bounded size was first investigated by R.P. Brent in 1976 via a heuristic model of the algorithm as a random dynamical system. Based on numerical investigations of the expectation of the associated Ruelle transfer operator, Brent obtained a conjectural asymptotic expression for the mean number of steps performed by the algorithm when processing pairs of odd integers whose size is bounded by a large integer. In 1998 B. Vallée modified Brent's model via an induction scheme to rigorously prove an asymptotic formula for the average number of steps performed by the algorithm; however, the relationship of this result with Brent's heuristics remains conjectural. In this article we establish previously conjectural properties of Brent's transfer operator, showing directly that it possesses a spectral gap and preserves a unique continuous density. This density is shown to extend holomorphically to the complex right half-plane and to have a logarithmic singularity at zero. By combining these results with methods from classical analytic number theory we prove the correctness of three conjectured formulae for the expected number of steps, resolving several open questions promoted by D.E. Knuth in The Art of Computer Programming.
Author Morris, Ian D.
Author_xml – sequence: 1
  givenname: Ian D.
  surname: Morris
  fullname: Morris, Ian D.
  email: i.morris@surrey.ac.uk
  organization: Department of Mathematics, University of Surrey, Guildford GU2 7XH, United Kingdom
BookMark eNp9kD1PwzAQhi1UJNrCD2DzxpRgJ24Ti6lU5UNUAiGYLX-cqaskRrZbiX-PqzIxdDrd8Lx37zNBo8EPgNA1JSUldH67LaXry4rQWUmrkpD2DI0p4aSoSFuN0JgQQou2Ie0FmsS4zStnlI_RywIH9-WD30W8hxCdH7C3-L18K_F9gCHdRNx7Ax22PuC0AazcIMMPXu105wzIAcsu8y5t-kt0bmUX4epvTtHnw-pj-VSsXx-fl4t1oWtGUqHlLN82rFVSNbxuWsrmqpnbRkswvJacVSClZYpbVVOpWSUJMwas4jOVG9ZT1BxzdfAxBrBCuyRTfj0F6TpBiTg4EVuRnYiDE0ErkZ1kkv4jv4Prc52TzN2RgVxp7yCIqB0MGowLoJMw3p2gfwEEIHwL
CitedBy_id crossref_primary_10_1088_1361_6544_aa5243
Cites_doi 10.1090/S0002-9947-98-01756-5
10.1112/jlms/s1-5.2.129
10.1017/S0963548304006261
10.1006/jnth.1994.1088
10.1007/PL00009246
10.2307/2118636
10.1006/hmat.1994.1031
10.4064/aa-61-1-13-34
10.24033/asens.1023
10.1080/00029890.1971.11992763
10.1007/978-3-642-66282-9
10.1016/0021-9991(67)90047-2
10.1016/j.jnt.2004.08.008
10.1215/S0012-7094-70-03759-2
10.1016/S0304-3975(02)00652-7
10.1007/978-1-4612-0887-7
10.1307/mmj/1030132475
10.1112/plms/s2-28.1.121
10.1006/hmat.1995.1033
10.1016/j.jnt.2009.02.018
10.1007/s00453-007-9009-6
10.3934/dcds.2006.15.281
10.1016/0022-1236(71)90041-3
10.1112/S0025579300004459
10.1007/s002200050139
10.1016/j.jda.2006.03.013
ContentType Journal Article
Copyright 2016 The Author
Copyright_xml – notice: 2016 The Author
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.aim.2015.12.008
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2082
EndPage 143
ExternalDocumentID 10_1016_j_aim_2015_12_008
S0001870815005289
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABCQX
ABJNI
ABLJU
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
UPT
WH7
ZMT
~G-
1RT
5VS
9DU
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
FGOYB
G-2
HX~
HZ~
MVM
OHT
R2-
SEW
XOL
XPP
ZCG
ZKB
~HD
ID FETCH-LOGICAL-c340t-ca5941d48bab79378146b76f7caed93a942eaaf4b9fb31ac42a04ddefb95b2013
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369681900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-8708
IngestDate Tue Nov 18 22:40:06 EST 2025
Sat Nov 29 06:33:41 EST 2025
Fri Feb 23 02:21:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords secondary
Random dynamical system
Euclidean algorithm
Transfer operator
Greatest common divisor
Analysis of algorithms
primary
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-ca5941d48bab79378146b76f7caed93a942eaaf4b9fb31ac42a04ddefb95b2013
OpenAccessLink https://dx.doi.org/10.1016/j.aim.2015.12.008
PageCount 71
ParticipantIDs crossref_citationtrail_10_1016_j_aim_2015_12_008
crossref_primary_10_1016_j_aim_2015_12_008
elsevier_sciencedirect_doi_10_1016_j_aim_2015_12_008
PublicationCentury 2000
PublicationDate 2016-02-26
PublicationDateYYYYMMDD 2016-02-26
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-26
  day: 26
PublicationDecade 2010
PublicationTitle Advances in mathematics (New York. 1965)
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Cesaratto (br0060) 2009; 129
Edmunds, Evans (br0110) 1987
Nussbaum (br0310) 1970; 37
Pollicott (br0340) 1997; 187
Gabriel (br0150) 1930; 5
Hensley (br0190) 1994; 49
Baladi, Vallée (br0020) 2005; 110
Daireaux, Vallée (br0070) 2004; 13
Vallée (br0450) 2006; 15
Gabriel (br0140) 1928; 28
Pollicott, Sharp (br0350) 1998; 350
Knuth (br0210) 1981
Brent (br0050) November 1999
Shapiro (br0400) 1993
Faivre (br0120) 1992; 61
Nussbaum (br0320) 1981; vol. 886
Duren (br0100) 1970; vol. 38
Lebow, Schechter (br0240) 1971; 7
Heilbronn (br0170) 1969
Dixon (br0090) 1971; 78
Kato (br0200) 1995
Baladi (br0010) 2000; vol. 16
Granados (br0160) 1999; 46
Krasnosel'skiĭ (br0230) 1964
Tenenbaum (br0420) 2015; vol. 163
Mayer (br0280) 1991
Knuth (br0220) 1997
Maze (br0290) 2007; 5
R.P. Brent, Simplification of an integral, unpublished manuscript, 1997.
Delange (br0080) 1954; 71
Schreiber (br0380) 1995; 22
Lhote, Vallée (br0250) 2008; 50
Brent (br0030) 1976
Narkiewicz (br0300) 1983
Finck (br0130) 1842; 1
Ruelle (br0370) 1978; vol. 5
Vallée (br0430) 1998; 22
Martínez-Avendaño, Rosenthal (br0270) 2007; vol. 237
Hennion (br0180) 1993; 118
Parry, Pollicott (br0330) 1990; 187–188
Porter (br0360) 1975; 22
Vallée (br0440) 2003; 297
Stein (br0410) 1967; 1
Shallit (br0390) 1994; 21
Liverani (br0260) 1995; 142
Parry (10.1016/j.aim.2015.12.008_br0330) 1990; 187–188
Ruelle (10.1016/j.aim.2015.12.008_br0370) 1978; vol. 5
Liverani (10.1016/j.aim.2015.12.008_br0260) 1995; 142
Porter (10.1016/j.aim.2015.12.008_br0360) 1975; 22
Stein (10.1016/j.aim.2015.12.008_br0410) 1967; 1
Baladi (10.1016/j.aim.2015.12.008_br0010) 2000; vol. 16
Lhote (10.1016/j.aim.2015.12.008_br0250) 2008; 50
Knuth (10.1016/j.aim.2015.12.008_br0210) 1981
Narkiewicz (10.1016/j.aim.2015.12.008_br0300) 1983
Shallit (10.1016/j.aim.2015.12.008_br0390) 1994; 21
10.1016/j.aim.2015.12.008_br0040
Daireaux (10.1016/j.aim.2015.12.008_br0070) 2004; 13
Vallée (10.1016/j.aim.2015.12.008_br0450) 2006; 15
Shapiro (10.1016/j.aim.2015.12.008_br0400) 1993
Maze (10.1016/j.aim.2015.12.008_br0290) 2007; 5
Hennion (10.1016/j.aim.2015.12.008_br0180) 1993; 118
Vallée (10.1016/j.aim.2015.12.008_br0440) 2003; 297
Gabriel (10.1016/j.aim.2015.12.008_br0140) 1928; 28
Pollicott (10.1016/j.aim.2015.12.008_br0350) 1998; 350
Duren (10.1016/j.aim.2015.12.008_br0100) 1970; vol. 38
Faivre (10.1016/j.aim.2015.12.008_br0120) 1992; 61
Kato (10.1016/j.aim.2015.12.008_br0200) 1995
Dixon (10.1016/j.aim.2015.12.008_br0090) 1971; 78
Vallée (10.1016/j.aim.2015.12.008_br0430) 1998; 22
Gabriel (10.1016/j.aim.2015.12.008_br0150) 1930; 5
Nussbaum (10.1016/j.aim.2015.12.008_br0320) 1981; vol. 886
Pollicott (10.1016/j.aim.2015.12.008_br0340) 1997; 187
Granados (10.1016/j.aim.2015.12.008_br0160) 1999; 46
Schreiber (10.1016/j.aim.2015.12.008_br0380) 1995; 22
Heilbronn (10.1016/j.aim.2015.12.008_br0170) 1969
Baladi (10.1016/j.aim.2015.12.008_br0020) 2005; 110
Brent (10.1016/j.aim.2015.12.008_br0050) 1999
Tenenbaum (10.1016/j.aim.2015.12.008_br0420) 2015; vol. 163
Edmunds (10.1016/j.aim.2015.12.008_br0110) 1987
Knuth (10.1016/j.aim.2015.12.008_br0220) 1997
Lebow (10.1016/j.aim.2015.12.008_br0240) 1971; 7
Martínez-Avendaño (10.1016/j.aim.2015.12.008_br0270) 2007; vol. 237
Mayer (10.1016/j.aim.2015.12.008_br0280) 1991
Nussbaum (10.1016/j.aim.2015.12.008_br0310) 1970; 37
Brent (10.1016/j.aim.2015.12.008_br0030) 1976
Cesaratto (10.1016/j.aim.2015.12.008_br0060) 2009; 129
Finck (10.1016/j.aim.2015.12.008_br0130) 1842; 1
Hensley (10.1016/j.aim.2015.12.008_br0190) 1994; 49
Krasnosel'skiĭ (10.1016/j.aim.2015.12.008_br0230) 1964
Delange (10.1016/j.aim.2015.12.008_br0080) 1954; 71
References_xml – volume: 50
  start-page: 497
  year: 2008
  end-page: 554
  ident: br0250
  article-title: Gaussian laws for the main parameters of the Euclid algorithms
  publication-title: Algorithmica
– volume: 28
  start-page: 121
  year: 1928
  end-page: 127
  ident: br0140
  article-title: Some results concerning the integrals of moduli of regular functions along curves of certain types
  publication-title: Proc. Lond. Math. Soc. (2)
– volume: vol. 237
  year: 2007
  ident: br0270
  article-title: An Introduction to Operators on the Hardy–Hilbert Space
  publication-title: Grad. Texts in Math.
– reference: R.P. Brent, Simplification of an integral, unpublished manuscript, 1997.
– year: 1981
  ident: br0210
  article-title: The Art of Computer Programming, vol. 2: Seminumerical Algorithms
– volume: vol. 886
  start-page: 309
  year: 1981
  end-page: 330
  ident: br0320
  article-title: Eigenvectors of nonlinear positive operators and the linear Kreĭn–Rutman theorem
  publication-title: Fixed Point Theory
– start-page: 87
  year: 1969
  end-page: 96
  ident: br0170
  article-title: On the average length of a class of finite continued fractions
  publication-title: Number Theory and Analysis (Papers in Honor of Edmund Landau)
– volume: 13
  start-page: 499
  year: 2004
  end-page: 536
  ident: br0070
  article-title: Dynamical analysis of the parametrized Lehmer–Euclid algorithm
  publication-title: Combin. Probab. Comput.
– volume: 110
  start-page: 331
  year: 2005
  end-page: 386
  ident: br0020
  article-title: Euclidean algorithms are Gaussian
  publication-title: J. Number Theory
– volume: 71
  start-page: 213
  year: 1954
  end-page: 242
  ident: br0080
  article-title: Généralisation du théorème de Ikehara
  publication-title: Ann. Sci. Éc. Norm. Supér. (3)
– volume: 22
  start-page: 660
  year: 1998
  end-page: 685
  ident: br0430
  article-title: Dynamics of the binary Euclidean algorithm: functional analysis and operators
  publication-title: Algorithmica
– volume: vol. 38
  year: 1970
  ident: br0100
  article-title: Theory of
  publication-title: Pure Appl. Math.
– volume: 49
  start-page: 142
  year: 1994
  end-page: 182
  ident: br0190
  article-title: The number of steps in the Euclidean algorithm
  publication-title: J. Number Theory
– volume: 350
  start-page: 473
  year: 1998
  end-page: 499
  ident: br0350
  article-title: Comparison theorems and orbit counting in hyperbolic geometry
  publication-title: Trans. Amer. Math. Soc.
– year: November 1999
  ident: br0050
  article-title: Further analysis of the binary Euclidean algorithm
– volume: 22
  start-page: 422
  year: 1995
  end-page: 424
  ident: br0380
  article-title: A supplement to J. Shallit's paper: “Origins of the analysis of the Euclidean algorithm”
  publication-title: Historia Math.
– volume: 46
  start-page: 461
  year: 1999
  end-page: 487
  ident: br0160
  article-title: On a problem raised by Gabriel and Beurling
  publication-title: Michigan Math. J.
– volume: 118
  start-page: 627
  year: 1993
  end-page: 634
  ident: br0180
  article-title: Sur un théorème spectral et son application aux noyaux Lipchitziens
  publication-title: Proc. Amer. Math. Soc.
– volume: 61
  start-page: 13
  year: 1992
  end-page: 34
  ident: br0120
  article-title: Distribution of Lévy constants for quadratic numbers
  publication-title: Acta Arith.
– year: 1987
  ident: br0110
  article-title: Spectral Theory and Differential Operators
  publication-title: Oxford Math. Monogr.
– volume: 142
  start-page: 239
  year: 1995
  end-page: 301
  ident: br0260
  article-title: Decay of correlations
  publication-title: Ann. of Math. (2)
– volume: 187
  start-page: 341
  year: 1997
  end-page: 355
  ident: br0340
  article-title: Asymptotic auto-correlation for closed geodesics
  publication-title: Comm. Math. Phys.
– start-page: 175
  year: 1991
  end-page: 222
  ident: br0280
  article-title: Continued fractions and related transformations
  publication-title: Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces
– volume: 7
  start-page: 1
  year: 1971
  end-page: 26
  ident: br0240
  article-title: Semigroups of operators and measures of noncompactness
  publication-title: J. Funct. Anal.
– volume: 5
  start-page: 176
  year: 2007
  end-page: 186
  ident: br0290
  article-title: Existence of a limiting distribution for the binary GCD algorithm
  publication-title: J. Discrete Algorithms
– year: 1995
  ident: br0200
  article-title: Perturbation Theory for Linear Operators
  publication-title: Classics Math.
– year: 1983
  ident: br0300
  article-title: Number Theory
– volume: 129
  start-page: 2267
  year: 2009
  end-page: 2273
  ident: br0060
  article-title: A note on “Euclidean algorithms are Gaussian” by V. Baladi and B. Vallée
  publication-title: J. Number Theory
– volume: 22
  start-page: 20
  year: 1975
  end-page: 28
  ident: br0360
  article-title: On a theorem of Heilbronn
  publication-title: Mathematika
– volume: 297
  start-page: 447
  year: 2003
  end-page: 486
  ident: br0440
  article-title: Dynamical analysis of a class of Euclidean algorithms
  publication-title: Theoret. Comput. Sci.
– volume: 37
  start-page: 473
  year: 1970
  end-page: 478
  ident: br0310
  article-title: The radius of the essential spectrum
  publication-title: Duke Math. J.
– volume: vol. 5
  year: 1978
  ident: br0370
  article-title: Thermodynamic Formalism
  publication-title: Encyclopedia Math. Appl.
– volume: 78
  start-page: 374
  year: 1971
  end-page: 376
  ident: br0090
  article-title: A simple estimate for the number of steps in the Euclidean algorithm
  publication-title: Amer. Math. Monthly
– volume: 1
  start-page: 353
  year: 1842
  end-page: 355
  ident: br0130
  article-title: Lettre
  publication-title: Nouv. Ann. Math.
– start-page: 321
  year: 1976
  end-page: 355
  ident: br0030
  article-title: Analysis of the binary Euclidean algorithm
  publication-title: Algorithms and Complexity
– volume: 15
  start-page: 281
  year: 2006
  end-page: 352
  ident: br0450
  article-title: Euclidean dynamics
  publication-title: Discrete Contin. Dyn. Syst.
– year: 1964
  ident: br0230
  publication-title: Positive Solutions of Operator Equations
– volume: vol. 16
  year: 2000
  ident: br0010
  article-title: Positive Transfer Operators and Decay of Correlations
  publication-title: Adv. Ser. Nonlinear Dynam.
– year: 1993
  ident: br0400
  article-title: Composition Operators and Classical Function Theory
  publication-title: Universitext: Tracts in Math.
– volume: vol. 163
  year: 2015
  ident: br0420
  article-title: Introduction to Analytic and Probabilistic Number Theory
  publication-title: Grad. Stud. Math.
– year: 1997
  ident: br0220
  article-title: The Art of Computer Programming, vol. 2: Seminumerical Algorithms
– volume: 1
  start-page: 397
  year: 1967
  end-page: 405
  ident: br0410
  article-title: Computational problems associated with Racah algebra
  publication-title: J. Comput. Phys.
– volume: 21
  start-page: 401
  year: 1994
  end-page: 419
  ident: br0390
  article-title: Origins of the analysis of the Euclidean algorithm
  publication-title: Historia Math.
– volume: 5
  start-page: 129
  year: 1930
  end-page: 131
  ident: br0150
  article-title: An inequality concerning the integrals of positive subharmonic functions along certain circles
  publication-title: J. Lond. Math. Soc. (1)
– volume: 187–188
  start-page: 1
  year: 1990
  end-page: 268
  ident: br0330
  article-title: Zeta functions and the periodic orbit structure of hyperbolic dynamics
  publication-title: Astérisque
– volume: 350
  start-page: 473
  issue: 2
  year: 1998
  ident: 10.1016/j.aim.2015.12.008_br0350
  article-title: Comparison theorems and orbit counting in hyperbolic geometry
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-98-01756-5
– volume: 5
  start-page: 129
  issue: 2
  year: 1930
  ident: 10.1016/j.aim.2015.12.008_br0150
  article-title: An inequality concerning the integrals of positive subharmonic functions along certain circles
  publication-title: J. Lond. Math. Soc. (1)
  doi: 10.1112/jlms/s1-5.2.129
– year: 1981
  ident: 10.1016/j.aim.2015.12.008_br0210
– volume: 13
  start-page: 499
  issue: 4–5
  year: 2004
  ident: 10.1016/j.aim.2015.12.008_br0070
  article-title: Dynamical analysis of the parametrized Lehmer–Euclid algorithm
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548304006261
– volume: 1
  start-page: 353
  year: 1842
  ident: 10.1016/j.aim.2015.12.008_br0130
  article-title: Lettre
  publication-title: Nouv. Ann. Math.
– volume: 49
  start-page: 142
  issue: 2
  year: 1994
  ident: 10.1016/j.aim.2015.12.008_br0190
  article-title: The number of steps in the Euclidean algorithm
  publication-title: J. Number Theory
  doi: 10.1006/jnth.1994.1088
– volume: 22
  start-page: 660
  issue: 4
  year: 1998
  ident: 10.1016/j.aim.2015.12.008_br0430
  article-title: Dynamics of the binary Euclidean algorithm: functional analysis and operators
  publication-title: Algorithmica
  doi: 10.1007/PL00009246
– volume: 142
  start-page: 239
  issue: 2
  year: 1995
  ident: 10.1016/j.aim.2015.12.008_br0260
  article-title: Decay of correlations
  publication-title: Ann. of Math. (2)
  doi: 10.2307/2118636
– volume: 21
  start-page: 401
  issue: 4
  year: 1994
  ident: 10.1016/j.aim.2015.12.008_br0390
  article-title: Origins of the analysis of the Euclidean algorithm
  publication-title: Historia Math.
  doi: 10.1006/hmat.1994.1031
– start-page: 175
  year: 1991
  ident: 10.1016/j.aim.2015.12.008_br0280
  article-title: Continued fractions and related transformations
– volume: vol. 38
  year: 1970
  ident: 10.1016/j.aim.2015.12.008_br0100
  article-title: Theory of Hp Spaces
– volume: 61
  start-page: 13
  issue: 1
  year: 1992
  ident: 10.1016/j.aim.2015.12.008_br0120
  article-title: Distribution of Lévy constants for quadratic numbers
  publication-title: Acta Arith.
  doi: 10.4064/aa-61-1-13-34
– volume: 71
  start-page: 213
  year: 1954
  ident: 10.1016/j.aim.2015.12.008_br0080
  article-title: Généralisation du théorème de Ikehara
  publication-title: Ann. Sci. Éc. Norm. Supér. (3)
  doi: 10.24033/asens.1023
– volume: 78
  start-page: 374
  year: 1971
  ident: 10.1016/j.aim.2015.12.008_br0090
  article-title: A simple estimate for the number of steps in the Euclidean algorithm
  publication-title: Amer. Math. Monthly
  doi: 10.1080/00029890.1971.11992763
– year: 1995
  ident: 10.1016/j.aim.2015.12.008_br0200
  article-title: Perturbation Theory for Linear Operators
  doi: 10.1007/978-3-642-66282-9
– volume: 1
  start-page: 397
  year: 1967
  ident: 10.1016/j.aim.2015.12.008_br0410
  article-title: Computational problems associated with Racah algebra
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(67)90047-2
– start-page: 87
  year: 1969
  ident: 10.1016/j.aim.2015.12.008_br0170
  article-title: On the average length of a class of finite continued fractions
– volume: 110
  start-page: 331
  issue: 2
  year: 2005
  ident: 10.1016/j.aim.2015.12.008_br0020
  article-title: Euclidean algorithms are Gaussian
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2004.08.008
– volume: vol. 163
  year: 2015
  ident: 10.1016/j.aim.2015.12.008_br0420
  article-title: Introduction to Analytic and Probabilistic Number Theory
– volume: 37
  start-page: 473
  year: 1970
  ident: 10.1016/j.aim.2015.12.008_br0310
  article-title: The radius of the essential spectrum
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-70-03759-2
– volume: 297
  start-page: 447
  issue: 1–3
  year: 2003
  ident: 10.1016/j.aim.2015.12.008_br0440
  article-title: Dynamical analysis of a class of Euclidean algorithms
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(02)00652-7
– year: 1993
  ident: 10.1016/j.aim.2015.12.008_br0400
  article-title: Composition Operators and Classical Function Theory
  doi: 10.1007/978-1-4612-0887-7
– year: 1999
  ident: 10.1016/j.aim.2015.12.008_br0050
– volume: 46
  start-page: 461
  issue: 3
  year: 1999
  ident: 10.1016/j.aim.2015.12.008_br0160
  article-title: On a problem raised by Gabriel and Beurling
  publication-title: Michigan Math. J.
  doi: 10.1307/mmj/1030132475
– year: 1964
  ident: 10.1016/j.aim.2015.12.008_br0230
– volume: vol. 886
  start-page: 309
  year: 1981
  ident: 10.1016/j.aim.2015.12.008_br0320
  article-title: Eigenvectors of nonlinear positive operators and the linear Kreĭn–Rutman theorem
– volume: 28
  start-page: 121
  year: 1928
  ident: 10.1016/j.aim.2015.12.008_br0140
  article-title: Some results concerning the integrals of moduli of regular functions along curves of certain types
  publication-title: Proc. Lond. Math. Soc. (2)
  doi: 10.1112/plms/s2-28.1.121
– volume: 22
  start-page: 422
  issue: 4
  year: 1995
  ident: 10.1016/j.aim.2015.12.008_br0380
  article-title: A supplement to J. Shallit's paper: “Origins of the analysis of the Euclidean algorithm”
  publication-title: Historia Math.
  doi: 10.1006/hmat.1995.1033
– volume: 129
  start-page: 2267
  issue: 10
  year: 2009
  ident: 10.1016/j.aim.2015.12.008_br0060
  article-title: A note on “Euclidean algorithms are Gaussian” by V. Baladi and B. Vallée
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2009.02.018
– volume: 50
  start-page: 497
  issue: 4
  year: 2008
  ident: 10.1016/j.aim.2015.12.008_br0250
  article-title: Gaussian laws for the main parameters of the Euclid algorithms
  publication-title: Algorithmica
  doi: 10.1007/s00453-007-9009-6
– volume: 15
  start-page: 281
  issue: 1
  year: 2006
  ident: 10.1016/j.aim.2015.12.008_br0450
  article-title: Euclidean dynamics
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2006.15.281
– volume: 7
  start-page: 1
  year: 1971
  ident: 10.1016/j.aim.2015.12.008_br0240
  article-title: Semigroups of operators and measures of noncompactness
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(71)90041-3
– volume: 22
  start-page: 20
  issue: 1
  year: 1975
  ident: 10.1016/j.aim.2015.12.008_br0360
  article-title: On a theorem of Heilbronn
  publication-title: Mathematika
  doi: 10.1112/S0025579300004459
– volume: 118
  start-page: 627
  issue: 2
  year: 1993
  ident: 10.1016/j.aim.2015.12.008_br0180
  article-title: Sur un théorème spectral et son application aux noyaux Lipchitziens
  publication-title: Proc. Amer. Math. Soc.
– volume: 187
  start-page: 341
  issue: 2
  year: 1997
  ident: 10.1016/j.aim.2015.12.008_br0340
  article-title: Asymptotic auto-correlation for closed geodesics
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s002200050139
– volume: vol. 5
  year: 1978
  ident: 10.1016/j.aim.2015.12.008_br0370
  article-title: Thermodynamic Formalism
– volume: vol. 16
  year: 2000
  ident: 10.1016/j.aim.2015.12.008_br0010
  article-title: Positive Transfer Operators and Decay of Correlations
– year: 1997
  ident: 10.1016/j.aim.2015.12.008_br0220
– year: 1983
  ident: 10.1016/j.aim.2015.12.008_br0300
– volume: 5
  start-page: 176
  issue: 1
  year: 2007
  ident: 10.1016/j.aim.2015.12.008_br0290
  article-title: Existence of a limiting distribution for the binary GCD algorithm
  publication-title: J. Discrete Algorithms
  doi: 10.1016/j.jda.2006.03.013
– volume: 187–188
  start-page: 1
  year: 1990
  ident: 10.1016/j.aim.2015.12.008_br0330
  article-title: Zeta functions and the periodic orbit structure of hyperbolic dynamics
  publication-title: Astérisque
– start-page: 321
  year: 1976
  ident: 10.1016/j.aim.2015.12.008_br0030
  article-title: Analysis of the binary Euclidean algorithm
– ident: 10.1016/j.aim.2015.12.008_br0040
– volume: vol. 237
  year: 2007
  ident: 10.1016/j.aim.2015.12.008_br0270
  article-title: An Introduction to Operators on the Hardy–Hilbert Space
– year: 1987
  ident: 10.1016/j.aim.2015.12.008_br0110
  article-title: Spectral Theory and Differential Operators
SSID ssj0009419
Score 2.1252651
Snippet The binary Euclidean algorithm is a modification of the classical Euclidean algorithm for computation of greatest common divisors which avoids ordinary integer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 73
SubjectTerms Analysis of algorithms
Euclidean algorithm
Greatest common divisor
Random dynamical system
Transfer operator
Title A rigorous version of R.P. Brent's model for the binary Euclidean algorithm
URI https://dx.doi.org/10.1016/j.aim.2015.12.008
Volume 290
WOSCitedRecordID wos000369681900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 20171215
  omitProxy: false
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQcGgPFdBW5SkfkJC6ShQnDnGOEWzVBYE4bKW9RbbXVhctWZRdED-_40eyKbAVHHqJIiuexP6s8cxk_A1Cx4wRDr4xCVSSyAD8Lx4IlapAxEppHTFOM22LTWTX12w0ym98vfu5LSeQVRV7esrv_yvU0AZgm6Oz74C7FQoNcA-gwxVgh-ubgC964HDPapPa-uiCYZZwJLwJAUgTCjQRelsAp00xFO5Qbv9BTidjE5rnU5AwWfy-69quhUsXsAm0dy3b67xbzyfsGerATnThalbXjsVgAGLPw26Qgdi8ZHeSvVWcBBRnxLqKM3aFPr3qcxVJ_CZKHPfSC_3sQgW3IZ8YFgCS2lCsl_oXF_azParNHGyS0m5LEFEaESWJS3vceyPO0hx080Yx6I8ulszLlHgfyI2g-bVtk_yefcfrxknH4BhuoU_eU8CFQ3gbralqB328Wk78Z3RZ4AZr7LHGM40N1thifTLHFmkMSGPoiB3SuEUat0h_Qb9-9IdnPwNfHSOQCY0WgeQpDG1MmeDCkByaWK7ITnUmuRrnCc9prDjXVORaJIRLGvOIwmamRZ4KGHPyFa1Xs0p9Q5gnPBGGhwnUOyVasjQbn3JprEUGHqTaRVEzLaX01PGmgsm0XAnHLvredrl3vCn_epg2c116w88ZdCWsm9Xd9t7zjn30YbmwD9D6on5Qh2hTPi4m8_rIL5o__F90Uw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rigorous+version+of+R.P.+Brent%27s+model+for+the+binary+Euclidean+algorithm&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Morris%2C+Ian+D.&rft.date=2016-02-26&rft.issn=0001-8708&rft.volume=290&rft.spage=73&rft.epage=143&rft_id=info:doi/10.1016%2Fj.aim.2015.12.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2015_12_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon