Direct data-driven algorithms for multiscale mechanics

We propose a randomized data-driven solver for multiscale mechanics problems which improves accuracy by escaping local minima and reducing dependency on metric parameters, while requiring minimal changes relative to non-randomized solvers. We additionally develop an adaptive data-generation scheme t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 433; s. 117525
Hlavní autori: Prume, E., Gierden, C., Ortiz, M., Reese, S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2025
Predmet:
ISSN:0045-7825
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose a randomized data-driven solver for multiscale mechanics problems which improves accuracy by escaping local minima and reducing dependency on metric parameters, while requiring minimal changes relative to non-randomized solvers. We additionally develop an adaptive data-generation scheme to enrich data sets in an effective manner. This enrichment is achieved by utilizing material tangent information and an error-weighted k-means clustering algorithm. The proposed algorithms are assessed by means of three-dimensional test cases with data from a representative volume element model.
ISSN:0045-7825
DOI:10.1016/j.cma.2024.117525