Realization of Turkey’s energy demand forecast with the improved arithmetic optimization algorithm
Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic activities increase the pressure of countries on energy. In a world where consumption is increasing, energy management has become a more important and...
Uloženo v:
| Vydáno v: | Energy reports Ročník 8; s. 18 - 32 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2022
Elsevier |
| Témata: | |
| ISSN: | 2352-4847, 2352-4847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic activities increase the pressure of countries on energy. In a world where consumption is increasing, energy management has become a more important and challenging issue. For this reason, it is necessary to make proper estimations that will reduce the pressure of energy demand on this issue. In order to realize the estimation of energy demand, Turkey application is carried out in this study and arithmetic optimization algorithm (AOA) which is a stochastic metaheuristic algorithm has used to for solving energy demand problem. AOA is inspired from four substantial math functions such as subtraction, multiplication, addition and division for searching process of candidate solutions. The current position update rules of AOA are not powerful enough for solving the problem dealt with this study. Therefore, an improved version of AOA named as IAOA is proposed for solving energy demand problem. In the proposed algorithm, a new position update rule is incorporated to basic AOA in order to enhanced the exploration and exploitation capability of AOA. The linear regression model is used for the estimation of the energy demand and the population, domestic product, import and export data are used in estimation process. In the proposed model, Turkey’s real data samples for the years 1979–2011 have been used, and Turkey’s long-term energy demand has been estimated for the years 2012–2030. While performing the estimation process, Turkey’s energy data of the years 1979–2011 have processed, and then Turkey’s long-term energy demand estimations are realized for three different scenarios. Firstly, the experimental results of the proposed model are analyzed, then the results are compared with different studies proposed in the literature. As a result of the comparisons, it is seen that the IAOA method has achieved better or similar results than compared methods. For this reason, it can be said that the IAOA method is competitive and successful in realizing the energy demand forecast for Turkey’s future years.
[Display omitted]
•A novel and alternative optimization method called IAOA is presented for solving energy demand forecasting problem.•IAOA is based on the basic AOA position update rules and a new update rule which is proposed in this study for searching process of candidate solutions.•IAOA based linear regression model has been created by using the Turkey’s GDP, population, export and import data for the period 1979–2011 years.•The experimental results of IAOA are compared with state-of-the-art population-based algorithms. |
|---|---|
| AbstractList | Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic activities increase the pressure of countries on energy. In a world where consumption is increasing, energy management has become a more important and challenging issue. For this reason, it is necessary to make proper estimations that will reduce the pressure of energy demand on this issue. In order to realize the estimation of energy demand, Turkey application is carried out in this study and arithmetic optimization algorithm (AOA) which is a stochastic metaheuristic algorithm has used to for solving energy demand problem. AOA is inspired from four substantial math functions such as subtraction, multiplication, addition and division for searching process of candidate solutions. The current position update rules of AOA are not powerful enough for solving the problem dealt with this study. Therefore, an improved version of AOA named as IAOA is proposed for solving energy demand problem. In the proposed algorithm, a new position update rule is incorporated to basic AOA in order to enhanced the exploration and exploitation capability of AOA. The linear regression model is used for the estimation of the energy demand and the population, domestic product, import and export data are used in estimation process. In the proposed model, Turkey’s real data samples for the years 1979–2011 have been used, and Turkey’s long-term energy demand has been estimated for the years 2012–2030. While performing the estimation process, Turkey’s energy data of the years 1979–2011 have processed, and then Turkey’s long-term energy demand estimations are realized for three different scenarios. Firstly, the experimental results of the proposed model are analyzed, then the results are compared with different studies proposed in the literature. As a result of the comparisons, it is seen that the IAOA method has achieved better or similar results than compared methods. For this reason, it can be said that the IAOA method is competitive and successful in realizing the energy demand forecast for Turkey’s future years.
[Display omitted]
•A novel and alternative optimization method called IAOA is presented for solving energy demand forecasting problem.•IAOA is based on the basic AOA position update rules and a new update rule which is proposed in this study for searching process of candidate solutions.•IAOA based linear regression model has been created by using the Turkey’s GDP, population, export and import data for the period 1979–2011 years.•The experimental results of IAOA are compared with state-of-the-art population-based algorithms. Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic activities increase the pressure of countries on energy. In a world where consumption is increasing, energy management has become a more important and challenging issue. For this reason, it is necessary to make proper estimations that will reduce the pressure of energy demand on this issue. In order to realize the estimation of energy demand, Turkey application is carried out in this study and arithmetic optimization algorithm (AOA) which is a stochastic metaheuristic algorithm has used to for solving energy demand problem. AOA is inspired from four substantial math functions such as subtraction, multiplication, addition and division for searching process of candidate solutions. The current position update rules of AOA are not powerful enough for solving the problem dealt with this study. Therefore, an improved version of AOA named as IAOA is proposed for solving energy demand problem. In the proposed algorithm, a new position update rule is incorporated to basic AOA in order to enhanced the exploration and exploitation capability of AOA. The linear regression model is used for the estimation of the energy demand and the population, domestic product, import and export data are used in estimation process. In the proposed model, Turkey’s real data samples for the years 1979–2011 have been used, and Turkey’s long-term energy demand has been estimated for the years 2012–2030. While performing the estimation process, Turkey’s energy data of the years 1979–2011 have processed, and then Turkey’s long-term energy demand estimations are realized for three different scenarios. Firstly, the experimental results of the proposed model are analyzed, then the results are compared with different studies proposed in the literature. As a result of the comparisons, it is seen that the IAOA method has achieved better or similar results than compared methods. For this reason, it can be said that the IAOA method is competitive and successful in realizing the energy demand forecast for Turkey’s future years. |
| Author | Beşkirli, Mehmet Aslan, Murat |
| Author_xml | – sequence: 1 givenname: Murat orcidid: 0000-0002-7459-3035 surname: Aslan fullname: Aslan, Murat email: murataslan@sirnak.edu.tr – sequence: 2 givenname: Mehmet surname: Beşkirli fullname: Beşkirli, Mehmet |
| BookMark | eNp9kM9qGzEQxkVwIG6SF8hJL2BX_7KrhV5KaJtAIBCSs5iVRrbc3ZXRqi7uKa-R1-uTVGs3UHrIaYZv-L6Z-X0gsyEOSMgVZ0vOePVxs8TVPi0FE2LJqkk7IXMhr8VCaVXP_unPyOU4bhhjvBFMVXJO3CNCF35BDnGg0dOnH-k77n-_vI4UB0yrPXXYw-CojwktjJn-DHlN8xpp6Lcp7tBRSEXqMQdL4zaH_i0OulU8jC7IqYduxMu_9Zw8f_3ydHO7uH_4dnfz-X5hpWJ50XKHGl3deuUlazgor7RQmpeCvGGy0d5Jq7EGWfG2lu5a-6ptpASnFNbynNwdc12Ejdmm0EPamwjBHISYVgZSObNDw1yjnKjAgpNKegdKNy3yupJQllhVsvQxy6Y4jgm9sSEf_soJQmc4MxN8szETfDPBN6yatGIV_1nfTnnX9OlowgJoFzCZ0QYcLLpQwOfyQXjP_gfSLKO5 |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123631 crossref_primary_10_3390_en16114499 crossref_primary_10_1016_j_energy_2023_129640 crossref_primary_10_1016_j_heliyon_2024_e28717 crossref_primary_10_1016_j_est_2025_117996 crossref_primary_10_1016_j_energy_2024_131259 crossref_primary_10_1007_s00521_023_08769_6 crossref_primary_10_3390_en17010074 crossref_primary_10_1007_s00521_024_09567_4 crossref_primary_10_1007_s11831_023_09902_3 crossref_primary_10_1007_s11042_023_17084_0 crossref_primary_10_1016_j_apenergy_2024_123314 crossref_primary_10_55195_jscai_1401378 |
| Cites_doi | 10.1007/s12667-016-0203-y 10.1016/j.enconman.2011.08.004 10.1016/j.energy.2009.12.021 10.1016/j.enpol.2008.02.018 10.1016/j.energy.2017.01.074 10.1016/j.eneco.2010.10.001 10.1007/s00521-022-06952-9 10.5505/pajes.2020.74943 10.1016/j.enconman.2003.11.010 10.1016/j.apenergy.2010.12.005 10.1007/s12046-017-0724-7 10.1016/j.enbuild.2004.09.009 10.1080/00908310490441421 10.4316/AECE.2020.02004 10.1016/j.knosys.2012.06.009 10.1016/S0196-8904(01)00033-4 10.18201/ijisae.266082 10.1016/j.enconman.2006.03.009 10.1007/s00521-019-04155-3 10.1016/j.rser.2011.08.014 10.1016/j.procs.2017.06.011 10.1016/j.enpol.2007.01.028 10.1109/ACSAT.2015.12 10.1016/j.cma.2020.113609 10.1016/j.egyr.2021.11.103 10.1016/j.enpol.2006.02.013 10.1016/j.egyr.2020.11.154 10.18178/JOCET.2018.6.4.487 10.1016/j.enpol.2008.11.017 10.17798/bitlisfen.527899 10.1080/00908310490441520 10.1016/j.enconman.2008.02.021 10.1016/j.egyr.2021.11.108 10.1007/s00521-017-3244-9 10.1016/j.asoc.2010.07.019 10.1016/j.enpol.2006.05.009 10.1016/j.asoc.2012.12.007 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.egyr.2022.06.101 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2352-4847 |
| EndPage | 32 |
| ExternalDocumentID | oai_doaj_org_article_0d94d26acad343fda489be1763a8fdc4 10_1016_j_egyr_2022_06_101 S2352484722012422 |
| GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ KQ8 M41 M~E NCXOZ O9- OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c340t-b1de8ed7bf4f3091a4f482481f48e190398fd3c8e7a361b73d58f6b933ad44e73 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824053600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-4847 |
| IngestDate | Fri Oct 03 12:53:38 EDT 2025 Thu Nov 13 04:37:33 EST 2025 Tue Nov 18 21:30:45 EST 2025 Wed May 17 01:47:59 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Arithmetic optimization algorithm Energy demand Estimation Linear regression model Optimization |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-b1de8ed7bf4f3091a4f482481f48e190398fd3c8e7a361b73d58f6b933ad44e73 |
| ORCID | 0000-0002-7459-3035 |
| OpenAccessLink | https://doaj.org/article/0d94d26acad343fda489be1763a8fdc4 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0d94d26acad343fda489be1763a8fdc4 crossref_citationtrail_10_1016_j_egyr_2022_06_101 crossref_primary_10_1016_j_egyr_2022_06_101 elsevier_sciencedirect_doi_10_1016_j_egyr_2022_06_101 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy reports |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Sadri, Ardehali, Amirnekooei (b9) 2014; 77 Özkış (b24) 2020; 26 Tefek, Uğuz (b37) 2016; 4 Ghalehkhondabi, Ardjm, Weckman, Young (b42) 2017; 8 Kankal, Akpınar, Kömürcü, Özşahin (b3) 2011; 88 Gulcu, Kodaz (b20) 2017; 111 Häfele (b5) 1974; 62 H. Uguz, H. Hakli, Ö.K. Baykan, A new algorithm based on artificial bee colony algorithm for energy demand forecasting in Turkey, in: Conference a new algorithm based on artificial bee colony algorithm for energy demand forecasting in Turkey, IEEE, pp. 56–61. Erdogdu (b10) 2007; 35 Tefek, Arslan (b30) 2022; 34 Beşkirli, Temurtaş, Özdemir (b43) 2020; 20 Beskirli, Beskirli, Hakli, Uguz (b11) 2018; 6 Kıran, Gündüz (b21) 2013; 13 Tefek, Uğuz, Güçyetmez (b36) 2019; 31 Biçer (b16) 2018 Aslan (b44) 2021; 8 Priddle (b2) 2002 Azadeh, Ghaderi, Tarverdian, Saberi (b40) 2007; 186 Bilgen, Kaygusuz, Sari (b1) 2004; 26 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b34) 2021; 376 Kıran, Özceylan, Gündüz, Paksoy (b23) 2012; 36 Bulut, Yıldız (b35) 2016; 29 Dilaver, Hunt (b13) 2011; 33 Suganthi, Samuel (b38) 2012; 16 Ediger, Tatlıdil (b4) 2002; 43 Beşkirli, Tefek, Harun (b12) 2019; 8 Toksarı (b25) 2007; 35 Beşkirli, Dağ (b31) 2022; 8 Azadeh, Saberi, Ghaderi, Gitiforouz, Ebrahimipour (b6) 2008; 49 Canyurt, Öztürk (b7) 2006; 47 Toksarı (b26) 2009; 37 Ünler (b28) 2008; 36 Dong, Cao, Lee (b39) 2005; 37 Kıran, Özceylan, Gündüz, Paksoy (b22) 2012; 53 Ceylan, Ozturk (b19) 2004; 45 Beşkirli (b29) 2022; 8 Beşkirli, Özdemir, Temurtaş (b33) 2020; 32 Ediger, Akar (b14) 2007; 35 Zou, Gao, Li, Wu (b45) 2011; 11 Sonmez, Akgüngör, Bektaş (b8) 2017; 122 Es, Kalender Öksüz, Hamzacebi (b17) 2014; 29 Beşkirli, Dağ (b32) 2020; 6 Beskirli, Hakli, Kodaz (b18) 2017; 42 Kumar, Jain (b41) 2010; 35 Yumurtaci, Asmaz (b15) 2004; 26 Koc, Nureddin, Kahramanlı (b46) 2018; 6 Kankal (10.1016/j.egyr.2022.06.101_b3) 2011; 88 Sonmez (10.1016/j.egyr.2022.06.101_b8) 2017; 122 Kıran (10.1016/j.egyr.2022.06.101_b21) 2013; 13 Tefek (10.1016/j.egyr.2022.06.101_b36) 2019; 31 Suganthi (10.1016/j.egyr.2022.06.101_b38) 2012; 16 Beskirli (10.1016/j.egyr.2022.06.101_b18) 2017; 42 Beşkirli (10.1016/j.egyr.2022.06.101_b43) 2020; 20 Ghalehkhondabi (10.1016/j.egyr.2022.06.101_b42) 2017; 8 Ünler (10.1016/j.egyr.2022.06.101_b28) 2008; 36 Azadeh (10.1016/j.egyr.2022.06.101_b40) 2007; 186 Sadri (10.1016/j.egyr.2022.06.101_b9) 2014; 77 Kıran (10.1016/j.egyr.2022.06.101_b23) 2012; 36 Tefek (10.1016/j.egyr.2022.06.101_b37) 2016; 4 Ceylan (10.1016/j.egyr.2022.06.101_b19) 2004; 45 Erdogdu (10.1016/j.egyr.2022.06.101_b10) 2007; 35 Toksarı (10.1016/j.egyr.2022.06.101_b26) 2009; 37 Dilaver (10.1016/j.egyr.2022.06.101_b13) 2011; 33 Es (10.1016/j.egyr.2022.06.101_b17) 2014; 29 Koc (10.1016/j.egyr.2022.06.101_b46) 2018; 6 Canyurt (10.1016/j.egyr.2022.06.101_b7) 2006; 47 Aslan (10.1016/j.egyr.2022.06.101_b44) 2021; 8 Abualigah (10.1016/j.egyr.2022.06.101_b34) 2021; 376 Kıran (10.1016/j.egyr.2022.06.101_b22) 2012; 53 Toksarı (10.1016/j.egyr.2022.06.101_b25) 2007; 35 Azadeh (10.1016/j.egyr.2022.06.101_b6) 2008; 49 Biçer (10.1016/j.egyr.2022.06.101_b16) 2018 Beşkirli (10.1016/j.egyr.2022.06.101_b12) 2019; 8 Yumurtaci (10.1016/j.egyr.2022.06.101_b15) 2004; 26 10.1016/j.egyr.2022.06.101_b27 Beşkirli (10.1016/j.egyr.2022.06.101_b31) 2022; 8 Bilgen (10.1016/j.egyr.2022.06.101_b1) 2004; 26 Özkış (10.1016/j.egyr.2022.06.101_b24) 2020; 26 Tefek (10.1016/j.egyr.2022.06.101_b30) 2022; 34 Zou (10.1016/j.egyr.2022.06.101_b45) 2011; 11 Ediger (10.1016/j.egyr.2022.06.101_b4) 2002; 43 Kumar (10.1016/j.egyr.2022.06.101_b41) 2010; 35 Beskirli (10.1016/j.egyr.2022.06.101_b11) 2018; 6 Bulut (10.1016/j.egyr.2022.06.101_b35) 2016; 29 Beşkirli (10.1016/j.egyr.2022.06.101_b29) 2022; 8 Priddle (10.1016/j.egyr.2022.06.101_b2) 2002 Häfele (10.1016/j.egyr.2022.06.101_b5) 1974; 62 Gulcu (10.1016/j.egyr.2022.06.101_b20) 2017; 111 Beşkirli (10.1016/j.egyr.2022.06.101_b33) 2020; 32 Beşkirli (10.1016/j.egyr.2022.06.101_b32) 2020; 6 Dong (10.1016/j.egyr.2022.06.101_b39) 2005; 37 Ediger (10.1016/j.egyr.2022.06.101_b14) 2007; 35 |
| References_xml | – volume: 88 start-page: 1927 year: 2011 end-page: 1939 ident: b3 article-title: Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables publication-title: Appl Energy – volume: 35 start-page: 1129 year: 2007 end-page: 1146 ident: b10 article-title: Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey publication-title: Energy Policy – year: 2002 ident: b2 article-title: World energy outlook 2002 – volume: 42 start-page: 1705 year: 2017 end-page: 1715 ident: b18 article-title: The energy demand estimation for Turkey using differential evolution algorithm publication-title: Sādhanā – volume: 13 start-page: 2188 year: 2013 end-page: 2203 ident: b21 article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl Soft Comput – volume: 35 start-page: 3984 year: 2007 end-page: 3990 ident: b25 article-title: Ant colony optimization approach to estimate energy demand of Turkey publication-title: Energy Policy – volume: 8 start-page: 291 year: 2022 end-page: 298 ident: b31 article-title: An efficient tree seed inspired algorithm for parameter estimation of photovoltaic models publication-title: Energy Rep – volume: 376 year: 2021 ident: b34 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Engrg – volume: 8 start-page: 34 year: 2021 end-page: 46 ident: b44 article-title: Türkiye’nin enerji talebini tahmin etmek için tulumlular sürü algoritmasina dayalıbir uygulama publication-title: Adıyaman Üniv Mühendislik Bilimleri Dergisi – volume: 47 start-page: 3138 year: 2006 end-page: 3148 ident: b7 article-title: Three different applications of genetic algorithm (GA) search techniques on oil demand estimation publication-title: Energy Convers Manage – volume: 37 start-page: 545 year: 2005 end-page: 553 ident: b39 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build – volume: 35 start-page: 1701 year: 2007 end-page: 1708 ident: b14 article-title: ARIMA forecasting of primary energy demand by fuel in Turkey publication-title: Energy Policy – volume: 29 start-page: 237 year: 2016 end-page: 244 ident: b35 article-title: Comparing energy demand estimation using various statistical methods: the case of Turkey publication-title: Gazi Univ J Sci – volume: 6 start-page: 529 year: 2018 end-page: 543 ident: b46 article-title: Türkiye’de enerji talebini tahmin etmek için doğrusal form kullanarak gsa (yerçekimi arama algoritmasi) ve iwo (yabani ot optimizasyon algoritmasi) tekniklerinin uygulanmasi publication-title: Selçuk Üniv. Mühendislik, Bilim ve Teknoloji Dergisi – volume: 26 start-page: 1157 year: 2004 end-page: 1164 ident: b15 article-title: Electric energy demand of Turkey for the year 2050 publication-title: Energy Sources – volume: 4 start-page: 48 year: 2016 end-page: 52 ident: b37 article-title: Estimation of Turkey electric energy demand until year 2035 using TLBO algorithm publication-title: Int J Intell Syst Appl Eng – volume: 8 start-page: 1102 year: 2022 end-page: 1111 ident: b29 article-title: A novel invasive weed optimization with levy flight for optimization problems: The case of forecasting energy demand publication-title: Energy Rep – volume: 34 start-page: 5367 year: 2022 end-page: 5381 ident: b30 article-title: Highway accident number estimation in Turkey with jaya algorithm publication-title: Neural Comput Appl – year: 2018 ident: b16 article-title: Enerji talep tahminine yönelik program geliştirme ve bir bölge i̇çin uygulaması – volume: 26 start-page: 1119 year: 2004 end-page: 1129 ident: b1 article-title: Renewable energy for a clean and sustainable future publication-title: Energy Sources – volume: 11 start-page: 1556 year: 2011 end-page: 1564 ident: b45 article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm publication-title: Appl Soft Comput – volume: 53 start-page: 75 year: 2012 end-page: 83 ident: b22 article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey publication-title: Energy Convers Manage – volume: 20 start-page: 27 year: 2020 end-page: 34 ident: b43 article-title: Determination with linear form of Turkey’s energy demand forecasting by the tree seed algorithm and the modified tree seed algorithm publication-title: Adv Electr Comput Eng – volume: 77 start-page: 831 year: 2014 end-page: 843 ident: b9 article-title: General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN publication-title: Energy Convers Manage – volume: 36 start-page: 93 year: 2012 end-page: 103 ident: b23 article-title: Swarm intelligence approaches to estimate electricity energy demand in Turkey publication-title: Knowl-Based Syst – volume: 62 start-page: 438 year: 1974 end-page: 447 ident: b5 article-title: A systems approach to energy: Handling large amounts of energy in a way that is safe, clean, cheap, and efficient is a more serious long-range problem than producing an adequate fuel supply publication-title: Amer Sci – volume: 122 start-page: 301 year: 2017 end-page: 310 ident: b8 article-title: Estimating transportation energy demand in Turkey using the artificial bee colony algorithm publication-title: Energy – volume: 37 start-page: 1181 year: 2009 end-page: 1187 ident: b26 article-title: Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey publication-title: Energy Policy – volume: 49 start-page: 2165 year: 2008 end-page: 2177 ident: b6 article-title: Improved estimation of electricity demand function by integration of fuzzy system and data mining approach publication-title: Energy Convers Manage – volume: 32 start-page: 6877 year: 2020 end-page: 6911 ident: b33 article-title: A comparison of modified tree–seed algorithm for high-dimensional numerical functions publication-title: Neural Comput Appl – volume: 6 start-page: 668 year: 2020 end-page: 673 ident: b32 article-title: A new binary variant with transfer functions of harris hawks optimization for binary wind turbine micrositing publication-title: Energy Rep – volume: 186 start-page: 1731 year: 2007 end-page: 1741 ident: b40 article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption publication-title: Appl Math Comput – volume: 35 start-page: 1709 year: 2010 end-page: 1716 ident: b41 article-title: Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India publication-title: Energy – volume: 43 start-page: 473 year: 2002 end-page: 487 ident: b4 article-title: Forecasting the primary energy demand in Turkey and analysis of cyclic patterns publication-title: Energy Convers Manage – volume: 45 start-page: 2525 year: 2004 end-page: 2537 ident: b19 article-title: Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach publication-title: Energy Convers Manage – reference: H. Uguz, H. Hakli, Ö.K. Baykan, A new algorithm based on artificial bee colony algorithm for energy demand forecasting in Turkey, in: Conference a new algorithm based on artificial bee colony algorithm for energy demand forecasting in Turkey, IEEE, pp. 56–61. – volume: 31 start-page: 2939 year: 2019 end-page: 2954 ident: b36 article-title: A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey publication-title: Neural Comput Appl – volume: 111 start-page: 64 year: 2017 end-page: 70 ident: b20 article-title: The estimation of the electricity energy demand using particle swarm optimization algorithm: A case study of Turkey publication-title: Procedia Comput Sci – volume: 36 start-page: 1937 year: 2008 end-page: 1944 ident: b28 article-title: Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025 publication-title: Energy Policy – volume: 16 start-page: 1223 year: 2012 end-page: 1240 ident: b38 article-title: Energy models for demand forecasting—A review publication-title: Renew Sustain Energy Rev – volume: 26 start-page: 959 year: 2020 end-page: 965 ident: b24 article-title: A new model based on vortex search algorithm for estimating energy demand of Turkey publication-title: Pamukkale Univ J Eng Sci – volume: 29 year: 2014 ident: b17 article-title: Forecasting the net energy demand of Turkey by artificial neural networks publication-title: J Faculty Eng Archit Gazi Univ – volume: 6 start-page: 349 year: 2018 end-page: 352 ident: b11 article-title: Comparing energy demand estimation using artificial algae algorithm: The case of Turkey publication-title: J Clean Energy Technol – volume: 33 start-page: 426 year: 2011 end-page: 436 ident: b13 article-title: Industrial electricity demand for Turkey: a structural time series analysis publication-title: Energy Econ – volume: 8 start-page: 411 year: 2017 end-page: 447 ident: b42 article-title: An overview of energy demand forecasting methods published in 2005–2015 publication-title: Energy Syst – volume: 8 start-page: 1338 year: 2019 end-page: 1348 ident: b12 article-title: Modified gravitational search algorithm for energy demand estimation of Turkey publication-title: Bitlis Eren Üniv Bilimleri Dergisi – volume: 8 start-page: 411 issue: 2 year: 2017 ident: 10.1016/j.egyr.2022.06.101_b42 article-title: An overview of energy demand forecasting methods published in 2005–2015 publication-title: Energy Syst doi: 10.1007/s12667-016-0203-y – volume: 53 start-page: 75 issue: 1 year: 2012 ident: 10.1016/j.egyr.2022.06.101_b22 article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2011.08.004 – volume: 35 start-page: 1709 issue: 4 year: 2010 ident: 10.1016/j.egyr.2022.06.101_b41 article-title: Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India publication-title: Energy doi: 10.1016/j.energy.2009.12.021 – volume: 36 start-page: 1937 issue: 6 year: 2008 ident: 10.1016/j.egyr.2022.06.101_b28 article-title: Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025 publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.018 – volume: 122 start-page: 301 year: 2017 ident: 10.1016/j.egyr.2022.06.101_b8 article-title: Estimating transportation energy demand in Turkey using the artificial bee colony algorithm publication-title: Energy doi: 10.1016/j.energy.2017.01.074 – year: 2002 ident: 10.1016/j.egyr.2022.06.101_b2 – volume: 33 start-page: 426 issue: 3 year: 2011 ident: 10.1016/j.egyr.2022.06.101_b13 article-title: Industrial electricity demand for Turkey: a structural time series analysis publication-title: Energy Econ doi: 10.1016/j.eneco.2010.10.001 – volume: 34 start-page: 5367 issue: 7 year: 2022 ident: 10.1016/j.egyr.2022.06.101_b30 article-title: Highway accident number estimation in Turkey with jaya algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-022-06952-9 – volume: 26 start-page: 959 issue: 5 year: 2020 ident: 10.1016/j.egyr.2022.06.101_b24 article-title: A new model based on vortex search algorithm for estimating energy demand of Turkey publication-title: Pamukkale Univ J Eng Sci doi: 10.5505/pajes.2020.74943 – volume: 45 start-page: 2525 issue: 15–16 year: 2004 ident: 10.1016/j.egyr.2022.06.101_b19 article-title: Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2003.11.010 – volume: 88 start-page: 1927 issue: 5 year: 2011 ident: 10.1016/j.egyr.2022.06.101_b3 article-title: Modeling and forecasting of Turkey’s energy consumption using socio-economic and demographic variables publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.12.005 – volume: 62 start-page: 438 issue: 4 year: 1974 ident: 10.1016/j.egyr.2022.06.101_b5 article-title: A systems approach to energy: Handling large amounts of energy in a way that is safe, clean, cheap, and efficient is a more serious long-range problem than producing an adequate fuel supply publication-title: Amer Sci – volume: 6 start-page: 529 issue: 4 year: 2018 ident: 10.1016/j.egyr.2022.06.101_b46 article-title: Türkiye’de enerji talebini tahmin etmek için doğrusal form kullanarak gsa (yerçekimi arama algoritmasi) ve iwo (yabani ot optimizasyon algoritmasi) tekniklerinin uygulanmasi publication-title: Selçuk Üniv. Mühendislik, Bilim ve Teknoloji Dergisi – volume: 42 start-page: 1705 issue: 10 year: 2017 ident: 10.1016/j.egyr.2022.06.101_b18 article-title: The energy demand estimation for Turkey using differential evolution algorithm publication-title: Sādhanā doi: 10.1007/s12046-017-0724-7 – volume: 77 start-page: 831 year: 2014 ident: 10.1016/j.egyr.2022.06.101_b9 article-title: General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN publication-title: Energy Convers Manage – volume: 37 start-page: 545 issue: 5 year: 2005 ident: 10.1016/j.egyr.2022.06.101_b39 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build doi: 10.1016/j.enbuild.2004.09.009 – volume: 26 start-page: 1119 issue: 12 year: 2004 ident: 10.1016/j.egyr.2022.06.101_b1 article-title: Renewable energy for a clean and sustainable future publication-title: Energy Sources doi: 10.1080/00908310490441421 – volume: 20 start-page: 27 issue: 2 year: 2020 ident: 10.1016/j.egyr.2022.06.101_b43 article-title: Determination with linear form of Turkey’s energy demand forecasting by the tree seed algorithm and the modified tree seed algorithm publication-title: Adv Electr Comput Eng doi: 10.4316/AECE.2020.02004 – volume: 36 start-page: 93 year: 2012 ident: 10.1016/j.egyr.2022.06.101_b23 article-title: Swarm intelligence approaches to estimate electricity energy demand in Turkey publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2012.06.009 – volume: 43 start-page: 473 issue: 4 year: 2002 ident: 10.1016/j.egyr.2022.06.101_b4 article-title: Forecasting the primary energy demand in Turkey and analysis of cyclic patterns publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(01)00033-4 – volume: 4 start-page: 48 issue: Special Issue-1 year: 2016 ident: 10.1016/j.egyr.2022.06.101_b37 article-title: Estimation of Turkey electric energy demand until year 2035 using TLBO algorithm publication-title: Int J Intell Syst Appl Eng doi: 10.18201/ijisae.266082 – volume: 47 start-page: 3138 issue: 18–19 year: 2006 ident: 10.1016/j.egyr.2022.06.101_b7 article-title: Three different applications of genetic algorithm (GA) search techniques on oil demand estimation publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2006.03.009 – volume: 32 start-page: 6877 issue: 11 year: 2020 ident: 10.1016/j.egyr.2022.06.101_b33 article-title: A comparison of modified tree–seed algorithm for high-dimensional numerical functions publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04155-3 – volume: 16 start-page: 1223 issue: 2 year: 2012 ident: 10.1016/j.egyr.2022.06.101_b38 article-title: Energy models for demand forecasting—A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.08.014 – volume: 8 start-page: 34 issue: 14 year: 2021 ident: 10.1016/j.egyr.2022.06.101_b44 article-title: Türkiye’nin enerji talebini tahmin etmek için tulumlular sürü algoritmasina dayalıbir uygulama publication-title: Adıyaman Üniv Mühendislik Bilimleri Dergisi – volume: 111 start-page: 64 year: 2017 ident: 10.1016/j.egyr.2022.06.101_b20 article-title: The estimation of the electricity energy demand using particle swarm optimization algorithm: A case study of Turkey publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.06.011 – volume: 35 start-page: 3984 issue: 8 year: 2007 ident: 10.1016/j.egyr.2022.06.101_b25 article-title: Ant colony optimization approach to estimate energy demand of Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2007.01.028 – ident: 10.1016/j.egyr.2022.06.101_b27 doi: 10.1109/ACSAT.2015.12 – volume: 376 year: 2021 ident: 10.1016/j.egyr.2022.06.101_b34 article-title: The arithmetic optimization algorithm publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2020.113609 – volume: 8 start-page: 291 year: 2022 ident: 10.1016/j.egyr.2022.06.101_b31 article-title: An efficient tree seed inspired algorithm for parameter estimation of photovoltaic models publication-title: Energy Rep doi: 10.1016/j.egyr.2021.11.103 – volume: 35 start-page: 1129 issue: 2 year: 2007 ident: 10.1016/j.egyr.2022.06.101_b10 article-title: Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2006.02.013 – volume: 6 start-page: 668 year: 2020 ident: 10.1016/j.egyr.2022.06.101_b32 article-title: A new binary variant with transfer functions of harris hawks optimization for binary wind turbine micrositing publication-title: Energy Rep doi: 10.1016/j.egyr.2020.11.154 – volume: 6 start-page: 349 issue: 4 year: 2018 ident: 10.1016/j.egyr.2022.06.101_b11 article-title: Comparing energy demand estimation using artificial algae algorithm: The case of Turkey publication-title: J Clean Energy Technol doi: 10.18178/JOCET.2018.6.4.487 – volume: 37 start-page: 1181 issue: 3 year: 2009 ident: 10.1016/j.egyr.2022.06.101_b26 article-title: Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2008.11.017 – volume: 29 start-page: 237 issue: 2 year: 2016 ident: 10.1016/j.egyr.2022.06.101_b35 article-title: Comparing energy demand estimation using various statistical methods: the case of Turkey publication-title: Gazi Univ J Sci – volume: 8 start-page: 1338 issue: 4 year: 2019 ident: 10.1016/j.egyr.2022.06.101_b12 article-title: Modified gravitational search algorithm for energy demand estimation of Turkey publication-title: Bitlis Eren Üniv Bilimleri Dergisi doi: 10.17798/bitlisfen.527899 – volume: 26 start-page: 1157 issue: 12 year: 2004 ident: 10.1016/j.egyr.2022.06.101_b15 article-title: Electric energy demand of Turkey for the year 2050 publication-title: Energy Sources doi: 10.1080/00908310490441520 – volume: 49 start-page: 2165 issue: 8 year: 2008 ident: 10.1016/j.egyr.2022.06.101_b6 article-title: Improved estimation of electricity demand function by integration of fuzzy system and data mining approach publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.02.021 – year: 2018 ident: 10.1016/j.egyr.2022.06.101_b16 – volume: 8 start-page: 1102 year: 2022 ident: 10.1016/j.egyr.2022.06.101_b29 article-title: A novel invasive weed optimization with levy flight for optimization problems: The case of forecasting energy demand publication-title: Energy Rep doi: 10.1016/j.egyr.2021.11.108 – volume: 31 start-page: 2939 issue: 7 year: 2019 ident: 10.1016/j.egyr.2022.06.101_b36 article-title: A new hybrid gravitational search–teaching–learning-based optimization method for energy demand estimation of Turkey publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3244-9 – volume: 11 start-page: 1556 issue: 2 year: 2011 ident: 10.1016/j.egyr.2022.06.101_b45 article-title: Solving 0–1 knapsack problem by a novel global harmony search algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.07.019 – volume: 35 start-page: 1701 issue: 3 year: 2007 ident: 10.1016/j.egyr.2022.06.101_b14 article-title: ARIMA forecasting of primary energy demand by fuel in Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2006.05.009 – volume: 29 issue: 3 year: 2014 ident: 10.1016/j.egyr.2022.06.101_b17 article-title: Forecasting the net energy demand of Turkey by artificial neural networks publication-title: J Faculty Eng Archit Gazi Univ – volume: 13 start-page: 2188 issue: 4 year: 2013 ident: 10.1016/j.egyr.2022.06.101_b21 article-title: A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.12.007 – volume: 186 start-page: 1731 issue: 2 year: 2007 ident: 10.1016/j.egyr.2022.06.101_b40 article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption publication-title: Appl Math Comput |
| SSID | ssj0001920463 |
| Score | 2.3035278 |
| Snippet | Due to the increasing energy consumption, energy has become a constant problem in the world. Rapidly increasing population, urbanization and economic... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 18 |
| SubjectTerms | Arithmetic optimization algorithm Energy demand Estimation Linear regression model Optimization |
| Title | Realization of Turkey’s energy demand forecast with the improved arithmetic optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.egyr.2022.06.101 https://doaj.org/article/0d94d26acad343fda489be1763a8fdc4 |
| Volume | 8 |
| WOSCitedRecordID | wos000824053600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2352-4847 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001920463 issn: 2352-4847 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA4iHryIouL6Rw7epNg22TY5quziRRFZwVtJMomuuK3sdgUv4mv4ej6Jk7Rd9qQXLy2k6aRMJ5lvQuYbQk6Y5kob04-Uy2TEIdWRZE5HuXMMRKZ4mkAoNpHf3IiHB3m7VOrLnwlr6IEbxZ3FIFFCpowCxpkDxYXUNsFpoYQDE5hA41wuBVPPDW7xVFihslw_jTiuwW3GTHO4yz6-ezLQNPXknUlbEabzSoG8f8k5LTmc4SbZaJEiPW--cIus2HKbwB0CuzZ1klaOjuZTnIXfn18zakMWHwU7USVQxKLWqFlN_UYrRZRHx2H7wALF6Lh-mvjkRVrhgjHpxKmXxyo82iH3w8Ho8ipqCyVEhvG4jnQCVljIteOOIQBQ3HGRcpHgzaLHZxJVxYywuWJZonMGfeEyLRlTwLnN2S5ZLavS7hEKOCklF2Blojm6bxFrjL0FBjpWea6yHkk6RRWmZRH3xSxeiu642HPhlVt45RZx5tt65HTxzmvDofFr7wuv_0VPz38dGtAqitYqir-sokf63d8rWijRQAQUNf5l8P3_GPyArHuRTcbiIVmtp3N7RNbMWz2eTY-DoeL1-mPwA0I28WY |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+Turkey%E2%80%99s+energy+demand+forecast+with+the+improved+arithmetic+optimization+algorithm&rft.jtitle=Energy+reports&rft.au=Aslan%2C+Murat&rft.au=Be%C5%9Fkirli%2C+Mehmet&rft.date=2022-11-01&rft.issn=2352-4847&rft.eissn=2352-4847&rft.volume=8&rft.spage=18&rft.epage=32&rft_id=info:doi/10.1016%2Fj.egyr.2022.06.101&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_egyr_2022_06_101 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-4847&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-4847&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-4847&client=summon |