Deep-Learning-Based 3-D Surface Reconstruction-A Survey

In the last decade, deep learning (DL) has significantly impacted industry and science. Initially largely motivated by computer vision tasks in 2-D imagery, the focus has shifted toward 3-D data analysis. In particular, 3-D surface reconstruction, i.e., reconstructing a 3-D shape from sparse input,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the IEEE Ročník 111; číslo 11; s. 1464 - 1501
Hlavní autori: Farshian, Anis, Gotz, Markus, Cavallaro, Gabriele, Debus, Charlotte, Niesner, Matthias, Benediktsson, Jon Atli, Streit, Achim
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9219, 1558-2256
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the last decade, deep learning (DL) has significantly impacted industry and science. Initially largely motivated by computer vision tasks in 2-D imagery, the focus has shifted toward 3-D data analysis. In particular, 3-D surface reconstruction, i.e., reconstructing a 3-D shape from sparse input, is of great interest to a large variety of application fields. DL-based approaches show promising quantitative and qualitative surface reconstruction performance compared to traditional computer vision and geometric algorithms. This survey provides a comprehensive overview of these DL-based methods for 3-D surface reconstruction. To this end, we will first discuss input data modalities, such as volumetric data, point clouds, and RGB, single-view, multiview, and depth images, along with corresponding acquisition technologies and common benchmark datasets. For practical purposes, we also discuss evaluation metrics enabling us to judge the reconstructive performance of different methods. The main part of the document will introduce a methodological taxonomy ranging from point- and mesh-based techniques to volumetric and implicit neural approaches. Recent research trends, both methodological and for applications, are highlighted, pointing toward future developments.
AbstractList In the last decade, deep learning (DL) has significantly impacted industry and science. Initially largely motivated by computer vision tasks in 2-D imagery, the focus has shifted toward 3-D data analysis. In particular, 3-D surface reconstruction, i.e., reconstructing a 3-D shape from sparse input, is of great interest to a large variety of application fields. DL-based approaches show promising quantitative and qualitative surface reconstruction performance compared to traditional computer vision and geometric algorithms. This survey provides a comprehensive overview of these DL-based methods for 3-D surface reconstruction. To this end, we will first discuss input data modalities, such as volumetric data, point clouds, and RGB, single-view, multiview, and depth images, along with corresponding acquisition technologies and common benchmark datasets. For practical purposes, we also discuss evaluation metrics enabling us to judge the reconstructive performance of different methods. The main part of the document will introduce a methodological taxonomy ranging from point- and mesh-based techniques to volumetric and implicit neural approaches. Recent research trends, both methodological and for applications, are highlighted, pointing toward future developments.
Author Niesner, Matthias
Gotz, Markus
Streit, Achim
Cavallaro, Gabriele
Farshian, Anis
Debus, Charlotte
Benediktsson, Jon Atli
Author_xml – sequence: 1
  givenname: Anis
  orcidid: 0000-0002-9888-0653
  surname: Farshian
  fullname: Farshian, Anis
  email: anis.farshian@kit.edu
  organization: Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 2
  givenname: Markus
  orcidid: 0000-0002-2233-1041
  surname: Gotz
  fullname: Gotz, Markus
  email: markus.goetz@kit.edu
  organization: Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 3
  givenname: Gabriele
  orcidid: 0000-0002-3239-9904
  surname: Cavallaro
  fullname: Cavallaro, Gabriele
  email: cavallaro@fz-juelich.de
  organization: Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
– sequence: 4
  givenname: Charlotte
  orcidid: 0000-0002-7156-2022
  surname: Debus
  fullname: Debus, Charlotte
  email: charlotte.debus@kit.edu
  organization: Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
– sequence: 5
  givenname: Matthias
  orcidid: 0000-0001-6093-5199
  surname: Niesner
  fullname: Niesner, Matthias
  email: niessner@tum.de
  organization: Department of Informatics, Visual Computing Laboratory, Technical University of Munich, Munich, Germany
– sequence: 6
  givenname: Jon Atli
  orcidid: 0000-0003-0621-9647
  surname: Benediktsson
  fullname: Benediktsson, Jon Atli
  email: benedikt@hi.is
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
– sequence: 7
  givenname: Achim
  surname: Streit
  fullname: Streit, Achim
  email: achim.streit@kit.edu
  organization: Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
BookMark eNp9kE1PAjEQhhuDiYD-AeOBxHOx7WyX9ojgZ0gwqOemdKdmCXax3TXh37srHowHT3OYeebN-wxIL1QBCTnnbMw501ePT6vlbCyYgDGA4BnAEelzKRUVQuY90meMK6oF1ydkkNKGMQYyhz6ZzBF3dIE2hjK80WubsBgBnY-em-itw9EKXRVSHRtXl1Wg027xiftTcuztNuHZzxyS19ubl9k9XSzvHmbTBXWQsZquEcDJXEpYZ74oMi8zyVwudI58zdAyDmC9LJSS0istRSEKroXPM595BQyG5PLwdxerjwZTbTZVE0MbaYTSAiYyb8sOiThcuVilFNGbXSzfbdwbzkwnyHwLMp0g8yOohdQfyJW17VrW0Zbb_9GLA1oi4q8saPtIDV9lGnMx
CODEN IEEPAD
CitedBy_id crossref_primary_10_1111_cgf_15181
crossref_primary_10_1109_ACCESS_2025_3561456
crossref_primary_10_1177_14727978251352146
crossref_primary_10_1109_TVCG_2025_3540669
crossref_primary_10_1016_j_ijmecsci_2024_109308
crossref_primary_10_1109_TVCG_2025_3591770
crossref_primary_10_1016_j_engappai_2025_110773
crossref_primary_10_1145_3731212
crossref_primary_10_1016_j_engappai_2025_110550
crossref_primary_10_1016_j_rineng_2025_104236
crossref_primary_10_1109_ACCESS_2025_3581974
crossref_primary_10_1016_j_media_2024_103305
crossref_primary_10_1016_j_neucom_2024_129112
crossref_primary_10_1109_TPAMI_2024_3510932
crossref_primary_10_1145_3687956
Cites_doi 10.1142/9789812831699_0007
10.1016/0146-664x(82)90104-6
10.1214/aoms/1177729694
10.1109/cvpr.2018.00030
10.1109/2945.817351
10.1109/cvprw50498.2020.00184
10.3390/su12156080
10.1109/cvpr.2019.00467
10.3390/rs8110936
10.1109/cvpr.2019.00983
10.1109/cvpr.2019.00611
10.1145/2487228.2487237
10.1007/978-3-031-20062-5_28
10.5194/isprs-archives-xlii-2-w15-1157-2019
10.1109/iccv.2019.00166
10.1109/cvpr42600.2020.00133
10.1109/mgrs.2019.2937630
10.1109/iccv48922.2021.01407
10.1007/978-3-319-24574-4_28
10.1109/iccvw.2011.6130382
10.1109/iccv48922.2021.01198
10.1109/tpami.2019.2954885
10.1111/cgf.12802
10.1109/tpami.2020.3005434
10.1109/cvpr46437.2021.00741
10.1109/cvpr46437.2021.00854
10.5194/isprs-archives-xli-b1-169-2016
10.1109/iccv.2007.4408983
10.1145/3072959.3073608
10.1109/iccv48922.2021.00582
10.1016/j.rse.2019.05.027
10.1145/3478513.3480496
10.1109/cvpr.2018.00268
10.3390/s19040810
10.1111/cgf.13753
10.1162/neco.1997.9.8.1735
10.1186/s40537-021-00556-1
10.1109/cvpr.2012.6248074
10.1109/cvpr42600.2020.00491
10.1007/978-3-030-66096-3_48
10.1007/978-3-030-01267-0_23
10.1109/iccv.2019.01006
10.1109/CVPR42600.2020.00186
10.1016/s0167-9457(96)00048-6
10.1109/cvpr42600.2020.01054
10.1007/978-3-030-58536-5_19
10.1145/2834892.2834894
10.1109/cvpr42600.2020.00016
10.1109/3dv.2017.00081
10.1109/cvpr42600.2020.00209
10.1109/cvpr46437.2021.01018
10.1109/cvpr42600.2020.00700
10.1007/978-3-030-01252-6_40
10.1145/37401.37422
10.1109/cvpr.2017.264
10.1109/cvpr.2018.00295
10.1109/iccv.2019.00113
10.1109/cvpr.2015.7298807
10.1109/cvpr.2017.261
10.1109/wacv.2014.6836101
10.1109/cvpr42600.2020.00292
10.1109/tpami.2023.3298850
10.3390/rs11060717
10.1023/a:1026543900054
10.1109/cvpr46437.2021.00455
10.3390/rs11111306
10.1007/978-3-030-58598-3_5
10.1109/cvpr.2019.00571
10.1109/iccv.2019.00988
10.1109/cvpr.2019.00459
10.1109/iccv.2019.00239
10.1007/978-3-030-20887-5_23
10.1109/iccv.2017.99
10.1109/cvpr.2018.00308
10.1109/iccv.2019.00463
10.1109/cvpr.2019.01037
10.1109/cvpr.2016.609
10.1109/cvpr.2019.00572
10.1109/iccv48922.2021.00580
10.1109/tgrs.2015.2421051
10.1109/iccv.2015.114
10.1146/annurev.earth.28.1.169
10.1016/j.neunet.2014.09.003
10.1561/2200000056
10.1007/978-3-030-58452-8_1
10.1109/cvpr46437.2021.00286
10.1109/cvpr.2018.00029
10.1109/cvpr.2017.693
10.1007/s41095-021-0229-5
10.1109/3dv.2017.00017
10.14358/pers.76.10.1123
10.1007/978-3-030-58452-8_2
10.1109/iccv.1998.710701
10.1109/cvpr52688.2022.00539
10.1007/978-3-319-46484-8_38
10.1109/cvpr.2019.00025
10.1007/978-3-319-46723-8_49
10.1145/237170.237269
10.1109/cvpr.2015.7298655
10.1109/cvpr46437.2021.00466
10.1109/iccv.2017.230
10.1016/0893-6080(89)90020-8
10.1016/j.measurement.2017.07.028
10.1109/cvpr42600.2020.00264
10.1145/3386569.3392415
10.1109/iccv.2013.458
10.1145/3197517.3201301
10.1145/3306346.3322959
10.1109/cvpr.2015.7298801
10.1109/iccv48922.2021.01386
10.1109/icmla51294.2020.00073
10.1109/cvpr.2019.00109
10.5194/isprsannals-i-3-293-2012
10.1109/icra40945.2020.9197503
10.1016/j.ophoto.2021.100001
10.1109/cvpr42600.2020.00356
10.1109/cvpr.2018.00209
10.1109/cvpr.2019.00352
10.1080/10298436.2016.1187730
10.1109/iccv48922.2021.00577
10.3390/rs11131540
10.1109/iccv.2019.00464
10.1109/cvpr.2006.19
10.1007/978-3-319-46466-4_29
10.1109/cvpr.2018.00411
10.1109/cvpr.2016.434
10.1109/cvpr.2019.00609
10.1007/978-3-030-58580-8_31
10.1111/cgf.13343
10.1145/3588432.3591516
10.1109/iccv.2019.00548
10.1109/tpds.2018.2829724
10.1111/cgf.13386
10.1007/s11831-019-09320-4
10.1007/978-3-030-01252-6_4
10.1145/3478513.3480487
10.1109/cvpr.2017.16
10.1117/12.148710
10.1109/iros.2015.7353481
10.1109/cvpr.2017.701
10.1109/access.2019.2939201
10.1109/cvpr.2019.00319
10.1111/1467-8659.00669
10.1109/cvpr.2016.586
10.1111/cgf.14340
10.1007/978-3-030-58526-6_36
10.1145/3528223.3530127
10.1007/978-3-030-58517-4_18
10.1109/iccv.2013.372
10.1201/9781420051438
10.1109/iccv.2019.00939
10.1007/978-3-030-58598-3_4
10.5194/isprs-annals-iv-1-w1-91-2017
10.1007/978-3-030-58452-8_24
10.1016/j.visinf.2021.10.003
10.1109/jstsp.2012.2208177
10.1109/ICCV51070.2023.01804
10.1109/cvpr46437.2021.00643
10.1109/iv47402.2020.9304812
10.1145/3272127.3275050
10.1109/iccv48922.2021.01245
10.1007/978-3-030-58580-8_22
10.1109/cvpr.2018.00207
10.1109/iccv.2017.322
10.1109/CVPR46437.2021.01120
10.1016/j.cviu.2015.05.006
10.1109/iccv48922.2021.01272
10.1109/cvpr.2018.00409
10.1109/cvpr42600.2020.00093
10.1109/cvpr.2018.00478
10.1109/CVPR.2014.59
10.1109/iccv48922.2021.01408
10.1007/978-3-030-58558-7_7
10.1145/133994.134011
10.1109/ICCV48922.2021.00554
10.1109/igarss.1999.772008
10.1109/cvpr.2019.00985
10.1088/1742-6596/1087/6/062031
10.1109/cvpr.2019.00100
10.1109/cvpr.2016.90
10.1038/nature14539
10.1109/cvpr42600.2020.00604
10.1109/3dv.2017.00054
10.1371/journal.pone.0220253
10.1177/0278364913491297
10.1016/0146-664x(80)90055-6
10.48550/arXiv.1312.6114
10.1109/iccv48922.2021.00581
10.1109/iccv.2017.292
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JPROC.2023.3321433
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2256
EndPage 1501
ExternalDocumentID 10_1109_JPROC_2023_3321433
10301359
Genre orig-research
GroupedDBID -DZ
-~X
.DC
0R~
123
1OL
29P
3EH
4.4
6IK
85S
97E
9M8
AAJGR
AAWTH
ABAZT
ABFSI
ABJNI
ABQJQ
ABVLG
ACBEA
ACGFS
AENEX
AETEA
AETIX
AFOGA
AGNAY
AGQYO
AGSQL
AHBIQ
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
FA8
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MVM
O9-
OCL
RIA
RIE
RIU
RNS
TAE
TN5
TWZ
UDY
UHB
UKR
UQL
VOH
WHG
XJT
XOL
YNT
ZCA
ZXP
ZY4
~02
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c340t-be33c56553b4fdd4f5450c6296e1b0ea0133af5d8855f8952d2d192f64f4f8303
IEDL.DBID RIE
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001103912800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9219
IngestDate Sun Nov 30 04:08:45 EST 2025
Tue Nov 18 21:25:26 EST 2025
Sat Nov 29 06:01:44 EST 2025
Wed Aug 27 02:24:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-be33c56553b4fdd4f5450c6296e1b0ea0133af5d8855f8952d2d192f64f4f8303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9888-0653
0000-0002-3239-9904
0000-0002-2233-1041
0000-0001-6093-5199
0000-0002-7156-2022
0000-0003-0621-9647
OpenAccessLink https://ieeexplore.ieee.org/document/10301359
PQID 2892375643
PQPubID 85453
PageCount 38
ParticipantIDs proquest_journals_2892375643
ieee_primary_10301359
crossref_primary_10_1109_JPROC_2023_3321433
crossref_citationtrail_10_1109_JPROC_2023_3321433
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Proceedings of the IEEE
PublicationTitleAbbrev JPROC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref59
(ref115) 2014
ref58
ref206
ref52
ref55
ref209
ref210
ref211
ref50
Dhariwal (ref244); 34
ref46
ref218
ref45
ref219
ref48
ref47
ref217
ref42
ref41
ref215
ref44
ref212
ref43
Hu (ref114)
ref213
ref49
Kato (ref123) 2020
ref7
ref9
ref4
ref3
ref6
Rezende (ref152)
ref5
ref100
Kazhdan (ref130); 6
ref101
ref40
ref220
Yariv (ref226); 34
ref35
ref34
ref37
ref36
Choi (ref232) 2016
ref30
ref33
ref32
Silberman (ref104) 2012
ref39
ref38
ref24
ref26
ref25
Hegde (ref129) 2016
ref20
ref22
Wang (ref216) 2021
ref28
ref27
ref29
Thomas (ref205) 2018
ref200
ref128
ref97
ref126
ref99
ref124
ref245
ref98
ref125
ref246
Fuchs (ref204); 33
Sedaghat (ref127) 2016
ref93
ref133
ref92
ref134
ref95
ref131
ref94
ref132
ref91
ref90
ref89
ref139
ref86
ref85
ref138
ref88
ref135
ref87
Venkatesh (ref54) 2020
Kazhdan (ref8); 7
ref82
ref144
ref81
ref145
Van Oord (ref180)
ref84
ref142
ref83
ref143
ref140
ref141
ref80
Chibane (ref53) 2020
ref79
ref229
ref78
ref109
ref106
ref107
ref228
ref75
ref74
ref105
ref77
ref102
ref223
ref76
ref103
Bozic (ref237); 33
Grathwohl (ref154) 2018
Bi (ref214) 2020
LeCun (ref240) 2021
ref71
ref111
ref70
ref73
ref230
ref72
ref110
ref231
ref68
ref119
ref67
ref117
ref69
ref118
ref239
ref64
ref236
ref63
ref66
ref234
ref65
Duggal (ref201) 2021
ref235
Xu (ref196) 2019
Smith (ref171) 2019
ref60
ref122
Chang (ref96) 2015
ref62
ref120
ref121
Vaswani (ref208)
ref168
ref169
Yu et al (ref227) 2022
ref170
ref177
ref178
ref176
Gao (ref221) 2022
ref173
ref174
ref172
Wang (ref224); 35
Ho (ref242); 33
Sitzmann (ref193) 2019
Achlioptas (ref31); 80
ref181
Chen (ref153) 2018
ref188
ref189
ref186
ref187
ref184
Fu (ref113) 2020
ref185
ref182
You (ref179); 80
ref183
Sohl-Dickstein (ref241); 37
ref148
ref146
ref147
Radford (ref137) 2015
Fu (ref112) 2020
ref155
ref156
ref151
ref150
Fu (ref225); 35
ref159
ref157
ref158
ref166
ref167
Nichol (ref243)
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
Zhao (ref238)
ref19
ref18
Goodfellow (ref136) 2014
Turk (ref116) 2021
Sitzmann (ref51); 33
Wu (ref23) 2016
Brock (ref21) 2016
Goodfellow (ref2) 2016
Yariv (ref195); 33
Qi (ref149); 31
De Deuge (ref108); 2
Chatzipantazis (ref203) 2022
ref1
Liu (ref202) 2019
ref191
ref192
ref190
ref199
ref197
ref198
ref194
Zhang (ref61) 2020
Kar (ref175) 2017
(ref233) 2023
Wang (ref222); 34
References_xml – ident: ref12
  doi: 10.1142/9789812831699_0007
– ident: ref142
  doi: 10.1016/0146-664x(82)90104-6
– ident: ref121
  doi: 10.1214/aoms/1177729694
– ident: ref34
  doi: 10.1109/cvpr.2018.00030
– ident: ref10
  doi: 10.1109/2945.817351
– ident: ref36
  doi: 10.1109/cvprw50498.2020.00184
– ident: ref83
  doi: 10.3390/su12156080
– volume-title: 3D Warehouse
  year: 2023
  ident: ref233
– ident: ref71
  doi: 10.1109/cvpr.2019.00467
– ident: ref75
  doi: 10.3390/rs8110936
– ident: ref109
  doi: 10.1109/cvpr.2019.00983
– ident: ref156
  doi: 10.1109/cvpr.2019.00611
– volume: 33
  start-page: 6840
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref242
  article-title: Denoising diffusion probabilistic models
– start-page: 8162
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref243
  article-title: Improved denoising diffusion probabilistic models
– ident: ref9
  doi: 10.1145/2487228.2487237
– year: 2022
  ident: ref203
  article-title: SE(3)-equivariant attention networks for shape reconstruction in function space
  publication-title: arXiv:2204.02394
– ident: ref207
  doi: 10.1007/978-3-031-20062-5_28
– ident: ref95
  doi: 10.5194/isprs-archives-xlii-2-w15-1157-2019
– ident: ref161
  doi: 10.1109/iccv.2019.00166
– ident: ref198
  doi: 10.1109/cvpr42600.2020.00133
– ident: ref16
  doi: 10.1109/mgrs.2019.2937630
– ident: ref60
  doi: 10.1109/iccv48922.2021.01407
– ident: ref186
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref107
  doi: 10.1109/iccvw.2011.6130382
– ident: ref206
  doi: 10.1109/iccv48922.2021.01198
– year: 2020
  ident: ref214
  article-title: Neural reflectance fields for appearance acquisition
  publication-title: arXiv:2008.03824
– volume: 2
  start-page: 1
  volume-title: Proc. Australas. Conf. Robot. Autom.
  ident: ref108
  article-title: Unsupervised feature learning for classification of outdoor 3D scans
– start-page: 4975
  volume-title: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR)
  ident: ref114
  article-title: Towards semantic segmentation of urban-scale 3D point clouds: A dataset, benchmarks and challenges
– ident: ref19
  doi: 10.1109/tpami.2019.2954885
– ident: ref17
  doi: 10.1111/cgf.12802
– ident: ref14
  doi: 10.1109/tpami.2020.3005434
– ident: ref64
  doi: 10.1109/cvpr46437.2021.00741
– ident: ref66
  doi: 10.1109/cvpr46437.2021.00854
– ident: ref89
  doi: 10.5194/isprs-archives-xli-b1-169-2016
– year: 2018
  ident: ref154
  article-title: FFJORD: Free-form continuous dynamics for scalable reversible generative models
  publication-title: arXiv:1810.01367
– year: 2020
  ident: ref112
  article-title: 3D-FRONT: 3D furnished rooms with layOuts and semaNTics
  publication-title: arXiv:2011.09127
– ident: ref145
  doi: 10.1109/iccv.2007.4408983
– ident: ref147
  doi: 10.1145/3072959.3073608
– year: 2018
  ident: ref153
  article-title: Neural ordinary differential equations
  publication-title: arXiv:1806.07366
– volume: 7
  start-page: 61
  volume-title: Proc. Eurographics Symp. Geometry Process.
  ident: ref8
  article-title: Poisson surface reconstruction
– volume: 33
  start-page: 1403
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref237
  article-title: TransformerFusion: Monocular RGB scene reconstruction using transformers
– ident: ref220
  doi: 10.1109/iccv48922.2021.00582
– ident: ref77
  doi: 10.1016/j.rse.2019.05.027
– year: 2016
  ident: ref129
  article-title: FusionNet: 3D object classification using multiple data representations
  publication-title: arXiv:1607.05695
– ident: ref215
  doi: 10.1145/3478513.3480496
– ident: ref168
  doi: 10.1109/cvpr.2018.00268
– ident: ref13
  doi: 10.3390/s19040810
– ident: ref170
  doi: 10.1111/cgf.13753
– start-page: 1530
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref152
  article-title: Variational inference with normalizing flows
– ident: ref132
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref177
  doi: 10.1186/s40537-021-00556-1
– volume: 34
  start-page: 27171
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref222
  article-title: NeuS: Learning neural implicit surfaces by volume rendering for multi-view reconstruction
– volume: 33
  start-page: 2492
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref195
  article-title: Multiview neural surface reconstruction by disentangling geometry and appearance
– ident: ref99
  doi: 10.1109/cvpr.2012.6248074
– ident: ref184
  doi: 10.1109/cvpr42600.2020.00491
– ident: ref185
  doi: 10.1007/978-3-030-66096-3_48
– ident: ref40
  doi: 10.1007/978-3-030-01267-0_23
– ident: ref70
  doi: 10.1109/iccv.2019.01006
– volume: 35
  start-page: 3403
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref225
  article-title: Geo-Neus: Geometry-consistent neural implicit surfaces learning for multi-view reconstruction
– ident: ref235
  doi: 10.1109/CVPR42600.2020.00186
– ident: ref94
  doi: 10.1016/s0167-9457(96)00048-6
– ident: ref169
  doi: 10.1109/cvpr42600.2020.01054
– ident: ref189
  doi: 10.1007/978-3-030-58536-5_19
– ident: ref6
  doi: 10.1145/2834892.2834894
– year: 2015
  ident: ref96
  article-title: ShapeNet: An information-rich 3D model repository
  publication-title: arXiv:1512.03012
– ident: ref188
  doi: 10.1109/cvpr42600.2020.00016
– ident: ref103
  doi: 10.1109/3dv.2017.00081
– ident: ref197
  doi: 10.1109/cvpr42600.2020.00209
– ident: ref217
  doi: 10.1109/cvpr46437.2021.01018
– ident: ref56
  doi: 10.1109/cvpr42600.2020.00700
– ident: ref138
  doi: 10.1007/978-3-030-01252-6_40
– year: 2020
  ident: ref123
  article-title: Differentiable rendering: A survey
  publication-title: arXiv:2006.12057
– ident: ref125
  doi: 10.1145/37401.37422
– ident: ref30
  doi: 10.1109/cvpr.2017.264
– ident: ref155
  doi: 10.1109/cvpr.2018.00295
– ident: ref39
  doi: 10.1109/iccv.2019.00113
– ident: ref133
  doi: 10.1109/cvpr.2015.7298807
– ident: ref102
  doi: 10.1109/cvpr.2017.261
– start-page: 1747
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref180
  article-title: Pixel recurrent neural networks
– start-page: 746
  volume-title: Eur. Conf. Comput. Vis.
  year: 2012
  ident: ref104
  article-title: Indoor segmentation and support inference from RGBD images
– volume: 33
  start-page: 7462
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref51
  article-title: Implicit neural representations with periodic activation functions
– ident: ref229
  doi: 10.1109/wacv.2014.6836101
– ident: ref37
  doi: 10.1109/cvpr42600.2020.00292
– ident: ref5
  doi: 10.1109/tpami.2023.3298850
– ident: ref82
  doi: 10.3390/rs11060717
– ident: ref118
  doi: 10.1023/a:1026543900054
– ident: ref62
  doi: 10.1109/cvpr46437.2021.00455
– ident: ref93
  doi: 10.3390/rs11111306
– ident: ref35
  doi: 10.1007/978-3-030-58598-3_5
– ident: ref162
  doi: 10.1109/cvpr.2019.00571
– ident: ref44
  doi: 10.1109/iccv.2019.00988
– ident: ref45
  doi: 10.1109/cvpr.2019.00459
– ident: ref191
  doi: 10.1109/iccv.2019.00239
– ident: ref172
  doi: 10.1007/978-3-030-20887-5_23
– year: 2014
  ident: ref115
  publication-title: The Stanford Computer Graphics Laboratory
– ident: ref150
  doi: 10.1109/iccv.2017.99
– ident: ref42
  doi: 10.1109/cvpr.2018.00308
– volume: 80
  start-page: 40
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  ident: ref31
  article-title: Learning representations and generative models for 3D point clouds
– volume: 31
  start-page: 5099
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref149
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: ref192
  doi: 10.1109/iccv.2019.00463
– ident: ref174
  doi: 10.1109/cvpr.2019.01037
– ident: ref128
  doi: 10.1109/cvpr.2016.609
– ident: ref43
  doi: 10.1109/cvpr.2019.00572
– volume: 6
  start-page: 156
  volume-title: Proc. Symp. Geometry Process.
  ident: ref130
  article-title: Rotation invariant spherical harmonic representation of 3D shape descriptors
– ident: ref210
  doi: 10.1109/iccv48922.2021.00580
– ident: ref74
  doi: 10.1109/tgrs.2015.2421051
– ident: ref131
  doi: 10.1109/iccv.2015.114
– ident: ref91
  doi: 10.1146/annurev.earth.28.1.169
– ident: ref3
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref135
  doi: 10.1561/2200000056
– ident: ref165
  doi: 10.1007/978-3-030-58452-8_1
– ident: ref245
  doi: 10.1109/cvpr46437.2021.00286
– ident: ref32
  doi: 10.1109/cvpr.2018.00029
– ident: ref24
  doi: 10.1109/cvpr.2017.693
– ident: ref239
  doi: 10.1007/s41095-021-0229-5
– ident: ref26
  doi: 10.1109/3dv.2017.00017
– year: 2020
  ident: ref61
  article-title: NeRF++: Analyzing and improving neural radiance fields
  publication-title: arXiv:2010.07492
– ident: ref84
  doi: 10.14358/pers.76.10.1123
– ident: ref159
  doi: 10.1007/978-3-030-58452-8_2
– ident: ref117
  doi: 10.1109/iccv.1998.710701
– ident: ref211
  doi: 10.1109/cvpr52688.2022.00539
– volume: 80
  start-page: 5708
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref179
  article-title: GraphRNN: Generating realistic graphs with deep auto-regressive models
– ident: ref20
  doi: 10.1007/978-3-319-46484-8_38
– ident: ref50
  doi: 10.1109/cvpr.2019.00025
– ident: ref187
  doi: 10.1007/978-3-319-46723-8_49
– volume-title: SDFStudio: A Unified Framework for Surface Reconstruction
  year: 2022
  ident: ref227
– ident: ref124
  doi: 10.1145/237170.237269
– ident: ref106
  doi: 10.1109/cvpr.2015.7298655
– start-page: 16239
  volume-title: Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV)
  ident: ref238
  article-title: Point transformer
– ident: ref209
  doi: 10.1109/cvpr46437.2021.00466
– ident: ref29
  doi: 10.1109/iccv.2017.230
– ident: ref181
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref78
  doi: 10.1016/j.measurement.2017.07.028
– ident: ref52
  doi: 10.1109/cvpr42600.2020.00264
– ident: ref41
  doi: 10.1145/3386569.3392415
– year: 2017
  ident: ref175
  article-title: Learning a multi-view stereo machine
  publication-title: arXiv:1708.05375
– year: 2016
  ident: ref232
  article-title: A large dataset of object scans
  publication-title: arXiv:1602.02481
– ident: ref105
  doi: 10.1109/iccv.2013.458
– ident: ref160
  doi: 10.1145/3197517.3201301
– ident: ref176
  doi: 10.1145/3306346.3322959
– ident: ref98
  doi: 10.1109/cvpr.2015.7298801
– ident: ref63
  doi: 10.1109/iccv48922.2021.01386
– ident: ref120
  doi: 10.1109/icmla51294.2020.00073
– ident: ref163
  doi: 10.1109/cvpr.2019.00109
– ident: ref79
  doi: 10.5194/isprsannals-i-3-293-2012
– ident: ref166
  doi: 10.1109/icra40945.2020.9197503
– ident: ref111
  doi: 10.1016/j.ophoto.2021.100001
– ident: ref194
  doi: 10.1109/cvpr42600.2020.00356
– ident: ref25
  doi: 10.1109/cvpr.2018.00209
– year: 2020
  ident: ref54
  article-title: DUDE: Deep unsigned distance embeddings for hi-fidelity representation of complex 3D surfaces
  publication-title: arXiv:2011.02570
– ident: ref119
  doi: 10.1109/cvpr.2019.00352
– ident: ref87
  doi: 10.1080/10298436.2016.1187730
– ident: ref246
  doi: 10.1109/iccv48922.2021.00577
– ident: ref80
  doi: 10.3390/rs11131540
– ident: ref33
  doi: 10.1109/iccv.2019.00464
– ident: ref86
  doi: 10.1109/cvpr.2006.19
– ident: ref22
  doi: 10.1007/978-3-319-46466-4_29
– year: 2016
  ident: ref21
  article-title: Generative and discriminative voxel modeling with convolutional neural networks
  publication-title: arXiv:1608.04236
– ident: ref69
  doi: 10.1109/cvpr.2018.00411
– ident: ref230
  doi: 10.1109/cvpr.2016.434
– ident: ref49
  doi: 10.1109/cvpr.2019.00609
– ident: ref46
  doi: 10.1007/978-3-030-58580-8_31
– ident: ref158
  doi: 10.1111/cgf.13343
– year: 2019
  ident: ref202
  article-title: Learning to infer implicit surfaces without 3D supervision
  publication-title: arXiv:1911.00767
– ident: ref228
  doi: 10.1145/3588432.3591516
– ident: ref190
  doi: 10.1109/iccv.2019.00548
– ident: ref7
  doi: 10.1109/tpds.2018.2829724
– ident: ref18
  doi: 10.1111/cgf.13386
– ident: ref72
  doi: 10.1007/s11831-019-09320-4
– ident: ref38
  doi: 10.1007/978-3-030-01252-6_4
– ident: ref219
  doi: 10.1145/3478513.3480487
– volume: 35
  start-page: 1966
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref224
  article-title: HF-NeuS: Improved surface reconstruction using high-frequency details
– ident: ref148
  doi: 10.1109/cvpr.2017.16
– ident: ref11
  doi: 10.1117/12.148710
– ident: ref126
  doi: 10.1109/iros.2015.7353481
– year: 2016
  ident: ref127
  article-title: Orientation-boosted voxel nets for 3D object recognition
  publication-title: arXiv:1604.03351
– ident: ref144
  doi: 10.1109/cvpr.2017.701
– ident: ref15
  doi: 10.1109/access.2019.2939201
– ident: ref140
  doi: 10.1109/cvpr.2019.00319
– ident: ref122
  doi: 10.1111/1467-8659.00669
– ident: ref146
  doi: 10.1109/cvpr.2016.586
– ident: ref59
  doi: 10.1111/cgf.14340
– volume-title: Self-Supervised Learning: The Dark Matter of Intelligence
  year: 2021
  ident: ref240
– year: 2014
  ident: ref136
  article-title: Generative adversarial networks
  publication-title: arXiv:1406.2661
– ident: ref47
  doi: 10.1007/978-3-030-58526-6_36
– ident: ref213
  doi: 10.1145/3528223.3530127
– year: 2019
  ident: ref171
  article-title: GEOMetrics: Exploiting geometric structure for graph-encoded objects
  publication-title: arXiv:1901.11461
– volume: 33
  start-page: 1970
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref204
  article-title: SE(3)-transformers: 3D roto-translation equivariant attention networks
– ident: ref183
  doi: 10.1007/978-3-030-58517-4_18
– ident: ref231
  doi: 10.1109/iccv.2013.372
– ident: ref73
  doi: 10.1201/9781420051438
– ident: ref101
  doi: 10.1109/iccv.2019.00939
– year: 2019
  ident: ref193
  article-title: Scene representation networks: Continuous 3D-Structure-Aware neural scene representations
  publication-title: arXiv:1906.01618
– ident: ref199
  doi: 10.1007/978-3-030-58598-3_4
– ident: ref110
  doi: 10.5194/isprs-annals-iv-1-w1-91-2017
– year: 2020
  ident: ref113
  article-title: 3D-FUTURE: 3D furniture shape with TextURE
  publication-title: arXiv:2009.09633
– ident: ref57
  doi: 10.1007/978-3-030-58452-8_24
– ident: ref4
  doi: 10.1016/j.visinf.2021.10.003
– year: 2020
  ident: ref53
  article-title: Neural unsigned distance fields for implicit function learning
  publication-title: arXiv:2010.13938
– ident: ref76
  doi: 10.1109/jstsp.2012.2208177
– ident: ref212
  doi: 10.1109/ICCV51070.2023.01804
– year: 2022
  ident: ref221
  article-title: NeRF: Neural radiance field in 3D vision, a comprehensive review
  publication-title: arXiv:2210.00379
– ident: ref218
  doi: 10.1109/cvpr46437.2021.00643
– ident: ref81
  doi: 10.1109/iv47402.2020.9304812
– ident: ref27
  doi: 10.1145/3272127.3275050
– ident: ref65
  doi: 10.1109/iccv48922.2021.01245
– ident: ref157
  doi: 10.1007/978-3-030-58580-8_22
– ident: ref141
  doi: 10.1109/cvpr.2018.00207
– ident: ref178
  doi: 10.1109/iccv.2017.322
– ident: ref200
  doi: 10.1109/CVPR46437.2021.01120
– ident: ref90
  doi: 10.1016/j.cviu.2015.05.006
– ident: ref68
  doi: 10.1109/iccv48922.2021.01272
– volume: 37
  start-page: 2256
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref241
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
– volume-title: Large Geometric Models Archive
  year: 2021
  ident: ref116
– year: 2015
  ident: ref137
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: arXiv:1511.06434
– ident: ref167
  doi: 10.1109/cvpr.2018.00409
– ident: ref139
  doi: 10.1109/cvpr42600.2020.00093
– ident: ref151
  doi: 10.1109/cvpr.2018.00478
– year: 2018
  ident: ref205
  article-title: Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds
  publication-title: arXiv:1802.08219
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref208
  article-title: Attention is all you need
– ident: ref234
  doi: 10.1109/CVPR.2014.59
– ident: ref58
  doi: 10.1109/iccv48922.2021.01408
– ident: ref48
  doi: 10.1007/978-3-030-58558-7_7
– ident: ref182
  doi: 10.1145/133994.134011
– volume: 34
  start-page: 8780
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref244
  article-title: Diffusion models beat GANs on image synthesis
– ident: ref223
  doi: 10.1109/ICCV48922.2021.00554
– year: 2016
  ident: ref23
  article-title: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling
  publication-title: arXiv:1610.07584
– year: 2021
  ident: ref216
  article-title: NeRF–: Neural radiance fields without known camera parameters
  publication-title: arXiv:2102.07064
– ident: ref92
  doi: 10.1109/igarss.1999.772008
– ident: ref164
  doi: 10.1109/cvpr.2019.00985
– ident: ref85
  doi: 10.1088/1742-6596/1087/6/062031
– ident: ref97
  doi: 10.1109/cvpr.2019.00100
– ident: ref173
  doi: 10.1109/cvpr.2016.90
– year: 2021
  ident: ref201
  article-title: Mending neural implicit modeling for 3D vehicle reconstruction in the wild
  publication-title: arXiv:2101.06860
– ident: ref1
  doi: 10.1038/nature14539
– ident: ref55
  doi: 10.1109/cvpr42600.2020.00604
– ident: ref28
  doi: 10.1109/3dv.2017.00054
– ident: ref88
  doi: 10.1371/journal.pone.0220253
– ident: ref100
  doi: 10.1177/0278364913491297
– volume: 34
  start-page: 4805
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref226
  article-title: Volume rendering of neural implicit surfaces
– ident: ref143
  doi: 10.1016/0146-664x(80)90055-6
– year: 2019
  ident: ref196
  article-title: DISN: Deep implicit surface network for high-quality single-view 3D reconstruction
  publication-title: arXiv:1905.10711
– ident: ref134
  doi: 10.48550/arXiv.1312.6114
– ident: ref67
  doi: 10.1109/iccv48922.2021.00581
– volume-title: Deep Learning
  year: 2016
  ident: ref2
– ident: ref236
  doi: 10.1109/iccv.2017.292
SSID ssj0003563
Score 2.57522
Snippet In the last decade, deep learning (DL) has significantly impacted industry and science. Initially largely motivated by computer vision tasks in 2-D imagery,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1464
SubjectTerms 3-D deep learning (DL)
3-D surface reconstruction
Computer vision
Data analysis
Deep learning
Geometric algorithms
geometric DL
Geometric modeling
geometry processing
Image acquisition
Image reconstruction
Laser radar
Machine learning
Point cloud compression
Surface emitting lasers
Surface reconstruction
Surveys
Taxonomy
Three-dimensional displays
Title Deep-Learning-Based 3-D Surface Reconstruction-A Survey
URI https://ieeexplore.ieee.org/document/10301359
https://www.proquest.com/docview/2892375643
Volume 111
WOSCitedRecordID wos001103912800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2256
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003563
  issn: 0018-9219
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA1u-KAPXidOp_TBN8nWNknTPM7NISJzeIG9lTb5IoJsYzfw35ukmU5EwbdCkxJO-t2afucgdEFN1IdQm9pEUY4pBesHdYy1oGmc61DRwlHm3_F-Px0OxcA3q7teGABwP59B0166s3w1lgv7qaxlJbEiwkQFVTjnZbPWp9slzMumRcaCjR2uOmRC0bodPNx3mlYovEmsMA8h36KQk1X54YtdgOnt_nNpe2jHZ5JBu9z6fbQBowO0vcYveIh4F2CCPYXqC74yEUsFBHeDx8VU5xICW3x-Ucjitr2xhPcaeu5dP3VusFdKwJLQcI4LIESa1IyRgmqlqDZ5USiTWCQQFSHkZmkk10ylKWM6FSxWsTKpnU6opjo1UewIVUfjERyjoGBggCQUBJOUKp4XjIHSNI5UmAjI6yhaIZdJTyNu1SzeMldOhCJzaGcW7cyjXUeXn3MmJYnGn6NrFt-1kSW0ddRY7VDmDW2WmXoxJpyZvOrkl2mnaMs-vewfbKCqwRTO0KZczl9n03P3Dn0AHTvASg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQHrxOnU_vgm2Rrm6RtHudUvMwpXmBvpU1ORJBNtin4703STiei4FuhCQ1fem5Nz_cBHDAT9dHXpjZRLCaMofWDOiRasCTMtK9Y7ijzO3G3m_R64qZsVne9MIjofj7Dhr10Z_lqIF_tp7KmlcQKKBezMMcZC4OiXevT8VJeCqcFxoaNJU56ZHzRvLi5vW43rFR4g1ppHkq_xSEnrPLDG7sQc7ryz8WtwnKZS3qtYvPXYAb767A0xTC4AfEx4gspSVQfyZGJWcqj5Ni7ex3qTKJny88vElnSsjfe8L0KD6cn9-0zUmolEEmZPyY5UipNcsZpzrRSTJvMyJdRKCIMch8zszSaaa6ShHOdCB6qUJnkTkdMM52YOLYJlf6gj1vg5RwNkJSh4JIxFWc556i0wVv5kcCsBsEEuVSWROJWz-I5dQWFL1KHdmrRTku0a3D4OeeloNH4c3TV4js1soC2BvXJDqWlqY1SUzGGNOYms9r-Zdo-LJzdX3XSznn3cgcW7ZOKbsI6VAy-uAvz8m38NBruuffpA03zw5E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning-Based+3-D+Surface+Reconstruction-A+Survey&rft.jtitle=Proceedings+of+the+IEEE&rft.au=Farshian%2C+Anis&rft.au=Gotz%2C+Markus&rft.au=Cavallaro%2C+Gabriele&rft.au=Debus%2C+Charlotte&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0018-9219&rft.volume=111&rft.issue=11&rft.spage=1464&rft.epage=1501&rft_id=info:doi/10.1109%2FJPROC.2023.3321433&rft.externalDocID=10301359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9219&client=summon