New parameters and Lebesgue-type estimates in greedy approximation

The purpose of this paper is to quantify the size of the Lebesgue constants $(\boldsymbol {L}_m)_{m=1}^{\infty }$ associated with the thresholding greedy algorithm in terms of a new generation of parameters that modulate accurately some features of a general basis. This fine tuning of constants allo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Forum of Mathematics, Sigma Ročník 10
Hlavní autoři: Albiac, Fernando, Ansorena, José L., Berná, Pablo M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.01.2022
Témata:
ISSN:2050-5094, 2050-5094
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The purpose of this paper is to quantify the size of the Lebesgue constants $(\boldsymbol {L}_m)_{m=1}^{\infty }$ associated with the thresholding greedy algorithm in terms of a new generation of parameters that modulate accurately some features of a general basis. This fine tuning of constants allows us to provide an answer to the question raised by Temlyakov in 2011 to find a natural sequence of greedy-type parameters for arbitrary bases in Banach (or quasi-Banach) spaces which combined linearly with the sequence of unconditionality parameters $(\boldsymbol {k}_m)_{m=1}^{\infty }$ determines the growth of $(\boldsymbol {L}_m)_{m=1}^{\infty }$ . Multiple theoretical applications and computational examples complement our study.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-5094
2050-5094
DOI:10.1017/fms.2022.102