Two-dimensional turbulence above topography: condensation transition and selection of minimum enstrophy solutions

We consider two-dimensional flows above topography, revisiting the selective decay (or minimum enstrophy) hypothesis of Bretherton and Haidvogel. We derive a ‘condensed branch’ of solutions to the variational problem where a domain-scale condensate coexists with a flow at the (smaller) scale of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics Vol. 988
Main Author: Gallet, Basile
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 31.05.2024
Subjects:
ISSN:0022-1120, 1469-7645
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider two-dimensional flows above topography, revisiting the selective decay (or minimum enstrophy) hypothesis of Bretherton and Haidvogel. We derive a ‘condensed branch’ of solutions to the variational problem where a domain-scale condensate coexists with a flow at the (smaller) scale of the topography. The condensate arises through a supercritical bifurcation as the conserved energy of the initial condition exceeds a threshold value, a prediction that we quantitatively validate using direct numerical simulations. We then consider the forced–dissipative case, showing how weak forcing and dissipation select a single dissipative state out of the continuum of solutions to the energy-conserving system predicted by selective decay. As the forcing strength increases, the condensate arises through a supercritical bifurcation for topographic-scale forcing and through a subcritical bifurcation for domain-scale forcing, both predictions being quantitatively validated by direct numerical simulations. This method provides a way of determining the equilibrated state of forced–dissipative flows based on variational approaches to the associated energy-conserving system, such as the statistical mechanics of two-dimensional flows or selective decay.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2024.365