An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions

wannier90  is a program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWFs in real space. This is done in the space of unitary mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications Jg. 185; H. 8; S. 2309 - 2310
Hauptverfasser: Mostofi, Arash A., Yates, Jonathan R., Pizzi, Giovanni, Lee, Young-Su, Souza, Ivo, Vanderbilt, David, Marzari, Nicola
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.08.2014
Schlagworte:
ISSN:0010-4655, 1879-2944
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract wannier90  is a program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWFs in real space. This is done in the space of unitary matrices that describe rotations of the Bloch bands at each k-point. As a result, wannier90  is independent of the basis set used in the underlying calculation to obtain the Bloch states. Therefore, it may be interfaced straightforwardly to any electronic structure code. The locality of MLWFs can be exploited to compute band-structure, density of states and Fermi surfaces at modest computational cost. Furthermore, wannier90  is able to output MLWFs for visualisation and other post-processing purposes. Wannier functions are already used in a wide variety of applications. These include analysis of chemical bonding in real space; calculation of dielectric properties via the modern theory of polarisation; and as an accurate and minimal basis set in the construction of model Hamiltonians for large-scale systems, in linear-scaling quantum Monte Carlo calculations, and for efficient computation of material properties, such as the anomalous Hall coefficient. We present here an updated version of wannier90, wannier90  2.0, including minor bug fixes and parallel (MPI) execution for band-structure interpolation and the calculation of properties such as density of states, Berry curvature and orbital magnetisation. wannier90  is freely available under the GNU General Public License from http://www.wannier.org/. Program title: wannier90 Catalogue identifier: AEAK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAK_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 930386 No. of bytes in distributed program, including test data, etc.: 47939902 Distribution format: tar.gz Programming language: Fortran90, perl. Computer: Any architecture with a Fortran 90 compiler. Operating system: Linux, Windows, Solaris, AIX, Tru64 Unix, OSX. Has the code been vectorised or parallelized?: Yes, parallelized using MPI. RAM: 10 Mb Classification: 7.3. External routines: •BLAS (http://www/netlib.org/blas)•LAPACK (http://www.netlib.org/lapack)•MPI libraries (optional) for parallel executionCatalogue identifier of previous version: AEAK_v1_0 Journal reference of previous version: Comput. Phys. Comm. 178(2008)685 Does the new version supersede the previous version?: Yes Nature of problem: Obtaining maximally-localised Wannier functions [2] from a set of Bloch energy bands that may or may not be entangled, and using these Wannier functions to calculate electronic properties of materials. Solution method: In the case of entangled bands, the optimally-connected subspace of interest is determined by minimising a functional which measures the subspace dispersion across the Brillouin zone. The maximally-localised Wannier functions within this subspace are obtained by subsequent minimisation of a functional that represents the total spread of the Wannier functions in real space. For the case of isolated energy bands only the second step of the procedure is required [3, 4]. Reasons for new version: Addition of new functionality, minor bug fixes, and parallel (MPI) execution for parts of the code. Summary of revisions: Enhancements include: •Spinor projections•Improved plotting•Parallel execution•Calculation of van der Waals interactions•Landauer–Buttiker and Boltzmann transport Full details are given in the CHANGE.log file, which can be found in the root directory of the distribution. Additional comments: The distribution file for this program is over 47 MB and therefore is not delivered directly when Download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Example calculations run in a few minutes. References: [1]A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari, “wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions”, Comput. Phys. Commun. 178 (2008) 685[2]N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza and D. Vanderbilt, “Maximally-Localised Wannier Functions: Theory and Applications”, Rev. Mod. Phys. 84 (2012) 1419[3]N. Marzari and D. Vanderbilt, “Maximally localized generalized Wannier functions for composite energy bands”, Phys. Rev. B 56 (1997) 12847[4]I. Souza, N. Marzari and D. Vanderbilt, “Maximally localized Wannier functions for entangled energy bands”, Phys. Rev. B 65 (2001) 035109
AbstractList wannier90  is a program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWFs in real space. This is done in the space of unitary matrices that describe rotations of the Bloch bands at each k-point. As a result, wannier90  is independent of the basis set used in the underlying calculation to obtain the Bloch states. Therefore, it may be interfaced straightforwardly to any electronic structure code. The locality of MLWFs can be exploited to compute band-structure, density of states and Fermi surfaces at modest computational cost. Furthermore, wannier90  is able to output MLWFs for visualisation and other post-processing purposes. Wannier functions are already used in a wide variety of applications. These include analysis of chemical bonding in real space; calculation of dielectric properties via the modern theory of polarisation; and as an accurate and minimal basis set in the construction of model Hamiltonians for large-scale systems, in linear-scaling quantum Monte Carlo calculations, and for efficient computation of material properties, such as the anomalous Hall coefficient. We present here an updated version of wannier90, wannier90  2.0, including minor bug fixes and parallel (MPI) execution for band-structure interpolation and the calculation of properties such as density of states, Berry curvature and orbital magnetisation. wannier90  is freely available under the GNU General Public License from http://www.wannier.org/. Program title: wannier90 Catalogue identifier: AEAK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAK_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 2 No. of lines in distributed program, including test data, etc.: 930386 No. of bytes in distributed program, including test data, etc.: 47939902 Distribution format: tar.gz Programming language: Fortran90, perl. Computer: Any architecture with a Fortran 90 compiler. Operating system: Linux, Windows, Solaris, AIX, Tru64 Unix, OSX. Has the code been vectorised or parallelized?: Yes, parallelized using MPI. RAM: 10 Mb Classification: 7.3. External routines: •BLAS (http://www/netlib.org/blas)•LAPACK (http://www.netlib.org/lapack)•MPI libraries (optional) for parallel executionCatalogue identifier of previous version: AEAK_v1_0 Journal reference of previous version: Comput. Phys. Comm. 178(2008)685 Does the new version supersede the previous version?: Yes Nature of problem: Obtaining maximally-localised Wannier functions [2] from a set of Bloch energy bands that may or may not be entangled, and using these Wannier functions to calculate electronic properties of materials. Solution method: In the case of entangled bands, the optimally-connected subspace of interest is determined by minimising a functional which measures the subspace dispersion across the Brillouin zone. The maximally-localised Wannier functions within this subspace are obtained by subsequent minimisation of a functional that represents the total spread of the Wannier functions in real space. For the case of isolated energy bands only the second step of the procedure is required [3, 4]. Reasons for new version: Addition of new functionality, minor bug fixes, and parallel (MPI) execution for parts of the code. Summary of revisions: Enhancements include: •Spinor projections•Improved plotting•Parallel execution•Calculation of van der Waals interactions•Landauer–Buttiker and Boltzmann transport Full details are given in the CHANGE.log file, which can be found in the root directory of the distribution. Additional comments: The distribution file for this program is over 47 MB and therefore is not delivered directly when Download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: Example calculations run in a few minutes. References: [1]A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt and N. Marzari, “wannier90: A Tool for Obtaining Maximally-Localised Wannier Functions”, Comput. Phys. Commun. 178 (2008) 685[2]N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza and D. Vanderbilt, “Maximally-Localised Wannier Functions: Theory and Applications”, Rev. Mod. Phys. 84 (2012) 1419[3]N. Marzari and D. Vanderbilt, “Maximally localized generalized Wannier functions for composite energy bands”, Phys. Rev. B 56 (1997) 12847[4]I. Souza, N. Marzari and D. Vanderbilt, “Maximally localized Wannier functions for entangled energy bands”, Phys. Rev. B 65 (2001) 035109
Author Pizzi, Giovanni
Souza, Ivo
Lee, Young-Su
Vanderbilt, David
Mostofi, Arash A.
Yates, Jonathan R.
Marzari, Nicola
Author_xml – sequence: 1
  givenname: Arash A.
  surname: Mostofi
  fullname: Mostofi, Arash A.
  email: a.mostofi@imperial.ac.uk
  organization: Departments of Materials and Physics, Imperial College London, Exhibition Road, London SW7 2AZ, UK
– sequence: 2
  givenname: Jonathan R.
  surname: Yates
  fullname: Yates, Jonathan R.
  organization: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK
– sequence: 3
  givenname: Giovanni
  surname: Pizzi
  fullname: Pizzi, Giovanni
  organization: Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
– sequence: 4
  givenname: Young-Su
  surname: Lee
  fullname: Lee, Young-Su
  organization: High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
– sequence: 5
  givenname: Ivo
  surname: Souza
  fullname: Souza, Ivo
  organization: Centro de Física de Materiales, Universidad del País Vasco, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
– sequence: 6
  givenname: David
  surname: Vanderbilt
  fullname: Vanderbilt, David
  organization: Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019, USA
– sequence: 7
  givenname: Nicola
  surname: Marzari
  fullname: Marzari, Nicola
  organization: Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
BookMark eNp9kL1OwzAUhS0EEm3hAdj8AgnXiRPXMFUVf1IlFhADg-Xa18hVald2Wujbk6pMDJ3O9B2d843JeYgBCblhUDJg7e2qNBtTVsB4CU0JUJ-REZsKWVSS83MyAmBQ8LZpLsk45xUACCHrEfmcBbrdWN2jpTtM2cdAo6PfOgSPScIdndE-xo66mGhc9toHH77oWv_4te66fdFFozufB_zjyFC3DaYfevIVuXC6y3j9lxPy_vjwNn8uFq9PL_PZojA1h77QUnOBaKxAKyXX0CC4VtbSTdmyssxpUwtemcaKlrXYuApQgOENOlEZW9UTwo69JsWcEzq1ScO6tFcM1MGOWqnBjjrYUdCowc7AiH-M8b0-zO6T9t1J8v5I4nBpNxxW2XgMBq1PaHploz9B_wIcdoKb
CitedBy_id crossref_primary_10_1038_s41524_021_00675_6
crossref_primary_10_1103_PhysRevB_111_085425
crossref_primary_10_1103_PhysRevMaterials_6_125003
crossref_primary_10_1021_acsaem_5c01254
crossref_primary_10_1209_0295_5075_ac9d5f
crossref_primary_10_1038_s41598_017_04044_6
crossref_primary_10_1016_j_commatsci_2022_111617
crossref_primary_10_3389_fphy_2022_915619
crossref_primary_10_1038_s41467_023_40373_z
crossref_primary_10_1103_PhysRevB_111_085432
crossref_primary_10_1088_1361_648X_ad5261
crossref_primary_10_1039_D2CP01822E
crossref_primary_10_1088_2516_1075_ac421f
crossref_primary_10_1002_adfm_202000533
crossref_primary_10_1038_s41467_019_10930_6
crossref_primary_10_1038_s41567_019_0750_y
crossref_primary_10_1016_j_jallcom_2023_172080
crossref_primary_10_1038_s41467_023_42781_7
crossref_primary_10_1038_s41598_023_37081_5
crossref_primary_10_1103_xnqg_3bgh
crossref_primary_10_1039_D5NR01282A
crossref_primary_10_1103_PhysRevB_111_115151
crossref_primary_10_1103_PhysRevResearch_6_033122
crossref_primary_10_1103_PhysRevX_10_011024
crossref_primary_10_1103_PhysRevApplied_23_044020
crossref_primary_10_1103_n7z9_lq1z
crossref_primary_10_1103_PhysRevApplied_18_024075
crossref_primary_10_3389_fphy_2022_836959
crossref_primary_10_1038_s41524_023_01162_w
crossref_primary_10_1016_j_commatsci_2025_113881
crossref_primary_10_1088_1361_648X_ac3a47
crossref_primary_10_1016_j_jmmm_2021_168706
crossref_primary_10_1088_1674_1056_adc7f2
crossref_primary_10_1007_s10853_020_05561_y
crossref_primary_10_1016_j_nanoen_2019_05_028
crossref_primary_10_1088_1674_1056_27_4_046301
crossref_primary_10_1103_PhysRevB_111_245405
crossref_primary_10_1103_PhysRevB_101_035201
crossref_primary_10_1038_s41467_024_53541_6
crossref_primary_10_1103_lsjt_cww1
crossref_primary_10_1038_s41467_020_18646_8
crossref_primary_10_1002_adfm_202304187
crossref_primary_10_1063_5_0023531
crossref_primary_10_1016_j_apsusc_2025_163433
crossref_primary_10_1007_s10854_024_12477_9
crossref_primary_10_1002_adma_202309803
crossref_primary_10_1103_PhysRevB_110_224436
crossref_primary_10_1038_s41535_022_00474_2
crossref_primary_10_1016_j_scib_2020_07_032
crossref_primary_10_1103_PhysRevResearch_5_033050
crossref_primary_10_1039_D5TC02113H
crossref_primary_10_1038_s41586_020_2230_z
crossref_primary_10_1038_s41535_019_0194_8
crossref_primary_10_1103_PhysRevResearch_2_033460
crossref_primary_10_1140_epjb_s10051_021_00213_9
crossref_primary_10_1109_TED_2020_2998442
crossref_primary_10_1109_LED_2024_3417307
crossref_primary_10_1002_smsc_202400160
crossref_primary_10_1088_2053_1583_abc13f
crossref_primary_10_1007_s00521_021_06616_0
crossref_primary_10_1103_PhysRevB_111_035148
crossref_primary_10_3390_ma18030527
crossref_primary_10_1140_epjp_s13360_024_05878_6
crossref_primary_10_1103_PhysRevMaterials_7_044202
crossref_primary_10_1088_2516_1075_ad16f4
crossref_primary_10_1103_PhysRevB_104_L100303
crossref_primary_10_1002_adfm_201802084
crossref_primary_10_1016_j_jpcs_2024_112473
crossref_primary_10_1016_j_surfin_2025_107126
crossref_primary_10_1038_s41467_024_53870_6
crossref_primary_10_1109_LED_2022_3179228
crossref_primary_10_1103_PhysRevMaterials_7_093801
crossref_primary_10_1002_pssr_202100039
crossref_primary_10_1103_PhysRevLett_134_196801
crossref_primary_10_1103_m42m_t4dm
crossref_primary_10_1103_fhtt_zvkd
crossref_primary_10_1016_j_cjph_2024_07_013
crossref_primary_10_1038_s42005_023_01440_5
crossref_primary_10_1103_PhysRevResearch_6_033157
crossref_primary_10_1088_1361_648X_ace2a2
crossref_primary_10_1002_aelm_202100972
crossref_primary_10_1038_s41467_020_17234_0
crossref_primary_10_1088_2053_1583_ac4957
crossref_primary_10_1063_5_0130728
crossref_primary_10_1063_5_0183499
crossref_primary_10_1103_PhysRevB_105_045143
crossref_primary_10_1209_0295_5075_122_47001
crossref_primary_10_1103_RevModPhys_96_045008
crossref_primary_10_1088_2053_1591_adbc4c
crossref_primary_10_1103_PhysRevB_111_075433
crossref_primary_10_1038_s41467_023_41291_w
crossref_primary_10_1038_s41524_020_0272_2
crossref_primary_10_1088_2053_1583_ab2f06
crossref_primary_10_1016_j_jallcom_2022_168337
crossref_primary_10_1016_j_commatsci_2017_03_017
crossref_primary_10_1103_PhysRevX_7_011027
crossref_primary_10_3390_ijms26052096
crossref_primary_10_1016_j_mser_2025_101017
crossref_primary_10_1016_j_scib_2020_07_006
crossref_primary_10_1016_j_surfin_2023_103829
crossref_primary_10_1016_j_commatsci_2022_111889
crossref_primary_10_1039_D5TC01288K
crossref_primary_10_1002_adfm_202410675
crossref_primary_10_1103_pjmx_rmnt
crossref_primary_10_1103_PhysRevB_111_035125
crossref_primary_10_1038_s41524_022_00728_4
crossref_primary_10_1038_s41467_025_59257_5
crossref_primary_10_1103_PhysRevMaterials_5_085001
crossref_primary_10_1038_s41524_023_01018_3
crossref_primary_10_1038_s41563_022_01285_3
crossref_primary_10_1016_j_commatsci_2020_110192
crossref_primary_10_1016_j_jpcs_2025_112772
crossref_primary_10_1038_s41467_024_45859_y
crossref_primary_10_1007_s10853_020_05005_7
crossref_primary_10_1038_s41524_025_01668_5
crossref_primary_10_1103_PhysRevResearch_6_043185
crossref_primary_10_1134_S1027451021010110
crossref_primary_10_1103_PhysRevB_103_224522
crossref_primary_10_1038_s41535_018_0105_4
crossref_primary_10_1063_5_0170167
crossref_primary_10_1103_PhysRevB_111_235402
crossref_primary_10_1016_j_commatsci_2024_113392
crossref_primary_10_1103_gz4v_8mds
crossref_primary_10_1103_PhysRevB_108_045132
crossref_primary_10_1103_PhysRevResearch_1_033138
crossref_primary_10_1103_PhysRevX_9_041040
crossref_primary_10_3390_nano11102752
crossref_primary_10_1103_PhysRevX_10_021030
crossref_primary_10_1088_1361_648X_abdfff
crossref_primary_10_1038_s41467_020_17465_1
crossref_primary_10_1038_s41524_024_01259_w
crossref_primary_10_1038_s41586_021_03915_3
crossref_primary_10_1016_j_apsusc_2018_12_203
crossref_primary_10_1002_adma_202509228
crossref_primary_10_1038_s41565_017_0035_5
crossref_primary_10_1021_acs_jpcc_5c01270
crossref_primary_10_1016_j_cattod_2018_03_058
crossref_primary_10_1021_jacs_7b05128
crossref_primary_10_1016_j_physb_2021_413480
crossref_primary_10_1103_xv3m_vtlr
crossref_primary_10_1103_PhysRevB_101_045202
crossref_primary_10_1007_s12598_023_02301_4
crossref_primary_10_1103_PhysRevX_9_041038
crossref_primary_10_1002_adts_202000220
crossref_primary_10_1038_s41467_025_60128_2
crossref_primary_10_1016_j_apsusc_2021_152215
crossref_primary_10_1039_D5CP02013A
crossref_primary_10_1088_2053_1583_ac0713
crossref_primary_10_1002_adfm_202316588
crossref_primary_10_1016_j_cjph_2025_03_032
crossref_primary_10_1016_j_jpcs_2025_112552
crossref_primary_10_1038_s41467_022_32948_z
crossref_primary_10_1038_s41524_024_01266_x
crossref_primary_10_1088_1742_6596_2164_1_012011
crossref_primary_10_1088_1361_6463_ad0308
crossref_primary_10_1002_advs_202103250
crossref_primary_10_1088_1367_2630_acbed4
crossref_primary_10_1039_D3NR00346A
crossref_primary_10_1038_s41699_022_00289_6
crossref_primary_10_1039_D2NR02599J
crossref_primary_10_1038_s41699_021_00226_z
crossref_primary_10_1103_PhysRevLett_134_016401
crossref_primary_10_7566_JPSJ_88_044708
crossref_primary_10_1038_s41524_018_0124_5
crossref_primary_10_1088_2053_1583_aad2ee
crossref_primary_10_1088_1674_1056_adbacb
crossref_primary_10_1038_s41535_024_00657_z
crossref_primary_10_1063_5_0185238
crossref_primary_10_1103_PhysRevB_108_125118
crossref_primary_10_1073_pnas_1821533116
crossref_primary_10_1038_s41524_021_00499_4
crossref_primary_10_1016_j_apsusc_2019_03_343
crossref_primary_10_1016_j_ssc_2021_114531
crossref_primary_10_1103_PhysRevApplied_15_054030
crossref_primary_10_1016_j_jpcs_2022_110788
crossref_primary_10_1103_pbyw_mzfy
crossref_primary_10_1016_j_mtcomm_2022_103694
crossref_primary_10_1016_j_jmmm_2021_168785
crossref_primary_10_1103_PhysRevApplied_15_024057
crossref_primary_10_1088_1674_1056_ac0036
crossref_primary_10_1088_1367_2630_aa6d9d
crossref_primary_10_1103_PhysRevB_104_085142
crossref_primary_10_1038_s42004_024_01245_9
crossref_primary_10_1103_PhysRevMaterials_5_104409
crossref_primary_10_1016_j_rinp_2025_108115
crossref_primary_10_1038_s41467_021_25705_1
crossref_primary_10_1038_s41524_020_00462_9
crossref_primary_10_1109_TED_2024_3370532
crossref_primary_10_1103_PhysRevB_105_094105
crossref_primary_10_1103_PhysRevB_108_L220508
crossref_primary_10_1016_j_physb_2017_10_025
crossref_primary_10_1098_rsta_2019_0467
crossref_primary_10_1088_1367_2630_aa8117
crossref_primary_10_1088_1361_648X_ad1a7a
crossref_primary_10_1038_s41586_022_05610_3
crossref_primary_10_1063_1_5132356
crossref_primary_10_1038_s41598_023_49463_w
crossref_primary_10_1016_j_jallcom_2025_180686
crossref_primary_10_1088_1361_648X_ad215a
crossref_primary_10_1103_PhysRevB_105_155132
crossref_primary_10_7566_JPSJ_90_094707
crossref_primary_10_1063_1_5143474
crossref_primary_10_1103_PhysRevB_103_L161103
crossref_primary_10_1016_j_cpc_2021_107970
crossref_primary_10_1039_D5MH00230C
crossref_primary_10_1088_1674_1056_ad1380
crossref_primary_10_1016_j_apsusc_2025_163020
crossref_primary_10_1038_s41928_018_0040_1
crossref_primary_10_1088_1361_6528_ad7599
crossref_primary_10_1038_s44306_024_00020_9
crossref_primary_10_1038_s41524_019_0201_4
crossref_primary_10_1103_PhysRevB_104_075128
crossref_primary_10_1038_s41586_022_05567_3
crossref_primary_10_1109_TED_2025_3561757
crossref_primary_10_1103_PhysRevX_10_041031
crossref_primary_10_1063_1_5018857
crossref_primary_10_1016_j_mssp_2024_108993
crossref_primary_10_1103_PhysRevB_106_224104
crossref_primary_10_1103_PhysRevMaterials_9_035003
crossref_primary_10_1038_s41524_022_00800_z
crossref_primary_10_1063_1_5062845
crossref_primary_10_1002_adfm_202003162
crossref_primary_10_1039_D4RA06808D
crossref_primary_10_1088_1361_648X_aab7c1
crossref_primary_10_1002_adfm_202506483
crossref_primary_10_1016_j_commatsci_2025_113835
crossref_primary_10_1103_jsww_v4y9
crossref_primary_10_1063_1_5037121
crossref_primary_10_1103_PhysRevMaterials_9_015402
crossref_primary_10_1063_5_0048423
crossref_primary_10_1103_PhysRevB_103_L140410
crossref_primary_10_1103_PhysRevMaterials_7_074202
crossref_primary_10_1016_j_apsusc_2021_151986
crossref_primary_10_1021_jacs_2c12780
crossref_primary_10_1088_1674_1056_ac8cde
crossref_primary_10_1103_PhysRevB_103_L241111
crossref_primary_10_1021_acsnano_4c11663
crossref_primary_10_1002_aelm_202300752
crossref_primary_10_1103_PhysRevB_101_014308
crossref_primary_10_1103_PhysRevX_9_021048
crossref_primary_10_1038_s41699_024_00471_y
crossref_primary_10_1093_nsr_nwae194
crossref_primary_10_1103_PhysRevMaterials_9_L031201
crossref_primary_10_1016_j_ssc_2020_114022
crossref_primary_10_3390_nano13111739
crossref_primary_10_1063_5_0130350
crossref_primary_10_1039_D2NR03860A
crossref_primary_10_1088_1361_648X_abf9b9
crossref_primary_10_1038_s41598_021_85806_1
crossref_primary_10_1038_s41598_023_38863_7
crossref_primary_10_1016_j_cjph_2025_01_015
crossref_primary_10_1016_j_commatsci_2023_112165
crossref_primary_10_1016_j_commatsci_2025_113851
crossref_primary_10_1038_srep36849
crossref_primary_10_1016_j_cpc_2025_109834
crossref_primary_10_1063_5_0268105
crossref_primary_10_1088_1361_648X_aad9c6
crossref_primary_10_1002_smll_202404493
crossref_primary_10_1021_acsaelm_5c01400
crossref_primary_10_1038_s41563_018_0132_3
crossref_primary_10_1088_1367_2630_aa5de7
crossref_primary_10_1103_PhysRevB_111_155428
crossref_primary_10_1103_PhysRevB_107_195118
crossref_primary_10_1016_j_apsusc_2025_163221
crossref_primary_10_1088_1742_6596_2582_1_012013
crossref_primary_10_1140_epjp_s13360_022_02911_4
crossref_primary_10_1063_5_0095044
crossref_primary_10_1039_D5TC00898K
crossref_primary_10_1038_s41563_024_01894_0
crossref_primary_10_1039_D2NR05912F
crossref_primary_10_1088_2053_1591_ac440b
crossref_primary_10_3389_fchem_2024_1500989
crossref_primary_10_3390_cryst13040682
crossref_primary_10_1038_s41597_025_05396_9
crossref_primary_10_1103_pp48_d63c
crossref_primary_10_1515_zna_2020_0149
crossref_primary_10_1063_1_5116369
crossref_primary_10_1038_srep40559
crossref_primary_10_1016_j_cpc_2018_12_001
crossref_primary_10_1038_s41535_021_00396_5
crossref_primary_10_1103_PhysRevB_108_235167
crossref_primary_10_1038_s41535_023_00540_3
crossref_primary_10_1002_adfm_202214967
crossref_primary_10_1002_pssr_202200115
crossref_primary_10_1063_1_5129689
crossref_primary_10_1002_adfm_202208023
crossref_primary_10_7566_JPSJ_90_124707
crossref_primary_10_1016_j_mssp_2024_109019
crossref_primary_10_1073_pnas_2414203121
crossref_primary_10_1088_1361_648X_ac43fe
crossref_primary_10_1103_PhysRevResearch_3_023027
crossref_primary_10_1016_j_matlet_2020_128680
crossref_primary_10_1103_PhysRevX_13_031030
crossref_primary_10_1038_s41524_021_00648_9
crossref_primary_10_7566_JPSJ_86_093703
crossref_primary_10_1007_s41403_022_00379_3
crossref_primary_10_1088_1367_2630_ad1537
crossref_primary_10_1088_2515_7639_adc33e
crossref_primary_10_1103_PhysRevLett_128_095901
crossref_primary_10_1134_S1063776121040178
crossref_primary_10_1002_pssr_201700007
crossref_primary_10_1063_5_0098799
crossref_primary_10_1103_PhysRevB_111_184507
crossref_primary_10_1016_j_jallcom_2024_175298
crossref_primary_10_1088_1674_1056_ad5f86
crossref_primary_10_1039_C9NR04551A
crossref_primary_10_1088_0256_307X_37_6_067101
crossref_primary_10_1002_pssr_202100657
crossref_primary_10_1021_acs_jpclett_5c01037
crossref_primary_10_1103_vqb7_vz11
crossref_primary_10_1016_j_jpcs_2018_12_029
crossref_primary_10_3390_app12125913
crossref_primary_10_1002_pssr_202100652
crossref_primary_10_1109_ACCESS_2023_3237026
crossref_primary_10_1039_D1NR00064K
crossref_primary_10_1038_s41467_023_42996_8
crossref_primary_10_7566_JPSJ_94_044704
crossref_primary_10_1103_PhysRevLett_134_016705
crossref_primary_10_1103_bq5m_yw6f
crossref_primary_10_1103_PhysRevB_105_235104
crossref_primary_10_1103_PhysRevResearch_4_023100
crossref_primary_10_1007_s11664_017_6005_8
crossref_primary_10_1103_PhysRevResearch_4_023109
crossref_primary_10_1016_j_ssc_2025_116096
crossref_primary_10_1063_1_5052636
crossref_primary_10_1038_s41598_024_55519_2
crossref_primary_10_1038_s41467_025_56961_0
crossref_primary_10_1007_s43207_025_00541_x
crossref_primary_10_1088_1402_4896_ad70f7
crossref_primary_10_1080_07315171_2023_2300596
crossref_primary_10_1038_s41524_025_01662_x
crossref_primary_10_1103_PhysRevB_108_L201404
crossref_primary_10_3389_fchem_2021_796323
crossref_primary_10_1063_1_4974960
crossref_primary_10_1021_acs_jpcc_4c08683
crossref_primary_10_1088_1361_648X_ab6a30
crossref_primary_10_1088_1367_2630_ab7256
crossref_primary_10_1007_s10854_024_12293_1
crossref_primary_10_1063_5_0039542
crossref_primary_10_1016_j_jeurceramsoc_2023_05_007
crossref_primary_10_1038_s41524_024_01362_y
crossref_primary_10_1039_D4YA00442F
crossref_primary_10_1088_1361_648X_ad912e
crossref_primary_10_1016_j_commt_2024_100022
crossref_primary_10_1038_s43246_025_00905_0
crossref_primary_10_3390_nano13010038
crossref_primary_10_1103_PhysRevB_111_155131
crossref_primary_10_1103_ssxp_gz9l
crossref_primary_10_1109_LED_2017_2773599
crossref_primary_10_1038_s42005_023_01161_9
crossref_primary_10_1038_s41598_018_36869_0
crossref_primary_10_1016_j_apsusc_2019_143709
crossref_primary_10_1002_advs_202502569
crossref_primary_10_1103_PhysRevB_111_L140502
crossref_primary_10_1080_14786435_2021_1978575
crossref_primary_10_1103_PhysRevResearch_2_013134
crossref_primary_10_1007_s00339_022_06122_7
crossref_primary_10_1088_1361_648X_adc4a8
crossref_primary_10_1016_j_cpc_2016_09_022
crossref_primary_10_1103_hy1v_vnnn
crossref_primary_10_1103_PhysRevApplied_16_024030
crossref_primary_10_1109_TED_2022_3232082
crossref_primary_10_1002_chem_201902303
crossref_primary_10_1016_j_physb_2021_412977
crossref_primary_10_1063_5_0188258
crossref_primary_10_1103_PhysRevB_111_054304
crossref_primary_10_1002_adma_202200931
crossref_primary_10_1002_adma_202300227
crossref_primary_10_1016_j_progsolidstchem_2019_100252
crossref_primary_10_1039_D3NR00304C
crossref_primary_10_1002_adma_202305916
crossref_primary_10_1016_j_cpc_2022_108595
crossref_primary_10_1088_1361_648X_ad98dd
crossref_primary_10_1002_adma_202301790
crossref_primary_10_1038_s41586_024_07023_w
crossref_primary_10_1103_PhysRevLett_134_016502
crossref_primary_10_1063_5_0006446
crossref_primary_10_1063_5_0026033
crossref_primary_10_1088_2053_1583_ad10bc
crossref_primary_10_1007_s11664_018_06913_w
crossref_primary_10_1021_acs_nanolett_5c01363
crossref_primary_10_1016_j_sse_2022_108338
crossref_primary_10_1088_1361_6463_ac25b2
crossref_primary_10_1103_PhysRevResearch_2_012069
crossref_primary_10_1103_PhysRevLett_127_277204
crossref_primary_10_1002_jcc_26740
crossref_primary_10_1038_s41928_022_00744_8
crossref_primary_10_1063_5_0174081
crossref_primary_10_1039_D2NR04956B
crossref_primary_10_1103_PhysRevB_104_184408
crossref_primary_10_1038_s41467_024_45335_7
crossref_primary_10_1002_adfm_201804581
crossref_primary_10_1038_s41524_020_00469_2
crossref_primary_10_1002_pssr_202300499
crossref_primary_10_1016_j_apsusc_2025_162831
crossref_primary_10_1073_pnas_2218997120
crossref_primary_10_1002_adma_202301339
crossref_primary_10_1103_PhysRevResearch_6_023277
crossref_primary_10_1038_s41524_022_00828_1
crossref_primary_10_1016_j_cpc_2023_108854
crossref_primary_10_1063_5_0211502
crossref_primary_10_1016_j_mtcomm_2023_106553
crossref_primary_10_1103_21fx_x962
crossref_primary_10_1002_qute_202300072
crossref_primary_10_1016_j_apsusc_2023_157914
crossref_primary_10_1038_s41586_021_04028_7
crossref_primary_10_1103_PhysRevB_111_014515
crossref_primary_10_1016_j_jmmm_2022_169020
crossref_primary_10_1038_s41524_022_00915_3
crossref_primary_10_1002_aelm_201900250
crossref_primary_10_1016_j_enconman_2022_115949
crossref_primary_10_1016_j_physe_2022_115616
crossref_primary_10_1002_aelm_201700143
crossref_primary_10_1063_5_0088121
crossref_primary_10_1007_s40192_017_0087_2
crossref_primary_10_1063_5_0142095
crossref_primary_10_1016_j_commatsci_2020_109802
crossref_primary_10_1103_PhysRevB_111_035204
crossref_primary_10_1103_PhysRevB_111_035444
crossref_primary_10_1002_adma_202400428
crossref_primary_10_1021_acs_nanolett_5c01576
crossref_primary_10_1038_s41467_020_20838_1
crossref_primary_10_1103_PhysRevResearch_6_013251
crossref_primary_10_1103_PhysRevResearch_3_043022
crossref_primary_10_1007_s11433_021_1717_9
crossref_primary_10_1016_j_jallcom_2022_167017
crossref_primary_10_1103_PhysRevB_108_245149
crossref_primary_10_1088_1402_4896_adc497
crossref_primary_10_1002_adfm_202304454
crossref_primary_10_1103_6ly5_112g
crossref_primary_10_1038_s41467_024_46604_1
crossref_primary_10_1002_smll_202505119
crossref_primary_10_1073_pnas_2013565117
crossref_primary_10_1126_science_aaw4911
crossref_primary_10_1063_5_0056543
crossref_primary_10_1002_adfm_202400610
crossref_primary_10_1088_1402_4896_acaa0e
crossref_primary_10_1103_PhysRevResearch_2_023140
crossref_primary_10_1103_6gs6_p872
crossref_primary_10_1109_TED_2024_3367312
crossref_primary_10_1016_j_actamat_2024_119706
crossref_primary_10_1016_j_mtquan_2025_100027
crossref_primary_10_1088_2053_1583_acd4cf
crossref_primary_10_7566_JPSJ_86_043701
crossref_primary_10_1016_j_jmmm_2024_171907
crossref_primary_10_1038_s41535_024_00661_3
crossref_primary_10_1103_PhysRevResearch_6_033068
crossref_primary_10_1063_5_0205298
crossref_primary_10_1016_j_physb_2023_414697
crossref_primary_10_1103_PhysRevMaterials_6_053802
crossref_primary_10_1103_z22d_vlvc
crossref_primary_10_1109_TED_2021_3078412
crossref_primary_10_1002_pssa_201700945
crossref_primary_10_1088_1361_6668_ac7c42
crossref_primary_10_1038_srep25121
crossref_primary_10_1002_pssr_202200326
crossref_primary_10_1038_s41467_024_51969_4
crossref_primary_10_1002_apxr_202400052
crossref_primary_10_1016_j_cpc_2018_11_004
crossref_primary_10_1038_s41699_023_00414_z
crossref_primary_10_1557_s43577_025_00951_6
crossref_primary_10_1038_s41467_021_24289_0
crossref_primary_10_1103_PhysRevB_104_035110
crossref_primary_10_1016_j_cocom_2020_e00496
crossref_primary_10_1038_s41467_024_47291_8
crossref_primary_10_1103_PhysRevMaterials_7_L081601
crossref_primary_10_1103_PhysRevLett_134_106401
crossref_primary_10_3390_ma18061310
crossref_primary_10_1016_j_jpcs_2022_111024
crossref_primary_10_1038_s41578_018_0046_3
crossref_primary_10_1007_s11664_023_10877_x
crossref_primary_10_1007_s00894_018_3815_4
crossref_primary_10_1103_PhysRevB_107_134439
crossref_primary_10_1038_s41598_020_59200_2
crossref_primary_10_1007_s10825_023_02062_4
crossref_primary_10_1103_w1xv_zj1n
crossref_primary_10_1016_j_mseb_2022_115774
crossref_primary_10_1016_j_commatsci_2023_112627
crossref_primary_10_1007_s11433_018_9245_4
crossref_primary_10_1103_PhysRevB_105_024505
crossref_primary_10_1039_D5MH00612K
crossref_primary_10_1103_PhysRevLett_127_166401
crossref_primary_10_1039_D1NR04063D
crossref_primary_10_1126_sciadv_adu6562
crossref_primary_10_1038_s42005_023_01385_9
crossref_primary_10_1016_j_polymer_2020_123235
crossref_primary_10_1007_s11467_022_1243_5
crossref_primary_10_1103_PhysRevApplied_13_044014
crossref_primary_10_1103_PhysRevX_11_011039
crossref_primary_10_1002_qute_202200128
crossref_primary_10_1016_j_physleta_2020_126717
crossref_primary_10_1103_PhysRevB_111_195421
crossref_primary_10_1103_PhysRevB_104_195123
crossref_primary_10_1109_TED_2021_3130834
crossref_primary_10_1103_PhysRevB_104_235422
crossref_primary_10_1103_PhysRevB_103_214203
crossref_primary_10_1063_1_4991913
crossref_primary_10_1016_j_solidstatesciences_2024_107707
crossref_primary_10_1021_acs_inorgchem_5c00320
crossref_primary_10_1063_5_0145377
crossref_primary_10_1063_5_0031443
crossref_primary_10_1088_1367_2630_ac309b
crossref_primary_10_1021_acsanm_5c00479
crossref_primary_10_1088_1367_2630_ab3c9c
crossref_primary_10_1039_D3NR03594H
crossref_primary_10_1063_1_4977868
crossref_primary_10_1088_1367_2630_ab3060
crossref_primary_10_1038_s41467_022_29054_5
crossref_primary_10_1002_pssb_202400077
crossref_primary_10_1007_s11467_023_1320_4
crossref_primary_10_1063_5_0190143
crossref_primary_10_1063_5_0193656
crossref_primary_10_1088_2053_1583_ac687f
crossref_primary_10_1073_pnas_2010752117
crossref_primary_10_1038_s41467_024_53343_w
crossref_primary_10_1103_PhysRevMaterials_6_L031201
crossref_primary_10_1103_PhysRevB_103_155409
crossref_primary_10_1103_PhysRevB_103_214439
crossref_primary_10_1088_0256_307X_37_10_107504
crossref_primary_10_1038_s41598_020_76742_7
crossref_primary_10_1038_s41524_022_00761_3
crossref_primary_10_1063_5_0185801
crossref_primary_10_1038_s41524_021_00511_x
crossref_primary_10_1021_acsanm_4c05703
crossref_primary_10_1002_adma_202400845
crossref_primary_10_1007_s12274_023_6066_3
crossref_primary_10_1063_5_0080466
crossref_primary_10_1038_s41467_022_32179_2
crossref_primary_10_1038_s41699_020_00181_1
crossref_primary_10_1103_55rz_7phm
crossref_primary_10_1038_s41467_019_13814_x
crossref_primary_10_1103_PhysRevApplied_8_034007
crossref_primary_10_1063_5_0197986
crossref_primary_10_1088_1361_648X_abdce8
crossref_primary_10_1002_cphc_202500161
crossref_primary_10_1103_PhysRevResearch_2_033356
crossref_primary_10_1038_ncomms12585
crossref_primary_10_1038_s41467_023_44547_7
crossref_primary_10_1103_PhysRevResearch_6_023208
crossref_primary_10_1103_PhysRevB_103_224415
crossref_primary_10_1038_s41524_019_0257_1
crossref_primary_10_3390_condmat7020040
crossref_primary_10_1088_1361_648X_ac7f18
crossref_primary_10_1002_adma_202200487
crossref_primary_10_1016_j_cpc_2025_109779
crossref_primary_10_7566_JPSJ_92_124704
crossref_primary_10_1016_j_jallcom_2022_164299
crossref_primary_10_1016_j_scib_2024_06_009
crossref_primary_10_1016_j_ssc_2019_113662
crossref_primary_10_1063_1_5090339
crossref_primary_10_1103_PhysRevB_105_115414
crossref_primary_10_1007_s11431_022_2113_y
crossref_primary_10_1103_PhysRevX_8_031088
crossref_primary_10_1038_s41598_022_18519_8
crossref_primary_10_1088_1674_1056_ad0f8a
crossref_primary_10_1103_PhysRevX_14_011022
crossref_primary_10_1002_admi_202100491
crossref_primary_10_1039_C9MH00574A
crossref_primary_10_1016_j_physe_2022_115341
crossref_primary_10_1038_s41467_020_15339_0
crossref_primary_10_1039_D5MA00297D
crossref_primary_10_1134_S2635167621030022
crossref_primary_10_1016_j_ijhydene_2023_10_332
crossref_primary_10_1103_PhysRevMaterials_5_084203
crossref_primary_10_1088_1361_648X_aab0bb
crossref_primary_10_1088_1361_648X_aab0ba
crossref_primary_10_1103_PhysRevMaterials_9_014201
crossref_primary_10_1038_s41598_023_46911_5
crossref_primary_10_1038_s41524_020_0284_y
crossref_primary_10_1088_1674_1056_ad8a50
crossref_primary_10_1103_3lqw_25qy
crossref_primary_10_1088_1402_4896_ac2858
crossref_primary_10_1038_s41524_022_00791_x
crossref_primary_10_1016_j_physe_2023_115654
crossref_primary_10_1088_1367_2630_ac5e16
crossref_primary_10_1002_pssb_202200124
crossref_primary_10_1063_1_5043544
crossref_primary_10_1109_TNANO_2025_3549522
crossref_primary_10_1016_j_actamat_2022_117671
crossref_primary_10_1063_1_5044631
crossref_primary_10_1103_37kh_kc81
crossref_primary_10_1109_TED_2020_2985023
crossref_primary_10_1088_2515_7639_adeecb
crossref_primary_10_1016_j_physe_2025_116279
crossref_primary_10_1016_j_matpr_2023_05_202
crossref_primary_10_1002_pssb_201800020
crossref_primary_10_1103_PhysRevB_104_085202
crossref_primary_10_1103_PhysRevB_104_035148
crossref_primary_10_1038_s41598_021_98080_y
crossref_primary_10_1038_s41467_019_12805_2
crossref_primary_10_1103_PhysRevMaterials_7_065001
crossref_primary_10_1063_5_0069680
crossref_primary_10_1016_j_cpc_2025_109583
crossref_primary_10_1002_pssr_202400219
crossref_primary_10_1016_j_macse_2025_100041
crossref_primary_10_1103_PhysRevX_11_041030
crossref_primary_10_1016_j_apsusc_2018_12_116
crossref_primary_10_1038_s41535_021_00401_x
crossref_primary_10_1103_PhysRevX_8_011027
crossref_primary_10_1103_PhysRevResearch_6_033278
crossref_primary_10_1038_s41467_021_24541_7
crossref_primary_10_1038_s41563_017_0008_y
crossref_primary_10_1088_1367_2630_ac04c9
crossref_primary_10_1002_cphc_202400742
crossref_primary_10_1088_1361_648X_ad5d3c
crossref_primary_10_1016_j_chemphys_2024_112594
crossref_primary_10_1103_PhysRevApplied_13_064037
crossref_primary_10_1016_j_physe_2025_116257
crossref_primary_10_1103_PhysRevB_108_174439
crossref_primary_10_1038_s41535_019_0175_y
crossref_primary_10_1063_5_0075060
crossref_primary_10_1007_s10948_024_06855_x
crossref_primary_10_1103_9dlj_lpbs
crossref_primary_10_1016_j_carbon_2019_12_003
crossref_primary_10_1103_PhysRevMaterials_5_025202
crossref_primary_10_1021_acs_jpcc_4c05977
crossref_primary_10_1039_C6CP06932K
crossref_primary_10_1103_PhysRevB_107_L121102
crossref_primary_10_1016_j_spmi_2021_107026
crossref_primary_10_1088_1361_648X_ac3b28
crossref_primary_10_1038_s41598_020_69414_z
crossref_primary_10_1016_j_jpcs_2025_112620
crossref_primary_10_1038_s41524_022_00782_y
crossref_primary_10_1103_d78q_93fc
crossref_primary_10_1016_j_mtphys_2021_100348
crossref_primary_10_1088_1361_648X_aad6f1
crossref_primary_10_1038_s41567_019_0457_0
crossref_primary_10_1002_adfm_202420356
crossref_primary_10_1063_5_0267525
crossref_primary_10_1016_j_cpc_2018_10_025
crossref_primary_10_1038_s41524_024_01201_0
crossref_primary_10_1088_1361_648X_ac5d1c
crossref_primary_10_1002_adom_202301105
crossref_primary_10_1038_s41535_021_00334_5
crossref_primary_10_1038_s41535_023_00546_x
crossref_primary_10_1126_science_aau8740
crossref_primary_10_1038_s41567_023_02360_5
crossref_primary_10_1103_PhysRevResearch_6_033012
crossref_primary_10_1088_1361_648X_ad49f9
crossref_primary_10_1088_1402_4896_ad6ec1
crossref_primary_10_1007_s11433_023_2344_6
crossref_primary_10_1016_j_apsusc_2021_152321
crossref_primary_10_1039_D2CP02724K
crossref_primary_10_1063_5_0160234
crossref_primary_10_1103_4srw_xk2k
crossref_primary_10_1021_acs_inorgchem_5c00948
crossref_primary_10_1103_467t_z5b2
crossref_primary_10_1002_adfm_202505410
crossref_primary_10_1039_C9NR07793F
crossref_primary_10_1103_PhysRevX_11_031013
crossref_primary_10_1088_0256_307X_38_1_017202
crossref_primary_10_1103_PhysRevApplied_8_034017
crossref_primary_10_1088_1361_648X_ac5313
crossref_primary_10_1002_adma_202201350
crossref_primary_10_1103_PhysRevMaterials_6_L010801
crossref_primary_10_1007_s10825_022_01984_9
crossref_primary_10_1103_PhysRevB_111_085124
crossref_primary_10_1038_s41535_019_0207_7
crossref_primary_10_1007_s11433_022_1911_x
crossref_primary_10_3390_molecules28196858
crossref_primary_10_1016_j_cpc_2024_109251
crossref_primary_10_1007_s11433_020_1653_x
crossref_primary_10_1038_s41566_019_0574_4
crossref_primary_10_1103_PhysRevResearch_5_043165
crossref_primary_10_1103_PhysRevB_111_155103
crossref_primary_10_1103_PhysRevB_111_155101
crossref_primary_10_1088_1674_1056_28_3_037101
crossref_primary_10_1088_1361_648X_ab97e2
crossref_primary_10_3390_ma15207168
crossref_primary_10_1088_1742_6596_1290_1_012014
crossref_primary_10_1126_science_aai8142
crossref_primary_10_3390_cryst11020143
crossref_primary_10_1038_s41567_023_02031_5
crossref_primary_10_1038_s41524_025_01738_8
crossref_primary_10_1038_s43246_024_00676_0
crossref_primary_10_3390_ma15082744
crossref_primary_10_1103_PhysRevB_103_155157
crossref_primary_10_1016_j_physleta_2017_08_034
crossref_primary_10_1016_j_commatsci_2021_110779
crossref_primary_10_1088_1367_2630_ab9d56
crossref_primary_10_1063_5_0237686
crossref_primary_10_1103_PhysRevB_104_205129
crossref_primary_10_1038_s41467_023_39450_0
crossref_primary_10_1103_PhysRevResearch_5_043183
crossref_primary_10_1063_5_0159299
crossref_primary_10_1073_pnas_1906513116
crossref_primary_10_1038_s41535_025_00784_1
crossref_primary_10_1103_2h3m_qrfh
crossref_primary_10_1002_advs_202207121
crossref_primary_10_1038_s41535_022_00505_y
crossref_primary_10_1103_PhysRevX_14_041057
crossref_primary_10_7566_JPSJ_87_041010
crossref_primary_10_1007_s44214_023_00029_x
crossref_primary_10_1038_s41524_021_00619_0
crossref_primary_10_1103_PhysRevX_11_041010
crossref_primary_10_1038_s41586_023_06363_3
crossref_primary_10_1088_2053_1583_abae7a
crossref_primary_10_1103_PhysRevB_111_245121
crossref_primary_10_1038_s41535_024_00710_x
crossref_primary_10_1109_TED_2016_2635690
crossref_primary_10_1103_PhysRevB_111_165132
crossref_primary_10_1016_j_mtcomm_2024_110445
crossref_primary_10_1002_advs_202417621
crossref_primary_10_1103_PhysRevB_111_165137
crossref_primary_10_1063_5_0038799
crossref_primary_10_1063_5_0277376
crossref_primary_10_1039_D2CP02549C
crossref_primary_10_1038_s41524_021_00498_5
crossref_primary_10_1007_s11082_023_05967_3
crossref_primary_10_1039_D1NR02819G
crossref_primary_10_1038_s42005_021_00555_x
crossref_primary_10_1039_D5TA03991F
crossref_primary_10_1088_1674_1056_ac0133
crossref_primary_10_1088_1361_648X_aad8e1
crossref_primary_10_1103_PhysRevB_111_134438
crossref_primary_10_1038_s41524_024_01483_4
crossref_primary_10_1088_1361_648X_ab111c
crossref_primary_10_1021_acsami_5c12342
crossref_primary_10_1126_sciadv_adx4671
crossref_primary_10_1038_s41467_024_50590_9
crossref_primary_10_1103_PhysRevApplied_8_054047
crossref_primary_10_1073_pnas_1818728116
crossref_primary_10_1038_srep28076
crossref_primary_10_1103_PhysRevX_11_041009
crossref_primary_10_1038_s41467_022_33471_x
crossref_primary_10_1039_C7CP07466B
crossref_primary_10_1063_5_0169917
crossref_primary_10_1103_PhysRevX_14_021023
crossref_primary_10_1016_j_matchemphys_2022_127119
crossref_primary_10_1002_qute_202100149
crossref_primary_10_1038_s41524_023_01113_5
crossref_primary_10_1038_s41524_023_01159_5
crossref_primary_10_1016_j_cpc_2017_09_033
crossref_primary_10_1088_1361_648X_abe000
crossref_primary_10_1088_0256_307X_42_7_070712
crossref_primary_10_1038_s41563_019_0585_z
crossref_primary_10_1016_j_jallcom_2022_167525
crossref_primary_10_1016_j_radphyschem_2018_12_025
crossref_primary_10_1103_PhysRevB_101_035111
crossref_primary_10_1088_1674_1056_add1bd
crossref_primary_10_1007_s10825_023_02036_6
crossref_primary_10_1088_1361_6668_ac9160
crossref_primary_10_1103_PhysRevB_105_165104
crossref_primary_10_1002_advs_201902071
crossref_primary_10_1063_1_5042828
crossref_primary_10_1063_1_5119209
crossref_primary_10_1088_0256_307X_42_7_070703
crossref_primary_10_1103_PhysRevB_111_144402
crossref_primary_10_1002_adma_202310768
crossref_primary_10_3389_fchem_2025_1544147
crossref_primary_10_1063_5_0015444
crossref_primary_10_1088_1402_4896_ace487
crossref_primary_10_1103_PhysRevB_101_014428
crossref_primary_10_1103_PhysRevB_106_235116
crossref_primary_10_1002_adfm_202415606
crossref_primary_10_1021_jacs_0c11674
crossref_primary_10_1103_PhysRevB_105_165109
crossref_primary_10_3762_bjnano_9_116
crossref_primary_10_1103_PhysRevB_107_045135
crossref_primary_10_1088_1361_648X_ab73a8
crossref_primary_10_1088_1674_1056_ad322d
crossref_primary_10_1038_s41467_021_27094_x
crossref_primary_10_1039_D2CP01674E
crossref_primary_10_1103_PhysRevB_104_L161115
crossref_primary_10_1088_1361_648X_ab99ed
crossref_primary_10_1038_s41467_018_05730_3
crossref_primary_10_1038_srep45667
crossref_primary_10_1002_admi_202201562
crossref_primary_10_1016_j_carbon_2019_06_060
crossref_primary_10_1103_PhysRevB_108_024506
crossref_primary_10_1002_cphc_201900002
crossref_primary_10_1021_acsaem_5c00610
crossref_primary_10_1038_s41467_017_00395_w
crossref_primary_10_1016_j_matchemphys_2020_123617
crossref_primary_10_1038_s41467_017_01138_7
crossref_primary_10_1103_PhysRevB_106_245131
crossref_primary_10_1088_1402_4896_adf154
crossref_primary_10_1103_PhysRevB_103_125101
crossref_primary_10_1103_PhysRevB_107_184101
crossref_primary_10_1021_acs_jpcc_5c04498
crossref_primary_10_1103_PhysRevB_106_035147
crossref_primary_10_1016_j_ssc_2022_114976
crossref_primary_10_1088_1361_6463_ac083f
crossref_primary_10_1002_adfm_202400380
crossref_primary_10_1103_PhysRevB_111_165101
crossref_primary_10_1002_adom_202200428
crossref_primary_10_1038_srep41078
crossref_primary_10_1103_PhysRevB_111_144422
crossref_primary_10_1021_acs_nanolett_5c03258
crossref_primary_10_1016_j_jmat_2023_06_011
crossref_primary_10_1088_1674_1056_acd920
crossref_primary_10_1103_PhysRevApplied_12_014020
crossref_primary_10_1016_j_ssc_2023_115337
crossref_primary_10_1103_PhysRevX_12_011017
crossref_primary_10_1063_1_5129311
crossref_primary_10_7566_JPSJ_93_104702
crossref_primary_10_1016_j_mtphys_2023_101257
crossref_primary_10_1038_s41467_025_61752_8
crossref_primary_10_1038_s41563_019_0499_9
crossref_primary_10_1103_PhysRevB_103_195103
crossref_primary_10_1016_j_cpc_2020_107760
crossref_primary_10_7566_JPSJ_94_044605
crossref_primary_10_1038_s41467_020_14325_w
crossref_primary_10_1088_1361_648X_aa8f79
crossref_primary_10_1103_PhysRevB_111_125416
crossref_primary_10_1063_5_0180628
crossref_primary_10_1038_s41524_024_01306_6
crossref_primary_10_1021_acsnano_4c16902
crossref_primary_10_1103_PhysRevApplied_12_024063
crossref_primary_10_1063_5_0141039
crossref_primary_10_1016_j_mtquan_2024_100022
crossref_primary_10_1038_s41535_025_00775_2
crossref_primary_10_1103_PhysRevResearch_7_023024
crossref_primary_10_1016_j_mtphys_2023_101269
crossref_primary_10_1103_PhysRevX_12_011028
crossref_primary_10_1103_7blz_pswv
crossref_primary_10_1038_s41699_024_00501_9
crossref_primary_10_1109_TED_2024_3509407
crossref_primary_10_1038_s42005_023_01514_4
crossref_primary_10_1103_PhysRevB_103_045102
crossref_primary_10_1103_w2y5_rl8s
crossref_primary_10_1016_j_mtcomm_2023_107590
crossref_primary_10_1103_16r3_hjc7
crossref_primary_10_1134_S1063783420040204
crossref_primary_10_1016_j_surfin_2024_104597
crossref_primary_10_1002_adfm_202505282
crossref_primary_10_1088_2053_1583_ac6f63
crossref_primary_10_1007_s10825_025_02309_2
crossref_primary_10_1016_j_jallcom_2018_10_032
crossref_primary_10_1016_j_cpc_2020_107778
crossref_primary_10_1088_0256_307X_42_2_027302
crossref_primary_10_1088_1674_1056_ada432
crossref_primary_10_1016_j_cjph_2020_03_018
crossref_primary_10_1103_PhysRevB_105_085118
crossref_primary_10_1002_aelm_202101006
crossref_primary_10_1016_j_elspec_2021_147121
crossref_primary_10_1039_C7CP02158E
crossref_primary_10_1016_j_matt_2024_101940
crossref_primary_10_1016_j_nanoen_2018_07_010
crossref_primary_10_1063_5_0244117
crossref_primary_10_1103_PhysRevMaterials_9_034603
crossref_primary_10_1007_s42864_021_00098_2
crossref_primary_10_1088_1361_648X_adc5cf
crossref_primary_10_1038_s41535_025_00753_8
crossref_primary_10_1088_1674_1056_ad6558
crossref_primary_10_1063_5_0043742
crossref_primary_10_1103_PhysRevB_111_125203
crossref_primary_10_1021_acs_jpcc_5c01741
crossref_primary_10_1016_j_mtcomm_2023_106289
crossref_primary_10_1038_s41535_022_00511_0
crossref_primary_10_1063_5_0053789
crossref_primary_10_1073_pnas_2500831122
crossref_primary_10_1016_j_jpcs_2022_111139
crossref_primary_10_1016_j_commatsci_2025_114076
crossref_primary_10_1063_1_4994696
crossref_primary_10_1038_s41567_023_01953_4
crossref_primary_10_1038_s41467_025_62159_1
crossref_primary_10_1073_pnas_2405839122
crossref_primary_10_1088_1361_648X_ac8133
crossref_primary_10_1038_s41524_024_01417_0
crossref_primary_10_1063_5_0156566
crossref_primary_10_1088_1742_6596_2011_1_012096
crossref_primary_10_1088_1361_648X_abe647
crossref_primary_10_1007_s44214_024_00067_z
crossref_primary_10_1088_2053_1583_ac3c9c
crossref_primary_10_1038_s41524_024_01308_4
crossref_primary_10_1016_j_micrna_2022_207320
crossref_primary_10_1016_j_mssp_2025_109839
crossref_primary_10_1038_s41524_025_01672_9
crossref_primary_10_1063_5_0005017
crossref_primary_10_1038_s41467_019_13435_4
crossref_primary_10_1002_ange_201807421
crossref_primary_10_1103_PhysRevMaterials_5_124401
crossref_primary_10_1038_s41598_021_87269_w
crossref_primary_10_1134_S0021364019060043
crossref_primary_10_1088_1367_2630_19_1_013028
crossref_primary_10_1038_s41467_024_46325_5
crossref_primary_10_1103_PhysRevB_107_125207
crossref_primary_10_1038_s41586_024_07621_8
crossref_primary_10_1038_s41699_023_00396_y
crossref_primary_10_1038_s41524_025_01545_1
crossref_primary_10_1038_s41699_023_00372_6
crossref_primary_10_1039_D2RA01697D
crossref_primary_10_1088_1361_648X_ade21a
crossref_primary_10_1103_PhysRevB_111_054422
crossref_primary_10_1007_s11433_023_2208_9
crossref_primary_10_1063_5_0002190
crossref_primary_10_1134_S0021364023602762
crossref_primary_10_1016_j_actamat_2020_09_032
crossref_primary_10_1088_1361_648X_ac9c3d
crossref_primary_10_1137_18M1167164
crossref_primary_10_1088_1361_6463_acd707
crossref_primary_10_1038_s41586_019_1565_9
crossref_primary_10_7566_JPSJ_90_054705
crossref_primary_10_1103_PhysRevB_111_L140404
crossref_primary_10_1063_5_0053738
crossref_primary_10_3762_bjnano_9_94
crossref_primary_10_1038_s41467_025_62331_7
crossref_primary_10_1103_PhysRevB_104_235144
crossref_primary_10_1103_34g5_q2g6
crossref_primary_10_1103_PhysRevResearch_7_013289
crossref_primary_10_1038_s41524_020_0312_y
crossref_primary_10_1088_2053_1583_acc670
crossref_primary_10_1063_5_0202937
crossref_primary_10_1016_j_sse_2022_108452
crossref_primary_10_1103_PhysRevResearch_3_043198
crossref_primary_10_1088_1361_648X_aa6b2a
crossref_primary_10_1038_s41467_023_42884_1
crossref_primary_10_1039_C9NR09817H
crossref_primary_10_1109_TED_2021_3119552
crossref_primary_10_1063_5_0281262
crossref_primary_10_1063_1_4964828
crossref_primary_10_1021_acsnano_5c08991
crossref_primary_10_1103_PhysRevB_106_115132
crossref_primary_10_1002_anie_201807421
crossref_primary_10_1103_PhysRevX_6_031021
crossref_primary_10_1016_j_physleta_2022_128541
crossref_primary_10_1039_D1RA01136G
crossref_primary_10_1038_s41535_023_00594_3
crossref_primary_10_1039_D5CP01159K
crossref_primary_10_1103_PhysRevB_104_235139
crossref_primary_10_1063_5_0223869
crossref_primary_10_7566_JPSJ_87_093701
crossref_primary_10_1038_s41598_022_08838_1
crossref_primary_10_1103_PhysRevB_111_045133
crossref_primary_10_1103_PhysRevB_111_045135
crossref_primary_10_1038_s41467_022_28534_y
crossref_primary_10_1039_D1NR02641K
crossref_primary_10_1016_j_commatsci_2024_113091
crossref_primary_10_1088_2516_1075_ad5898
crossref_primary_10_1103_PhysRevB_111_205139
crossref_primary_10_1002_pssb_202000614
crossref_primary_10_1038_s41535_021_00316_7
crossref_primary_10_1088_1361_648X_ac965b
crossref_primary_10_1103_ldkr_gmsf
crossref_primary_10_1103_r723_w8kd
crossref_primary_10_1063_5_0251405
crossref_primary_10_1016_j_mtphys_2021_100459
crossref_primary_10_1103_PhysRevB_111_045120
crossref_primary_10_1038_s41524_022_00707_9
crossref_primary_10_1063_1_5053424
crossref_primary_10_1103_PhysRevMaterials_5_063805
crossref_primary_10_1038_s41524_022_00871_y
crossref_primary_10_1007_s12274_023_5780_1
crossref_primary_10_1103_PhysRevX_15_021071
crossref_primary_10_1002_adma_202418066
crossref_primary_10_1016_j_cpc_2019_106927
crossref_primary_10_1103_PhysRevB_111_195114
crossref_primary_10_1038_s41467_020_20252_7
crossref_primary_10_1103_PhysRevB_111_205127
crossref_primary_10_1021_acs_jpclett_5c01522
crossref_primary_10_1103_PhysRevB_111_195110
crossref_primary_10_1016_j_cpc_2020_107379
crossref_primary_10_1103_PhysRevResearch_2_033088
crossref_primary_10_3390_ma12172710
crossref_primary_10_1038_s41565_020_0717_2
crossref_primary_10_1103_PhysRevB_111_075106
crossref_primary_10_1088_1674_1056_acd522
crossref_primary_10_1103_PhysRevB_111_L020412
crossref_primary_10_1007_s11433_022_1992_x
crossref_primary_10_1103_PhysRevResearch_2_013214
crossref_primary_10_1038_s41524_025_01776_2
crossref_primary_10_1063_5_0092709
crossref_primary_10_1063_5_0274775
crossref_primary_10_1021_acs_chemmater_5c00877
crossref_primary_10_1103_PhysRevX_15_011042
crossref_primary_10_1007_s10948_021_05994_9
crossref_primary_10_1038_s41467_018_08274_8
crossref_primary_10_1186_s13321_017_0242_y
crossref_primary_10_1039_D4MH01509F
crossref_primary_10_1038_s42254_025_00818_4
crossref_primary_10_1016_j_apsusc_2024_160237
crossref_primary_10_1016_j_commatsci_2020_109960
crossref_primary_10_1039_D5NH00215J
crossref_primary_10_1002_adfm_202306751
crossref_primary_10_1007_s12274_020_2706_z
crossref_primary_10_1103_PhysRevResearch_2_013002
crossref_primary_10_1038_s41586_022_05463_w
crossref_primary_10_1103_PhysRevB_103_205417
crossref_primary_10_1039_D4SC04125A
crossref_primary_10_3390_ma17133331
crossref_primary_10_1103_PhysRevResearch_2_023264
crossref_primary_10_1103_PhysRevB_111_075133
crossref_primary_10_3390_ma14164495
crossref_primary_10_1038_s41535_022_00433_x
crossref_primary_10_1016_j_apsusc_2020_147723
crossref_primary_10_1088_0256_307X_39_11_117501
crossref_primary_10_7566_JPSJ_88_084701
crossref_primary_10_1038_s41586_019_1630_4
crossref_primary_10_1103_PhysRevB_103_014443
crossref_primary_10_1016_j_physleta_2017_05_039
crossref_primary_10_1016_j_jmmm_2025_173274
crossref_primary_10_1088_1361_6633_ab6a43
crossref_primary_10_1063_5_0122120
crossref_primary_10_1103_PhysRevB_111_184422
crossref_primary_10_1073_pnas_2401970121
crossref_primary_10_1103_PhysRevB_110_245106
crossref_primary_10_1002_smll_202402604
crossref_primary_10_1063_5_0157258
crossref_primary_10_1016_j_mtphys_2025_101698
crossref_primary_10_1038_s41586_021_03946_w
crossref_primary_10_1038_s41598_018_27430_0
crossref_primary_10_1038_s41524_024_01459_4
crossref_primary_10_1103_PhysRevB_108_134425
crossref_primary_10_1103_PhysRevLett_126_146401
crossref_primary_10_1016_j_mtcomm_2023_105542
crossref_primary_10_1088_1361_648X_ab3270
crossref_primary_10_1103_PhysRevMaterials_9_054605
crossref_primary_10_1016_j_apsusc_2024_161550
crossref_primary_10_1063_5_0209742
crossref_primary_10_1088_1361_6528_ac2d46
crossref_primary_10_1103_PhysRevApplied_23_014009
crossref_primary_10_1038_s41699_022_00305_9
crossref_primary_10_1126_science_aaz6643
crossref_primary_10_1088_1361_6463_ac1c2b
crossref_primary_10_1038_s41699_023_00402_3
crossref_primary_10_1016_j_matlet_2025_138337
crossref_primary_10_1088_1361_648X_aaeeca
crossref_primary_10_1103_PhysRevMaterials_8_114425
crossref_primary_10_1088_1361_648X_ac1de1
crossref_primary_10_1039_D5TC00976F
crossref_primary_10_1038_s41467_023_36857_7
crossref_primary_10_1021_acs_jctc_4c01531
crossref_primary_10_1002_tee_24142
crossref_primary_10_1002_tee_24141
crossref_primary_10_1126_sciadv_adu6686
crossref_primary_10_1103_v33j_mx2f
crossref_primary_10_1038_s41535_022_00446_6
crossref_primary_10_1039_D0NR05748G
crossref_primary_10_1038_s41535_025_00800_4
crossref_primary_10_1063_5_0218675
crossref_primary_10_1103_PhysRevApplied_23_034032
crossref_primary_10_1016_j_mtcomm_2024_111059
crossref_primary_10_1088_1402_4896_ad406f
crossref_primary_10_1016_j_ssc_2023_115314
crossref_primary_10_1016_j_flatc_2019_100092
crossref_primary_10_1038_s41535_021_00403_9
crossref_primary_10_1016_j_physe_2024_115925
crossref_primary_10_1088_0256_307X_41_5_057302
crossref_primary_10_1103_2s5q_p42x
crossref_primary_10_1088_1361_648X_ac57d7
crossref_primary_10_1088_1361_648X_ac987a
crossref_primary_10_1038_s41563_019_0600_4
crossref_primary_10_3389_fmats_2022_909344
crossref_primary_10_1016_j_jpcs_2022_111169
crossref_primary_10_1038_s41567_020_0967_9
crossref_primary_10_1039_C8QI01297K
crossref_primary_10_1103_PhysRevMaterials_9_034803
crossref_primary_10_1073_pnas_2104556118
crossref_primary_10_1038_s42005_022_00909_z
crossref_primary_10_1038_s42005_023_01460_1
crossref_primary_10_1103_PhysRevB_104_224414
crossref_primary_10_1088_2053_1583_ab0188
crossref_primary_10_1103_PhysRevB_105_024407
crossref_primary_10_1063_1_5030395
crossref_primary_10_1093_pnasnexus_pgad108
crossref_primary_10_1016_j_cpc_2022_108645
crossref_primary_10_1039_C9NR05725K
crossref_primary_10_1063_5_0105605
crossref_primary_10_1103_x7mg_wvxx
crossref_primary_10_1063_1_4984262
crossref_primary_10_1103_PhysRevApplied_19_064058
crossref_primary_10_1103_tktp_dhvc
crossref_primary_10_1039_D3NR03582D
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cpc.2014.05.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 2310
ExternalDocumentID 10_1016_j_cpc_2014_05_003
S001046551400157X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c340t-a9a47eecd7ed994a05e0f6939f81b2d1fac3742c5d7616e5f20e70c45ef72cd23
ISICitedReferencesCount 1958
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000337874800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-4655
IngestDate Sat Nov 29 03:58:08 EST 2025
Tue Nov 18 22:06:17 EST 2025
Fri Feb 23 02:30:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Density-functional theory
Electronic structure
Maximally-localised Wannier function
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-a9a47eecd7ed994a05e0f6939f81b2d1fac3742c5d7616e5f20e70c45ef72cd23
OpenAccessLink http://hdl.handle.net/10261/136867
PageCount 2
ParticipantIDs crossref_primary_10_1016_j_cpc_2014_05_003
crossref_citationtrail_10_1016_j_cpc_2014_05_003
elsevier_sciencedirect_doi_10_1016_j_cpc_2014_05_003
PublicationCentury 2000
PublicationDate August 2014
2014-08-00
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
SSID ssj0007793
Score 2.658238
Snippet wannier90  is a program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch energy bands that may or may not be attached to or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2309
SubjectTerms Density-functional theory
Electronic structure
Maximally-localised Wannier function
Title An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
URI https://dx.doi.org/10.1016/j.cpc.2014.05.003
Volume 185
WOSCitedRecordID wos000337874800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007793
  issn: 0010-4655
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELaqDiReJn6KMYb8wBNRJjdx6pi3CG38kJgqGKISD5HjOKJTl1ZtWsr-HP5S7hLHDVOH2AMvUZX03DT3yXe-fP6OkJcmgiUXF8jTCZXPpWG-ynXmy1yGPOJGZYWum02Is7N4PJajXu9XuxdmPRVlGW82cv5fXQ3nwNm4dfYW7naDwgn4DE6HI7gdjv_k-KT0VnNcx-feuimGYUL4A3sTmYVkzVb0CqU3kWE4y6qmR4R3qTaTSzWd_vTr-DZZwgBfGysPo9-2stcKG9iGELY6skR6-nazicvVP6J0R1GTBpKFWn73kmM31WCi263he5_ctdHk6qo2eot0WbiN9oKlDtXTlP951S1bDLgjzbmpGAIAirf9ORVHHczF3Yk1ZLITpDEr3RkAmlrExbGeoz7lgNeyrCzcRrv2Df-1IOioiS3r7SKFIVIcImVRWgvK7gUiknGf7CXvT8YfXLwXwko72z_UvjuvWYTX7mN39tPJaM7vk327FKFJA6EHpGfKh-TuqHHmI_ItKakFErVAorOCOiC9pglFGFGAEXUwojtgRC2MqIPRY_Ll9OT8zTvftuLwdchZ5SupuDBG58LkUnLFIsOKoQxlAcueIB8USoeCBzrKxXAwNFERMCOY5pEpRKDzIHxC-uWsNE8JVSh5VWQSUkXOwSSTOs4zPlQBCyGZVweEtY8o1VanHtulTNMbXXNAXjmTeSPS8rcv8_a5pzbLbLLHFDB0s9mz2_zGIbm3xfxz0q8WK3NE7uh1NVkuXlgA_QYyjJ5C
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+updated+version+of+wannier90%3A+A+tool+for+obtaining+maximally-localised+Wannier+functions&rft.jtitle=Computer+physics+communications&rft.au=Mostofi%2C+Arash+A.&rft.au=Yates%2C+Jonathan+R.&rft.au=Pizzi%2C+Giovanni&rft.au=Lee%2C+Young-Su&rft.date=2014-08-01&rft.issn=0010-4655&rft.volume=185&rft.issue=8&rft.spage=2309&rft.epage=2310&rft_id=info:doi/10.1016%2Fj.cpc.2014.05.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2014_05_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon