Uncertainty quantification in autoencoders predictions: Applications in aerodynamics
A data-driven model is compared to classical equation-driven approaches to investigate its ability to predict quantity of interest and their uncertainty when studying airfoil aerodynamics. The focus is on autoencoders and the effect of uncertainties due to the architecture, the hyperparamaters and t...
Gespeichert in:
| Veröffentlicht in: | Journal of computational physics Jg. 506; S. 112951 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.06.2024
|
| Schlagworte: | |
| ISSN: | 0021-9991, 1090-2716 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!