Realization of Turkey’s energy demand forecast with the improved arithmetic optimization algorithm

Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic activities increase the pressure of countries on energy. In a world where consumption is increasing, energy management has become a more important and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Energy reports Ročník 8; s. 18 - 32
Hlavní autoři: Aslan, Murat, Beşkirli, Mehmet
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2022
Elsevier
Témata:
ISSN:2352-4847, 2352-4847
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic activities increase the pressure of countries on energy. In a world where consumption is increasing, energy management has become a more important and challenging issue. For this reason, it is necessary to make proper estimations that will reduce the pressure of energy demand on this issue. In order to realize the estimation of energy demand, Turkey application is carried out in this study and arithmetic optimization algorithm (AOA) which is a stochastic metaheuristic algorithm has used to for solving energy demand problem. AOA is inspired from four substantial math functions such as subtraction, multiplication, addition and division for searching process of candidate solutions. The current position update rules of AOA are not powerful enough for solving the problem dealt with this study. Therefore, an improved version of AOA named as IAOA is proposed for solving energy demand problem. In the proposed algorithm, a new position update rule is incorporated to basic AOA in order to enhanced the exploration and exploitation capability of AOA. The linear regression model is used for the estimation of the energy demand and the population, domestic product, import and export data are used in estimation process. In the proposed model, Turkey’s real data samples for the years 1979–2011 have been used, and Turkey’s long-term energy demand has been estimated for the years 2012–2030. While performing the estimation process, Turkey’s energy data of the years 1979–2011 have processed, and then Turkey’s long-term energy demand estimations are realized for three different scenarios. Firstly, the experimental results of the proposed model are analyzed, then the results are compared with different studies proposed in the literature. As a result of the comparisons, it is seen that the IAOA method has achieved better or similar results than compared methods. For this reason, it can be said that the IAOA method is competitive and successful in realizing the energy demand forecast for Turkey’s future years. [Display omitted] •A novel and alternative optimization method called IAOA is presented for solving energy demand forecasting problem.•IAOA is based on the basic AOA position update rules and a new update rule which is proposed in this study for searching process of candidate solutions.•IAOA based linear regression model has been created by using the Turkey’s GDP, population, export and import data for the period 1979–2011 years.•The experimental results of IAOA are compared with state-of-the-art​ population-based algorithms.
AbstractList Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic activities increase the pressure of countries on energy. In a world where consumption is increasing, energy management has become a more important and challenging issue. For this reason, it is necessary to make proper estimations that will reduce the pressure of energy demand on this issue. In order to realize the estimation of energy demand, Turkey application is carried out in this study and arithmetic optimization algorithm (AOA) which is a stochastic metaheuristic algorithm has used to for solving energy demand problem. AOA is inspired from four substantial math functions such as subtraction, multiplication, addition and division for searching process of candidate solutions. The current position update rules of AOA are not powerful enough for solving the problem dealt with this study. Therefore, an improved version of AOA named as IAOA is proposed for solving energy demand problem. In the proposed algorithm, a new position update rule is incorporated to basic AOA in order to enhanced the exploration and exploitation capability of AOA. The linear regression model is used for the estimation of the energy demand and the population, domestic product, import and export data are used in estimation process. In the proposed model, Turkey’s real data samples for the years 1979–2011 have been used, and Turkey’s long-term energy demand has been estimated for the years 2012–2030. While performing the estimation process, Turkey’s energy data of the years 1979–2011 have processed, and then Turkey’s long-term energy demand estimations are realized for three different scenarios. Firstly, the experimental results of the proposed model are analyzed, then the results are compared with different studies proposed in the literature. As a result of the comparisons, it is seen that the IAOA method has achieved better or similar results than compared methods. For this reason, it can be said that the IAOA method is competitive and successful in realizing the energy demand forecast for Turkey’s future years. [Display omitted] •A novel and alternative optimization method called IAOA is presented for solving energy demand forecasting problem.•IAOA is based on the basic AOA position update rules and a new update rule which is proposed in this study for searching process of candidate solutions.•IAOA based linear regression model has been created by using the Turkey’s GDP, population, export and import data for the period 1979–2011 years.•The experimental results of IAOA are compared with state-of-the-art​ population-based algorithms.
Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic activities increase the pressure of countries on energy. In a world where consumption is increasing, energy management has become a more important and challenging issue. For this reason, it is necessary to make proper estimations that will reduce the pressure of energy demand on this issue. In order to realize the estimation of energy demand, Turkey application is carried out in this study and arithmetic optimization algorithm (AOA) which is a stochastic metaheuristic algorithm has used to for solving energy demand problem. AOA is inspired from four substantial math functions such as subtraction, multiplication, addition and division for searching process of candidate solutions. The current position update rules of AOA are not powerful enough for solving the problem dealt with this study. Therefore, an improved version of AOA named as IAOA is proposed for solving energy demand problem. In the proposed algorithm, a new position update rule is incorporated to basic AOA in order to enhanced the exploration and exploitation capability of AOA. The linear regression model is used for the estimation of the energy demand and the population, domestic product, import and export data are used in estimation process. In the proposed model, Turkey’s real data samples for the years 1979–2011 have been used, and Turkey’s long-term energy demand has been estimated for the years 2012–2030. While performing the estimation process, Turkey’s energy data of the years 1979–2011 have processed, and then Turkey’s long-term energy demand estimations are realized for three different scenarios. Firstly, the experimental results of the proposed model are analyzed, then the results are compared with different studies proposed in the literature. As a result of the comparisons, it is seen that the IAOA method has achieved better or similar results than compared methods. For this reason, it can be said that the IAOA method is competitive and successful in realizing the energy demand forecast for Turkey’s future years.
Author Beşkirli, Mehmet
Aslan, Murat
Author_xml – sequence: 1
  givenname: Murat
  orcidid: 0000-0002-7459-3035
  surname: Aslan
  fullname: Aslan, Murat
  email: murataslan@sirnak.edu.tr
– sequence: 2
  givenname: Mehmet
  surname: Beşkirli
  fullname: Beşkirli, Mehmet
BookMark eNp9kM9qGzEQxkVwIG6SF8hJL2BX_7KrhV5KaJtAIBCSs5iVRrbc3ZXRqi7uKa-R1-uTVGs3UHrIaYZv-L6Z-X0gsyEOSMgVZ0vOePVxs8TVPi0FE2LJqkk7IXMhr8VCaVXP_unPyOU4bhhjvBFMVXJO3CNCF35BDnGg0dOnH-k77n-_vI4UB0yrPXXYw-CojwktjJn-DHlN8xpp6Lcp7tBRSEXqMQdL4zaH_i0OulU8jC7IqYduxMu_9Zw8f_3ydHO7uH_4dnfz-X5hpWJ50XKHGl3deuUlazgor7RQmpeCvGGy0d5Jq7EGWfG2lu5a-6ptpASnFNbynNwdc12Ejdmm0EPamwjBHISYVgZSObNDw1yjnKjAgpNKegdKNy3yupJQllhVsvQxy6Y4jgm9sSEf_soJQmc4MxN8szETfDPBN6yatGIV_1nfTnnX9OlowgJoFzCZ0QYcLLpQwOfyQXjP_gfSLKO5
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123631
crossref_primary_10_3390_en16114499
crossref_primary_10_1016_j_energy_2023_129640
crossref_primary_10_1016_j_heliyon_2024_e28717
crossref_primary_10_1016_j_est_2025_117996
crossref_primary_10_1016_j_energy_2024_131259
crossref_primary_10_1007_s00521_023_08769_6
crossref_primary_10_3390_en17010074
crossref_primary_10_1007_s00521_024_09567_4
crossref_primary_10_1007_s11831_023_09902_3
crossref_primary_10_1007_s11042_023_17084_0
crossref_primary_10_1016_j_apenergy_2024_123314
crossref_primary_10_55195_jscai_1401378
Cites_doi 10.1007/s12667-016-0203-y
10.1016/j.enconman.2011.08.004
10.1016/j.energy.2009.12.021
10.1016/j.enpol.2008.02.018
10.1016/j.energy.2017.01.074
10.1016/j.eneco.2010.10.001
10.1007/s00521-022-06952-9
10.5505/pajes.2020.74943
10.1016/j.enconman.2003.11.010
10.1016/j.apenergy.2010.12.005
10.1007/s12046-017-0724-7
10.1016/j.enbuild.2004.09.009
10.1080/00908310490441421
10.4316/AECE.2020.02004
10.1016/j.knosys.2012.06.009
10.1016/S0196-8904(01)00033-4
10.18201/ijisae.266082
10.1016/j.enconman.2006.03.009
10.1007/s00521-019-04155-3
10.1016/j.rser.2011.08.014
10.1016/j.procs.2017.06.011
10.1016/j.enpol.2007.01.028
10.1109/ACSAT.2015.12
10.1016/j.cma.2020.113609
10.1016/j.egyr.2021.11.103
10.1016/j.enpol.2006.02.013
10.1016/j.egyr.2020.11.154
10.18178/JOCET.2018.6.4.487
10.1016/j.enpol.2008.11.017
10.17798/bitlisfen.527899
10.1080/00908310490441520
10.1016/j.enconman.2008.02.021
10.1016/j.egyr.2021.11.108
10.1007/s00521-017-3244-9
10.1016/j.asoc.2010.07.019
10.1016/j.enpol.2006.05.009
10.1016/j.asoc.2012.12.007
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyr.2022.06.101
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2352-4847
EndPage 32
ExternalDocumentID oai_doaj_org_article_0d94d26acad343fda489be1763a8fdc4
10_1016_j_egyr_2022_06_101
S2352484722012422
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
KQ8
M41
M~E
NCXOZ
O9-
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c340t-b1de8ed7bf4f3091a4f482481f48e190398fd3c8e7a361b73d58f6b933ad44e73
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824053600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-4847
IngestDate Fri Oct 03 12:53:38 EDT 2025
Thu Nov 13 04:37:33 EST 2025
Tue Nov 18 21:30:45 EST 2025
Wed May 17 01:47:59 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Arithmetic optimization algorithm
Energy demand
Estimation
Linear regression model
Optimization
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-b1de8ed7bf4f3091a4f482481f48e190398fd3c8e7a361b73d58f6b933ad44e73
ORCID 0000-0002-7459-3035
OpenAccessLink https://doaj.org/article/0d94d26acad343fda489be1763a8fdc4
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_0d94d26acad343fda489be1763a8fdc4
crossref_citationtrail_10_1016_j_egyr_2022_06_101
crossref_primary_10_1016_j_egyr_2022_06_101
elsevier_sciencedirect_doi_10_1016_j_egyr_2022_06_101
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Energy reports
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Sadri, Ardehali, Amirnekooei (b9) 2014; 77
Özkış (b24) 2020; 26
Tefek, Uğuz (b37) 2016; 4
Ghalehkhondabi, Ardjm, Weckman, Young (b42) 2017; 8
Kankal, Akpınar, Kömürcü, Özşahin (b3) 2011; 88
Gulcu, Kodaz (b20) 2017; 111
Häfele (b5) 1974; 62
H. Uguz, H. Hakli, Ö.K. Baykan, A new algorithm based on artificial bee colony algorithm for energy demand forecasting in Turkey, in: Conference a new algorithm based on artificial bee colony algorithm for energy demand forecasting in Turkey, IEEE, pp. 56–61.
Erdogdu (b10) 2007; 35
Tefek, Arslan (b30) 2022; 34
Beşkirli, Temurtaş, Özdemir (b43) 2020; 20
Beskirli, Beskirli, Hakli, Uguz (b11) 2018; 6
Kıran, Gündüz (b21) 2013; 13
Tefek, Uğuz, Güçyetmez (b36) 2019; 31
Biçer (b16) 2018
Aslan (b44) 2021; 8
Priddle (b2) 2002
Azadeh, Ghaderi, Tarverdian, Saberi (b40) 2007; 186
Bilgen, Kaygusuz, Sari (b1) 2004; 26
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b34) 2021; 376
Kıran, Özceylan, Gündüz, Paksoy (b23) 2012; 36
Bulut, Yıldız (b35) 2016; 29
Dilaver, Hunt (b13) 2011; 33
Suganthi, Samuel (b38) 2012; 16
Ediger, Tatlıdil (b4) 2002; 43
Beşkirli, Tefek, Harun (b12) 2019; 8
Toksarı (b25) 2007; 35
Beşkirli, Dağ (b31) 2022; 8
Azadeh, Saberi, Ghaderi, Gitiforouz, Ebrahimipour (b6) 2008; 49
Canyurt, Öztürk (b7) 2006; 47
Toksarı (b26) 2009; 37
Ünler (b28) 2008; 36
Dong, Cao, Lee (b39) 2005; 37
Kıran, Özceylan, Gündüz, Paksoy (b22) 2012; 53
Ceylan, Ozturk (b19) 2004; 45
Beşkirli (b29) 2022; 8
Beşkirli, Özdemir, Temurtaş (b33) 2020; 32
Ediger, Akar (b14) 2007; 35
Zou, Gao, Li, Wu (b45) 2011; 11
Sonmez, Akgüngör, Bektaş (b8) 2017; 122
Es, Kalender Öksüz, Hamzacebi (b17) 2014; 29
Beşkirli, Dağ (b32) 2020; 6
Beskirli, Hakli, Kodaz (b18) 2017; 42
Kumar, Jain (b41) 2010; 35
Yumurtaci, Asmaz (b15) 2004; 26
Koc, Nureddin, Kahramanlı (b46) 2018; 6
Kankal (10.1016/j.egyr.2022.06.101_b3) 2011; 88
Sonmez (10.1016/j.egyr.2022.06.101_b8) 2017; 122
Kıran (10.1016/j.egyr.2022.06.101_b21) 2013; 13
Tefek (10.1016/j.egyr.2022.06.101_b36) 2019; 31
Suganthi (10.1016/j.egyr.2022.06.101_b38) 2012; 16
Beskirli (10.1016/j.egyr.2022.06.101_b18) 2017; 42
Beşkirli (10.1016/j.egyr.2022.06.101_b43) 2020; 20
Ghalehkhondabi (10.1016/j.egyr.2022.06.101_b42) 2017; 8
Ünler (10.1016/j.egyr.2022.06.101_b28) 2008; 36
Azadeh (10.1016/j.egyr.2022.06.101_b40) 2007; 186
Sadri (10.1016/j.egyr.2022.06.101_b9) 2014; 77
Kıran (10.1016/j.egyr.2022.06.101_b23) 2012; 36
Tefek (10.1016/j.egyr.2022.06.101_b37) 2016; 4
Ceylan (10.1016/j.egyr.2022.06.101_b19) 2004; 45
Erdogdu (10.1016/j.egyr.2022.06.101_b10) 2007; 35
Toksarı (10.1016/j.egyr.2022.06.101_b26) 2009; 37
Dilaver (10.1016/j.egyr.2022.06.101_b13) 2011; 33
Es (10.1016/j.egyr.2022.06.101_b17) 2014; 29
Koc (10.1016/j.egyr.2022.06.101_b46) 2018; 6
Canyurt (10.1016/j.egyr.2022.06.101_b7) 2006; 47
Aslan (10.1016/j.egyr.2022.06.101_b44) 2021; 8
Abualigah (10.1016/j.egyr.2022.06.101_b34) 2021; 376
Kıran (10.1016/j.egyr.2022.06.101_b22) 2012; 53
Toksarı (10.1016/j.egyr.2022.06.101_b25) 2007; 35
Azadeh (10.1016/j.egyr.2022.06.101_b6) 2008; 49
Biçer (10.1016/j.egyr.2022.06.101_b16) 2018
Beşkirli (10.1016/j.egyr.2022.06.101_b12) 2019; 8
Yumurtaci (10.1016/j.egyr.2022.06.101_b15) 2004; 26
10.1016/j.egyr.2022.06.101_b27
Beşkirli (10.1016/j.egyr.2022.06.101_b31) 2022; 8
Bilgen (10.1016/j.egyr.2022.06.101_b1) 2004; 26
Özkış (10.1016/j.egyr.2022.06.101_b24) 2020; 26
Tefek (10.1016/j.egyr.2022.06.101_b30) 2022; 34
Zou (10.1016/j.egyr.2022.06.101_b45) 2011; 11
Ediger (10.1016/j.egyr.2022.06.101_b4) 2002; 43
Kumar (10.1016/j.egyr.2022.06.101_b41) 2010; 35
Beskirli (10.1016/j.egyr.2022.06.101_b11) 2018; 6
Bulut (10.1016/j.egyr.2022.06.101_b35) 2016; 29
Beşkirli (10.1016/j.egyr.2022.06.101_b29) 2022; 8
Priddle (10.1016/j.egyr.2022.06.101_b2) 2002
Häfele (10.1016/j.egyr.2022.06.101_b5) 1974; 62
Gulcu (10.1016/j.egyr.2022.06.101_b20) 2017; 111
Beşkirli (10.1016/j.egyr.2022.06.101_b33) 2020; 32
Beşkirli (10.1016/j.egyr.2022.06.101_b32) 2020; 6
Dong (10.1016/j.egyr.2022.06.101_b39) 2005; 37
Ediger (10.1016/j.egyr.2022.06.101_b14) 2007; 35
References_xml – volume: 88
  start-page: 1927
  year: 2011
  end-page: 1939
  ident: b3
  article-title: Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables
  publication-title: Appl Energy
– volume: 35
  start-page: 1129
  year: 2007
  end-page: 1146
  ident: b10
  article-title: Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey
  publication-title: Energy Policy
– year: 2002
  ident: b2
  article-title: World energy outlook 2002
– volume: 42
  start-page: 1705
  year: 2017
  end-page: 1715
  ident: b18
  article-title: The energy demand estimation for Turkey using differential evolution algorithm
  publication-title: Sādhanā
– volume: 13
  start-page: 2188
  year: 2013
  end-page: 2203
  ident: b21
  article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems
  publication-title: Appl Soft Comput
– volume: 35
  start-page: 3984
  year: 2007
  end-page: 3990
  ident: b25
  article-title: Ant colony optimization approach to estimate energy demand of Turkey
  publication-title: Energy Policy
– volume: 8
  start-page: 291
  year: 2022
  end-page: 298
  ident: b31
  article-title: An efficient tree seed inspired algorithm for parameter estimation of photovoltaic models
  publication-title: Energy Rep
– volume: 376
  year: 2021
  ident: b34
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Engrg
– volume: 8
  start-page: 34
  year: 2021
  end-page: 46
  ident: b44
  article-title: Türkiye’nin enerji talebini tahmin etmek için tulumlular sürü algoritmasina dayalıbir uygulama
  publication-title: Adıyaman Üniv Mühendislik Bilimleri Dergisi
– volume: 47
  start-page: 3138
  year: 2006
  end-page: 3148
  ident: b7
  article-title: Three different applications of genetic algorithm (GA) search techniques on oil demand estimation
  publication-title: Energy Convers Manage
– volume: 37
  start-page: 545
  year: 2005
  end-page: 553
  ident: b39
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build
– volume: 35
  start-page: 1701
  year: 2007
  end-page: 1708
  ident: b14
  article-title: ARIMA forecasting of primary energy demand by fuel in Turkey
  publication-title: Energy Policy
– volume: 29
  start-page: 237
  year: 2016
  end-page: 244
  ident: b35
  article-title: Comparing energy demand estimation using various statistical methods: the case of Turkey
  publication-title: Gazi Univ J Sci
– volume: 6
  start-page: 529
  year: 2018
  end-page: 543
  ident: b46
  article-title: Türkiye’de enerji talebini tahmin etmek için doğrusal form kullanarak gsa (yerçekimi arama algoritmasi) ve iwo (yabani ot optimizasyon algoritmasi) tekniklerinin uygulanmasi
  publication-title: Selçuk Üniv. Mühendislik, Bilim ve Teknoloji Dergisi
– volume: 26
  start-page: 1157
  year: 2004
  end-page: 1164
  ident: b15
  article-title: Electric energy demand of Turkey for the year 2050
  publication-title: Energy Sources
– volume: 4
  start-page: 48
  year: 2016
  end-page: 52
  ident: b37
  article-title: Estimation of Turkey electric energy demand until year 2035 using TLBO algorithm
  publication-title: Int J Intell Syst Appl Eng
– volume: 8
  start-page: 1102
  year: 2022
  end-page: 1111
  ident: b29
  article-title: A novel invasive weed optimization with levy flight for optimization problems: The case of forecasting energy demand
  publication-title: Energy Rep
– volume: 34
  start-page: 5367
  year: 2022
  end-page: 5381
  ident: b30
  article-title: Highway accident number estimation in Turkey with jaya algorithm
  publication-title: Neural Comput Appl
– year: 2018
  ident: b16
  article-title: Enerji talep tahminine yönelik program geliştirme ve bir bölge i̇çin uygulaması
– volume: 26
  start-page: 1119
  year: 2004
  end-page: 1129
  ident: b1
  article-title: Renewable energy for a clean and sustainable future
  publication-title: Energy Sources
– volume: 11
  start-page: 1556
  year: 2011
  end-page: 1564
  ident: b45
  article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm
  publication-title: Appl Soft Comput
– volume: 53
  start-page: 75
  year: 2012
  end-page: 83
  ident: b22
  article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey
  publication-title: Energy Convers Manage
– volume: 20
  start-page: 27
  year: 2020
  end-page: 34
  ident: b43
  article-title: Determination with linear form of Turkey’s energy demand forecasting by the tree seed algorithm and the modified tree seed algorithm
  publication-title: Adv Electr Comput Eng
– volume: 77
  start-page: 831
  year: 2014
  end-page: 843
  ident: b9
  article-title: General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN
  publication-title: Energy Convers Manage
– volume: 36
  start-page: 93
  year: 2012
  end-page: 103
  ident: b23
  article-title: Swarm intelligence approaches to estimate electricity energy demand in Turkey
  publication-title: Knowl-Based Syst
– volume: 62
  start-page: 438
  year: 1974
  end-page: 447
  ident: b5
  article-title: A systems approach to energy: Handling large amounts of energy in a way that is safe, clean, cheap, and efficient is a more serious long-range problem than producing an adequate fuel supply
  publication-title: Amer Sci
– volume: 122
  start-page: 301
  year: 2017
  end-page: 310
  ident: b8
  article-title: Estimating transportation energy demand in Turkey using the artificial bee colony algorithm
  publication-title: Energy
– volume: 37
  start-page: 1181
  year: 2009
  end-page: 1187
  ident: b26
  article-title: Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey
  publication-title: Energy Policy
– volume: 49
  start-page: 2165
  year: 2008
  end-page: 2177
  ident: b6
  article-title: Improved estimation of electricity demand function by integration of fuzzy system and data mining approach
  publication-title: Energy Convers Manage
– volume: 32
  start-page: 6877
  year: 2020
  end-page: 6911
  ident: b33
  article-title: A comparison of modified tree–seed algorithm for high-dimensional numerical functions
  publication-title: Neural Comput Appl
– volume: 6
  start-page: 668
  year: 2020
  end-page: 673
  ident: b32
  article-title: A new binary variant with transfer functions of harris hawks optimization for binary wind turbine micrositing
  publication-title: Energy Rep
– volume: 186
  start-page: 1731
  year: 2007
  end-page: 1741
  ident: b40
  article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
  publication-title: Appl Math Comput
– volume: 35
  start-page: 1709
  year: 2010
  end-page: 1716
  ident: b41
  article-title: Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India
  publication-title: Energy
– volume: 43
  start-page: 473
  year: 2002
  end-page: 487
  ident: b4
  article-title: Forecasting the primary energy demand in Turkey and analysis of cyclic patterns
  publication-title: Energy Convers Manage
– volume: 45
  start-page: 2525
  year: 2004
  end-page: 2537
  ident: b19
  article-title: Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach
  publication-title: Energy Convers Manage
– reference: H. Uguz, H. Hakli, Ö.K. Baykan, A new algorithm based on artificial bee colony algorithm for energy demand forecasting in Turkey, in: Conference a new algorithm based on artificial bee colony algorithm for energy demand forecasting in Turkey, IEEE, pp. 56–61.
– volume: 31
  start-page: 2939
  year: 2019
  end-page: 2954
  ident: b36
  article-title: A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey
  publication-title: Neural Comput Appl
– volume: 111
  start-page: 64
  year: 2017
  end-page: 70
  ident: b20
  article-title: The estimation of the electricity energy demand using particle swarm optimization algorithm: A case study of Turkey
  publication-title: Procedia Comput Sci
– volume: 36
  start-page: 1937
  year: 2008
  end-page: 1944
  ident: b28
  article-title: Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025
  publication-title: Energy Policy
– volume: 16
  start-page: 1223
  year: 2012
  end-page: 1240
  ident: b38
  article-title: Energy models for demand forecasting—A review
  publication-title: Renew Sustain Energy Rev
– volume: 26
  start-page: 959
  year: 2020
  end-page: 965
  ident: b24
  article-title: A new model based on vortex search algorithm for estimating energy demand of Turkey
  publication-title: Pamukkale Univ J Eng Sci
– volume: 29
  year: 2014
  ident: b17
  article-title: Forecasting the net energy demand of Turkey by artificial neural networks
  publication-title: J Faculty Eng Archit Gazi Univ
– volume: 6
  start-page: 349
  year: 2018
  end-page: 352
  ident: b11
  article-title: Comparing energy demand estimation using artificial algae algorithm: The case of Turkey
  publication-title: J Clean Energy Technol
– volume: 33
  start-page: 426
  year: 2011
  end-page: 436
  ident: b13
  article-title: Industrial electricity demand for Turkey: a structural time series analysis
  publication-title: Energy Econ
– volume: 8
  start-page: 411
  year: 2017
  end-page: 447
  ident: b42
  article-title: An overview of energy demand forecasting methods published in 2005–2015
  publication-title: Energy Syst
– volume: 8
  start-page: 1338
  year: 2019
  end-page: 1348
  ident: b12
  article-title: Modified gravitational search algorithm for energy demand estimation of Turkey
  publication-title: Bitlis Eren Üniv Bilimleri Dergisi
– volume: 8
  start-page: 411
  issue: 2
  year: 2017
  ident: 10.1016/j.egyr.2022.06.101_b42
  article-title: An overview of energy demand forecasting methods published in 2005–2015
  publication-title: Energy Syst
  doi: 10.1007/s12667-016-0203-y
– volume: 53
  start-page: 75
  issue: 1
  year: 2012
  ident: 10.1016/j.egyr.2022.06.101_b22
  article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2011.08.004
– volume: 35
  start-page: 1709
  issue: 4
  year: 2010
  ident: 10.1016/j.egyr.2022.06.101_b41
  article-title: Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.021
– volume: 36
  start-page: 1937
  issue: 6
  year: 2008
  ident: 10.1016/j.egyr.2022.06.101_b28
  article-title: Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.02.018
– volume: 122
  start-page: 301
  year: 2017
  ident: 10.1016/j.egyr.2022.06.101_b8
  article-title: Estimating transportation energy demand in Turkey using the artificial bee colony algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.074
– year: 2002
  ident: 10.1016/j.egyr.2022.06.101_b2
– volume: 33
  start-page: 426
  issue: 3
  year: 2011
  ident: 10.1016/j.egyr.2022.06.101_b13
  article-title: Industrial electricity demand for Turkey: a structural time series analysis
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2010.10.001
– volume: 34
  start-page: 5367
  issue: 7
  year: 2022
  ident: 10.1016/j.egyr.2022.06.101_b30
  article-title: Highway accident number estimation in Turkey with jaya algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-06952-9
– volume: 26
  start-page: 959
  issue: 5
  year: 2020
  ident: 10.1016/j.egyr.2022.06.101_b24
  article-title: A new model based on vortex search algorithm for estimating energy demand of Turkey
  publication-title: Pamukkale Univ J Eng Sci
  doi: 10.5505/pajes.2020.74943
– volume: 45
  start-page: 2525
  issue: 15–16
  year: 2004
  ident: 10.1016/j.egyr.2022.06.101_b19
  article-title: Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2003.11.010
– volume: 88
  start-page: 1927
  issue: 5
  year: 2011
  ident: 10.1016/j.egyr.2022.06.101_b3
  article-title: Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.12.005
– volume: 62
  start-page: 438
  issue: 4
  year: 1974
  ident: 10.1016/j.egyr.2022.06.101_b5
  article-title: A systems approach to energy: Handling large amounts of energy in a way that is safe, clean, cheap, and efficient is a more serious long-range problem than producing an adequate fuel supply
  publication-title: Amer Sci
– volume: 6
  start-page: 529
  issue: 4
  year: 2018
  ident: 10.1016/j.egyr.2022.06.101_b46
  article-title: Türkiye’de enerji talebini tahmin etmek için doğrusal form kullanarak gsa (yerçekimi arama algoritmasi) ve iwo (yabani ot optimizasyon algoritmasi) tekniklerinin uygulanmasi
  publication-title: Selçuk Üniv. Mühendislik, Bilim ve Teknoloji Dergisi
– volume: 42
  start-page: 1705
  issue: 10
  year: 2017
  ident: 10.1016/j.egyr.2022.06.101_b18
  article-title: The energy demand estimation for Turkey using differential evolution algorithm
  publication-title: Sādhanā
  doi: 10.1007/s12046-017-0724-7
– volume: 77
  start-page: 831
  year: 2014
  ident: 10.1016/j.egyr.2022.06.101_b9
  article-title: General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN
  publication-title: Energy Convers Manage
– volume: 37
  start-page: 545
  issue: 5
  year: 2005
  ident: 10.1016/j.egyr.2022.06.101_b39
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2004.09.009
– volume: 26
  start-page: 1119
  issue: 12
  year: 2004
  ident: 10.1016/j.egyr.2022.06.101_b1
  article-title: Renewable energy for a clean and sustainable future
  publication-title: Energy Sources
  doi: 10.1080/00908310490441421
– volume: 20
  start-page: 27
  issue: 2
  year: 2020
  ident: 10.1016/j.egyr.2022.06.101_b43
  article-title: Determination with linear form of Turkey’s energy demand forecasting by the tree seed algorithm and the modified tree seed algorithm
  publication-title: Adv Electr Comput Eng
  doi: 10.4316/AECE.2020.02004
– volume: 36
  start-page: 93
  year: 2012
  ident: 10.1016/j.egyr.2022.06.101_b23
  article-title: Swarm intelligence approaches to estimate electricity energy demand in Turkey
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2012.06.009
– volume: 43
  start-page: 473
  issue: 4
  year: 2002
  ident: 10.1016/j.egyr.2022.06.101_b4
  article-title: Forecasting the primary energy demand in Turkey and analysis of cyclic patterns
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(01)00033-4
– volume: 4
  start-page: 48
  issue: Special Issue-1
  year: 2016
  ident: 10.1016/j.egyr.2022.06.101_b37
  article-title: Estimation of Turkey electric energy demand until year 2035 using TLBO algorithm
  publication-title: Int J Intell Syst Appl Eng
  doi: 10.18201/ijisae.266082
– volume: 47
  start-page: 3138
  issue: 18–19
  year: 2006
  ident: 10.1016/j.egyr.2022.06.101_b7
  article-title: Three different applications of genetic algorithm (GA) search techniques on oil demand estimation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2006.03.009
– volume: 32
  start-page: 6877
  issue: 11
  year: 2020
  ident: 10.1016/j.egyr.2022.06.101_b33
  article-title: A comparison of modified tree–seed algorithm for high-dimensional numerical functions
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04155-3
– volume: 16
  start-page: 1223
  issue: 2
  year: 2012
  ident: 10.1016/j.egyr.2022.06.101_b38
  article-title: Energy models for demand forecasting—A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.08.014
– volume: 8
  start-page: 34
  issue: 14
  year: 2021
  ident: 10.1016/j.egyr.2022.06.101_b44
  article-title: Türkiye’nin enerji talebini tahmin etmek için tulumlular sürü algoritmasina dayalıbir uygulama
  publication-title: Adıyaman Üniv Mühendislik Bilimleri Dergisi
– volume: 111
  start-page: 64
  year: 2017
  ident: 10.1016/j.egyr.2022.06.101_b20
  article-title: The estimation of the electricity energy demand using particle swarm optimization algorithm: A case study of Turkey
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.06.011
– volume: 35
  start-page: 3984
  issue: 8
  year: 2007
  ident: 10.1016/j.egyr.2022.06.101_b25
  article-title: Ant colony optimization approach to estimate energy demand of Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.01.028
– ident: 10.1016/j.egyr.2022.06.101_b27
  doi: 10.1109/ACSAT.2015.12
– volume: 376
  year: 2021
  ident: 10.1016/j.egyr.2022.06.101_b34
  article-title: The arithmetic optimization algorithm
  publication-title: Comput Methods Appl Mech Engrg
  doi: 10.1016/j.cma.2020.113609
– volume: 8
  start-page: 291
  year: 2022
  ident: 10.1016/j.egyr.2022.06.101_b31
  article-title: An efficient tree seed inspired algorithm for parameter estimation of photovoltaic models
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.11.103
– volume: 35
  start-page: 1129
  issue: 2
  year: 2007
  ident: 10.1016/j.egyr.2022.06.101_b10
  article-title: Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.02.013
– volume: 6
  start-page: 668
  year: 2020
  ident: 10.1016/j.egyr.2022.06.101_b32
  article-title: A new binary variant with transfer functions of harris hawks optimization for binary wind turbine micrositing
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2020.11.154
– volume: 6
  start-page: 349
  issue: 4
  year: 2018
  ident: 10.1016/j.egyr.2022.06.101_b11
  article-title: Comparing energy demand estimation using artificial algae algorithm: The case of Turkey
  publication-title: J Clean Energy Technol
  doi: 10.18178/JOCET.2018.6.4.487
– volume: 37
  start-page: 1181
  issue: 3
  year: 2009
  ident: 10.1016/j.egyr.2022.06.101_b26
  article-title: Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.11.017
– volume: 29
  start-page: 237
  issue: 2
  year: 2016
  ident: 10.1016/j.egyr.2022.06.101_b35
  article-title: Comparing energy demand estimation using various statistical methods: the case of Turkey
  publication-title: Gazi Univ J Sci
– volume: 8
  start-page: 1338
  issue: 4
  year: 2019
  ident: 10.1016/j.egyr.2022.06.101_b12
  article-title: Modified gravitational search algorithm for energy demand estimation of Turkey
  publication-title: Bitlis Eren Üniv Bilimleri Dergisi
  doi: 10.17798/bitlisfen.527899
– volume: 26
  start-page: 1157
  issue: 12
  year: 2004
  ident: 10.1016/j.egyr.2022.06.101_b15
  article-title: Electric energy demand of Turkey for the year 2050
  publication-title: Energy Sources
  doi: 10.1080/00908310490441520
– volume: 49
  start-page: 2165
  issue: 8
  year: 2008
  ident: 10.1016/j.egyr.2022.06.101_b6
  article-title: Improved estimation of electricity demand function by integration of fuzzy system and data mining approach
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.02.021
– year: 2018
  ident: 10.1016/j.egyr.2022.06.101_b16
– volume: 8
  start-page: 1102
  year: 2022
  ident: 10.1016/j.egyr.2022.06.101_b29
  article-title: A novel invasive weed optimization with levy flight for optimization problems: The case of forecasting energy demand
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.11.108
– volume: 31
  start-page: 2939
  issue: 7
  year: 2019
  ident: 10.1016/j.egyr.2022.06.101_b36
  article-title: A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3244-9
– volume: 11
  start-page: 1556
  issue: 2
  year: 2011
  ident: 10.1016/j.egyr.2022.06.101_b45
  article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.07.019
– volume: 35
  start-page: 1701
  issue: 3
  year: 2007
  ident: 10.1016/j.egyr.2022.06.101_b14
  article-title: ARIMA forecasting of primary energy demand by fuel in Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.05.009
– volume: 29
  issue: 3
  year: 2014
  ident: 10.1016/j.egyr.2022.06.101_b17
  article-title: Forecasting the net energy demand of Turkey by artificial neural networks
  publication-title: J Faculty Eng Archit Gazi Univ
– volume: 13
  start-page: 2188
  issue: 4
  year: 2013
  ident: 10.1016/j.egyr.2022.06.101_b21
  article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.12.007
– volume: 186
  start-page: 1731
  issue: 2
  year: 2007
  ident: 10.1016/j.egyr.2022.06.101_b40
  article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
  publication-title: Appl Math Comput
SSID ssj0001920463
Score 2.3035278
Snippet Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms Arithmetic optimization algorithm
Energy demand
Estimation
Linear regression model
Optimization
Title Realization of Turkey’s energy demand forecast with the improved arithmetic optimization algorithm
URI https://dx.doi.org/10.1016/j.egyr.2022.06.101
https://doaj.org/article/0d94d26acad343fda489be1763a8fdc4
Volume 8
WOSCitedRecordID wos000824053600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2352-4847
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001920463
  issn: 2352-4847
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA4iHryIouL6Rw7epNg22TY5quziRRFZwVtJMomuuK3sdgUv4mv4ej6Jk7Rd9qQXLy2k6aRMJ5lvQuYbQk6Y5kob04-Uy2TEIdWRZE5HuXMMRKZ4mkAoNpHf3IiHB3m7VOrLnwlr6IEbxZ3FIFFCpowCxpkDxYXUNsFpoYQDE5hA41wuBVPPDW7xVFihslw_jTiuwW3GTHO4yz6-ezLQNPXknUlbEabzSoG8f8k5LTmc4SbZaJEiPW--cIus2HKbwB0CuzZ1klaOjuZTnIXfn18zakMWHwU7USVQxKLWqFlN_UYrRZRHx2H7wALF6Lh-mvjkRVrhgjHpxKmXxyo82iH3w8Ho8ipqCyVEhvG4jnQCVljIteOOIQBQ3HGRcpHgzaLHZxJVxYywuWJZonMGfeEyLRlTwLnN2S5ZLavS7hEKOCklF2Blojm6bxFrjL0FBjpWea6yHkk6RRWmZRH3xSxeiu642HPhlVt45RZx5tt65HTxzmvDofFr7wuv_0VPz38dGtAqitYqir-sokf63d8rWijRQAQUNf5l8P3_GPyArHuRTcbiIVmtp3N7RNbMWz2eTY-DoeL1-mPwA0I28WY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+Turkey%E2%80%99s+energy+demand+forecast+with+the+improved+arithmetic+optimization+algorithm&rft.jtitle=Energy+reports&rft.au=Aslan%2C+Murat&rft.au=Be%C5%9Fkirli%2C+Mehmet&rft.date=2022-11-01&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=18&rft.epage=32&rft_id=info:doi/10.1016%2Fj.egyr.2022.06.101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_egyr_2022_06_101
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon